Terra L Lasho

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/2545624/publications.pdf
Version: 2024-02-01

6 SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood, 2012, 120, 4168-4171.

Mutationâ€enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. British Journal of Haematology, 2020, 189, 291-302.
1.2
Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition.
Nature Medicine, 2015, 21, 1473-1480.
3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival

1.4 and Outcomes Data Among Disease Subgroups. Mayo Clinic Proceedings, 2019, 94, 599-610.
$15.2 \quad 128$

13 Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients. Leukemia, 2018, 32, 1189-1199.
3.3

102

14 Driver mutations and prognosis in primary myelofibrosis: Mayoâ€ Єareggi MPN alliance study of 1,095 patients. American Journal of Hematology, 2018, 93, 348-355.
2.0

94

> 15 <i>ASXL1</i> mutations are frequent and prognostically detrimental in <i>CSF3R</i>â€mutated chronic neutrophilic leukemia. American Journal of Hematology, 2015, 90, 653-656.
$2.0 \quad 76$

U2AF1 mutation types in primary myelofibrosis: phenotypic and prognostic distinctions. Leukemia, 2018,
19 Mayo alliance prognostic system for mastocytosis: clinical and hybrid clinical-molecular models.Blood Advances, 2018, 2, 2964-2972.2.5

Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2
20 mutations in chronic myelomonocytic leukemia (CMML)â€"a study of 1084 patients. Leukemia, 2020, 34,
3.3 1407-1421.

Targeted next generation sequencing and identification of risk factors in <scp $>\mathrm{W}</ \mathrm{scp}>$ orld
21 <scp>H</scp>ealth <scp>O</scp>rganization defined atypical chronic myeloid leukemia. American
$2.0 \quad 64$
Journal of Hematology, 2017, 92, 542-548.

22 Nextâ€generation sequencing in systemic mastocytosis: Derivation of a mutationâ€augmented clinical prognostic model for survival. American Journal of Hematology, 2016, 91, 888-893.

Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. American Journal of Hematology, 2019, 94, 767-779.
29 Therapy relatedâ€chronic myelomonocytic leukemia (CMML): Molecular, cytogenetic, and clinical distinctions from <i> de novo</i> CMML. American Journal of Hematology, 2018, 93, 65-73.
$2.0 \quad 49$

Calreticulin variant stratified driver mutational status and prognosis in essential thrombocythemia.
$30 \quad$ Calreticulin variant stratified driver mutational status
2.0

47
.
4
Spectrum of autoimmune diseases and systemic inflammatory syndromes in patients with chronic
myelomonocytic leukemia. Leukemia and Lymphoma, 2017, 58, 1488-1493.
$0.6 \quad 47$

RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nature
5.8

44

Monocytosis in polycythemia vera: Clinical and molecular correlates. American Journal of
Hematology, 2017, 92, 640-645.

37	Monocytosis is a powerful and independent predictor of inferior survival in primary myelofibrosis. British Journal of Haematology, 2018, 183, 835-838.	1.2	32
38	Clinicopathologic characteristics, prognostication and treatment outcomes for myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U): Mayo Clinic-Moffitt Cancer Center study of 135 consecutive patients. Leukemia, 2020, 34, 656-661.	3.3	32
39	Prefibrotic <i>versus</i> overtly fibrotic primary myelofibrosis: clinical, cytogenetic, molecular and prognostic comparisons. British Journal of Haematology, 2018, 182, 594-597.	1.2	31
40	<i>CALR</i> mutation studies in chronic neutrophilic leukemia. American Journal of Hematology, 2014, 89, 450-450.	2.0	29
41	Genomics of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Hematology American Society of Hematology Education Program, 2020, 2020, 450-459.	0.9	29
42	<i>JAK2</i> exon 12 mutated polycythemia vera: Mayoâ€€areggi MPN Alliance study of 33 consecutive cases and comparison with <i>JAK2</i〉V617F mutated disease. American Journal of Hematology, 2018, 93, E93-E96.	2.0	27
43	CSF3R-mutated chronic neutrophilic leukemia: long-term outcome in 19 consecutive patients and risk model for survival. Blood Cancer Journal, 2018, 8, 21.	2.8	26

<i>ASXL1</i> and <i> CBL</i> mutations are independently predictive of inferior survival in advanced
systemic mastocytosis. British Journal of Haematology, 2016, 175, 534-536. (A comparison of clinical and molecular characteristics of patients with systemic mastocytosis with
Mutations and karyotype predict treatment response in myelodysplastic syndromes. American Journal

Spectrum of abnormalities and clonal transformation in germline RUNX1 familial platelet disorder
48 and a genomic comparative analysis with somatic RUNX1 mutations in MDS/MPN overlap neoplasms.
Leukemia, 2020, 34, 2519-2524.
Biallelic inactivation of the retinoblastoma gene results in transformation of chronic
myelomonocytic leukemia to a blastic plasmacytoid dendritic cell neoplasm: shared clonal origins of
two aggressive neoplasms. Blood Cancer Journal, 2018, 8, 82.

50 Cytogenetic abnormalities in systemic mastocytosis: WHO subcategoryâ€specific incidence and prognostic impact among 348 informative cases. American Journal of Hematology, 2018, 93, 1461-1466.
2.0

24
$51 \quad$ <i>Asx|1</i> loss cooperates with oncogenic <i>Nras</i> in mice to reprogram the immune
microenvironment and drive leukemic transformation. Blood, 2022, 139, 1066-1079.
0.6

24
$0.6 \quad 24$

Evidence-Based Minireview: Myelodysplastic syndrome/myeloproliferative neoplasm overlap
syndromes: a focused review. Hematology American Society of Hematology Education Program, 2020, 2020, 460-464.

55	Mayo Alliance Prognostic Model for Myelodysplastic Syndromes: Integration of Genetic and Clinical Information. Mayo Clinic Proceedings, 2018, 93, 1363-1374.	1.4	20
56	Prognostic interaction between bone marrow morphology and SF3B1 and ASXL1 mutations in myelodysplastic syndromes with ring sideroblasts. Blood Cancer Journal, 2018, 8, 18.	2.8	19
57	Screening for $\langle\mathrm{i}\rangle\langle\mathrm{scp}\rangle \mathrm{ASXL}\langle\mid \mathrm{scp}\rangle 1<\|\mathrm{i}\rangle$ and $\langle\mathrm{i}\rangle\langle\mathrm{scp}\rangle$ SRSF $\langle\mid \mathrm{scp}\rangle 2<\|\mathrm{i}\rangle$ mutations is imperative for treatment decisionâ€making in otherwise low or intermediateấl risk patients with myelofibrosis. British Journal of Haematology, 2018, 183, 678-681.	1.2	19
58	Spectrum of hematological malignancies, clonal evolution and outcomes in 144 Mayo Clinic patients with germline predisposition syndromes. American Journal of Hematology, 2021, 96, 1450-1460.	2.0	19
59	Mayo <i>CALR</i> mutation type classification guide using alpha helix propensity. American Journal of Hematology, 2018, 93, E128-E129.	2.0	18
60	MPL-mutated essential thrombocythemia: a morphologic reappraisal. Blood Cancer Journal, 2018, 8, 121.	2.8	17
61	Oncogenic gene expression and epigenetic remodeling of cis-regulatory elements in ASXL1-mutant chronic myelomonocytic leukemia. Nature Communications, 2022, 13, 1434.	5.8	17
62	Mutations and karyotype in myelodysplastic syndromes: TP53 clusters with monosomal karyotype, RUNX1 with trisomy 21, and SF3B1 with $\operatorname{inv(3)(q21q26.2)~and~del(11q).~Blood~Cancer~Journal,~2017,~7,~} 658$.	2.8	16
63	<i>U2AF1<\|i> mutation variants in myelodysplastic syndromes and their clinical correlates. American Journal of Hematology, 2018, 93, E146-E148.	2.0	15

Prognostic Irrelevance of Ring Sideroblast Percentage in World Health Organization Defined
0.6
73
74

Clinical correlates and prognostic impact of clonal hematopoiesis in multiple myeloma patients
73 receiving postâ€autologous stem cell transplantation lenalidomide maintenance therapy. American
2.0

12
Journal of Hematology, 2021, 96, E157-E162.
The germline <i>JAK2</i> GGCC (46/1) haplotype and survival among 414 molecularlyâ€ennotated patients with primary myelofibrosis. American Journal of Hematology, 2019, 94, 299-305.
2.0

11

75 Imetelstat, a Telomerase Inhibitor, Induces Morphologic and Molecular Remissions In Myelofibrosis and Reversal Of Bone Marrow Fibrosis. Blood, 2013, 122, 662-662.
0.6

Identification of submicroscopic genetic changes and precise breakpoint mapping in myelofibrosis using high resolution mateâ€pair sequencing. American Journal of Hematology, 2013, 88, 741-746.

Splenectomy in patients with chronic myelomonocytic leukemia: Indications, histopathological
77 findings and clinical outcomes in a single institutional series of thirtyâ€nine patients. American Journal
2.0 of Hematology, 2018, 93, 1347-1357.

20+ Years and alive with primary myelofibrosis: Phenotypic signature of very longâ€lived patients.
American Journal of Hematology, 2019, 94, 286-290.
2.0

10

Special considerations in the management of patients with myelodysplastic myndrome /
79 myeloproliferative neoplasm overlap syndromes during the <SCP>SARSâ€CoV</scp> â€2 pandemic. American \quad Journal of Hematology, 2020, 95, E203-E208. $\quad 10$
$80 \quad$ ASXL1 and SETBP1 Mutations and Their Prognostic Contribution In Chronic Myelomonocytic Leukemia:
An International Study Of 431 Patients. Blood, 2013, 122, 1510-1510.
0.6

10

Germline <i>SH2B3 < ii> pathogenic variant associated with myelodysplastic
81 syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. American Journal \quad of Hematology, 2019, 94, E231-E234. $\quad 9.0$

82 A prospective evaluation of vitamin B1 (thiamine) level in myeloproliferative neoplasms: clinical correlations and impact of JAK2 inhibitor therapy. Blood Cancer Journal, 2019, 9, 11.

83	SF3B1-mutant CMML defines a predominantly dysplastic CMML subtype with a superior acute leukemia-free survival. Blood Advances, 2020, 4, 5716-5721.	2.5	9
84	Sustained, complete response to pexidartinib in a patient with <scp><i>CSF1R</i></scp>â€mutated Erdheimâ€"Chester disease. American Journal of Hematology, 2022, 97, 293-302.	2.0	9
85	Early thrombotic events and preemptive systemic anticoagulation following splenectomy for myelofibrosis. American Journal of Hematology, 2018, 93, E235-E238.	2.0	8
86	Response to erythropoiesisâ€stimulating agents in patients with WHOâ€defined myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPNâ€RSâ€才). British Journal of Haematology, 2020, 189, e104-e108.	1.2	8
87	Landscape of RAS pathway mutations in patients with myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a study of 461 molecularly annotated patients. Leukemia, 2021, 35, 644-649.	3.3	8

Serum erythropoietin levels in essential thrombocythemia: phenotypic and prognostic correlates.
Blood Cancer Journal, 2018, 8, 118.
2.8

7

Atypical CML- the role of morphology and precision genomics. Best Practice and Research in Clinical
0.7

7
Haematology, 2020, 33, 101133.

Concomitant Analysis of EZH2 and ASXL1 Mutations In Myelofibrosis, Chronic Myelomonocytic

95	MPLW515L/K and JAK2V617F Mutations: Single Colony Studies, Lineage Restriction, and Chronology of Clonal Emergence.. Blood, 2006, 108, 116-116.	0.6	6
96	CSF3R T618I mutant chronic myelomonocytic leukemia (CMML) defines a proliferative CMML subtype enriched in ASXL1 mutations with adverse outcomes. Blood Cancer Journal, 2021, 11, 54.	2.8	5
97	Mutation-Enhanced International Prognostic Systems for Essential Thrombocythemia (MIPSS-ET) and Polycythemia Vera (MIPSS-PV). Blood, 2018, 132, 578-578.	0.6	5
98	TG101209, a Selective JAK2 Kinase Inhibitor, Suppresses Endogenous and Cytokine-Supported Colony Formation from Hematopoietic Progenitors Carrying JAK2V617F or MPLW515K/L Mutations.. Blood, 2006, 108, 2680-2680.	0.6	5
99	Aurora A Kinase Is a Novel Therapeutic Target In The Myeloproliferative Neoplasms. Blood, 2013, 122, 109-109.	0.6	5
100	A New Clinically-Based Subclassification Proposal in CMML with Significant Prognostic Implications to Overcome the MDS/MPN Categorizing Dilemma. Blood, 2016, 128, 4320-4320.	0.6	5

101 IDH mutations in Primary Myelofibrosis Predict Leukemic Transformation and Shortened Survival: 0.6 5
102 Myelodysplastic/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis 2.8 5
103 Clonal compositions involving epigenetic regulator and splicing mutations in CHIP, CCUS, MDS, and 0.4 5
CMML. Leukemia Research, 2022, 116, 106818.Determinants of long-term outcome in type 1 calreticulin-mutated myelofibrosis. Leukemia, 2019, 33,3.34
104 780-785.LNK Mutation Studies In Chronic- and Blast-Phase Myeloproliferative Neoplasms and JAK20.6105 Mutation-Negative Erythrocytosis. Blood, 2010, 116, 4105-4105.Comprehensive Cytokine Profiling in Systemic Mastocytosis: Prognostic Relevance of Increased Plasma
The Germline JAK2 GGCC (46/1) Haplotype and Survival Among 414 Molecularly-Annotated Patients with
Primary Myelofibrosis. Blood, 2018, 132, 1761-1761.

Functional Interrogation of Variants of Undetermined Significance of the Isocitrate Dehydrogenase 1 and 2 Genes in Myeloid Neoplasms. Blood, 2019, 134, 1697-1697.

Phenotypic correlates and prognostic outcomes of <scp><i>TET2<|i><|scp> mutations in
111 myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: A comprehensive study of 2.0 504 adult patients. American Journal of Hematology, 2020, 95, E86-E89.

Remarkable stability in clonal hematopoiesis involving leukemiaâ€driver genes in patients without underlying myeloid neoplasms. American Journal of Hematology, 2021, 96, E392-E396.
2.0

3

Treatment outcomes for patients with myelodysplastic syndrome/myeloproliferative neoplasms with ring sideroblasts and thrombocytosis. Leukemia and Lymphoma, 2022, 63, 199-204.

Loss of LKB1/STK11 Facilitates Leukemic Progression of the Myeloproliferative Neoplasms. Blood, 2020, 136, 1-1.

Circulating IL-2R, IL-8, IL-15 and CXCL10 Levels Are Independently Prognostic In Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study. Blood, 2010, 116, 3068-3068.
$0.6 \quad 3$
Aberrant Megakaryocyte Gene Expression Contributes to Primary Myelofibrosis.. Blood, 2012, 120,

117 Aberrant Megakaryocyte Gene Expression Contributes to Primary Myelofibrosis.. Blood, 2012, 120,

118 Effect of the Number of Prognostically Relevant Mutated Genes on Survival and Leukemia Progression in Primary Myelofibrosis. Blood, 2013, 122, 104-104.
0.6

3
Characterization of BMS-911543, a Functionally Selective Small Molecule Inhibitor of JAK2. Blood, 2010, 116, 4112-4112.
0.6

3
0.6

3

Telomerase Inhibitor Imetelstat Therapy in Refractory Anemia with Ring Sideroblasts with or without
Thrombocytosis. Blood, 2015, 126, 55-55.
0.6

3

Monocytosis Is a Powerful and Independent Predictor of Shortened Overall and Leukemia-Free Survival in Primary Myelofibrosis. Blood, 2016, 128, 4249-4249.
0.6

Normal Karyotype Primary Myelofibrosis (NK-PMF): Clinical and Molecular Prognostication In 690
Patients. Blood, 2013, 122, 1587-1587.
0.6
"Proliferative" Versus "Dysplastic" Chronic Myelomonocytic Leukemia: Molecular and Prognostic Correlates. Blood, 2016, 128, 1987-1987.
0.6
\<i\>SF3B1\&|t;/i\>-mutant myelodysplastic syndrome/myeloproliferative neoplasms: a unique molecular and prognostic entity. Haematologica, 2022, 107, 1189-1192.
1.7

Practiceâ€elevant demarcation of systemic mastocytosis associated with another hematologic neoplasm. American Journal of Hematology, 2018, 93, E383-E386.

Cutaneous blastic plasmacytoid dendritic cell neoplasm arising in the context of <i>TET2</i> and

$127 \quad$| SF3B1 Mutations Are Prevalent in Myelodysplastic Syndromes with Ring Sideroblasts but Do Not Hold |
| :--- |
| Independent Prognostic Value. Blood, 2011, 118, 460-460. |

133 Genetic predictors of response to specific drugs in primary myelofibrosis. Blood Cancer Journal, 2018, 8, 120.

20+ Years and Alive with Primary Myelofibrosis: Phenotypic Signature of Very Long-Lived Patients. Blood, 2018, 132, 4301-4301.
0.6

1

135 3,023 Mayo Clinic Patients with Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival
 and Outcomes Data Among Disease Subgroups. Blood, 2018, 132, 3035-3035.

Mutations and Thrombosis in Essential Thrombocythemia and Polycythemia Vera: Mayo-Careggi
136 Alliance Study. Blood, 2018, 132, 3040-3040.
0.6

1

Spectrum of Abnormalities and Clonal Transformation in Germline RUNX1 Familial Platelet Disorder
137 and a Comparative Analysis with Somatic RUNX1 Mutations in Myeloid Neoplasms. Blood, 2019, 134 , 3003-3003.

138 Comprehensive Plasma Cytokine Profiling in Polycythemia Vera: Comparison with Myelofibrosis and Clinical Correlates,. Blood, 2011, 118, 3850-3850.
0.6

1

Chronic Neutrophilic Leukemia With Concurrent CSF3R and SETBP1 Mutations: Single Colony
139 Clonality Studies, In Vitro Sensitivity To JAK Inhibitors and Lack Of Treatment Response To Ruxolitinib.
$0.6 \quad 1$
Blood, 2013, 122, 2830-2830.

140 Driver Mutations and Prognosis in 502 Patients with Essential Thrombocythemia. Blood, 2015, 126, 1599-1599.

```
145 Genomic Changes Associated with Leukemic Transformation of Myeloproliferative Disorders.. Blood,
2008, 112, 3371-3371.

Interplay Between Histone Deacetylases (HDACs) and STAT3: Mechanism of Activated JAK/STAT3
146 Oncogenic Pathway in ABC (Activated B-cell) Type Diffuse Large B Cell Lymphoma.. Blood, 2009, 114,

Clonal Hematopoiesis of Indeterminate Potential Is Associated with Increased Age-Independent153 Cytogenetic Profile, JAK2V617F Mutational Status, and Response to Drug Therapy in Myelofibrosis with
Erythropoietin Therapy Does Not Benefit Transfusion-Dependent Primary Myelofibrosis Patients and
155 Treatment Response Is Infrequent with a Baseline Hemoglobin Level â\%o¥ 10 g/dL.. Blood, 2007, 110, 3555-3555.

Pruritus in Polycythemia Vera Is More Prevalent in Non-Smokers and Is Independently Associated with a Lower Risk of Arterial Thrombosis.. Blood, 2007, 110, 2550-2550.
0.6

0
163 Pruritus in Primary Myelofibrosis: Clinical and Laboratory Correlates. Blood, 2011, 118, 5154-5154. 0.6
Gene Expression Profiling within the Context of JAK Inhibitor Therapy for Myelofibrosis: Correlation
with Treatment Effect and Anemia Response. Blood, 2012, 120, 1751-1751.

Spliceosome Mutations Involving SRSF2, SF3B1 and U2AF35 in World Health Organization Defined
166 Chronic Myelomonocytic Leukemia; Prevalence, Clinical Correlates and Prognosis. Blood, 2012, 120,

\section*{1711-1711.}
\begin{tabular}{|c|c|c|c|}
\hline 167 & Phenotypic and Prognostic Correlates of Spliceosome Mutations (SRSF2, SF3B1, U2AF35) in Chronic Myelomonocytic Leukemia with â\%o¥ 1\% Ring Sideroblasts.. Blood, 2012, 120, 2803-2803. & 0.6 & 0 \\
\hline 168 & Prognostic Interactions Between SRSF2, ASXL1, and IDH Mutations in Primary Myelofibrosis and Determination of Added Value to Cytogenetic Risk Stratification and DIPSS-Plus. Blood, 2012, 120, 430-430. & 0.6 & 0 \\
\hline 169 & Associations and Prognostic Interactions Between Circulating Levels of Hepcidin, Ferritin, and Inflammatory Cytokines in Primary Myelofibrosis.. Blood, 2012, 120, 2831-2831. & 0.6 & 0 \\
\hline 170 & U2AF1 mutations In Primary Myelofibrosis Cluster With Normal Karyotype and JAK2V617F and Are Strongly Associated With Anemia and Thrombocytopenia. Blood, 2013, 122, 4060-4060. & 0.6 & 0 \\
\hline 171 & Baseline Spleen Size and Mutations Involving ASXL1 and SRSF2 Predict Survival and Treatment Response In JAK Inhibitor Treated Myelofibrosis Patients. Blood, 2013, 122, 4048-4048. & 0.6 & 0 \\
\hline 172 & Vascular Events and Risk Factors for Thrombosis in Refractory Anemia with Ring Sideroblasts and Thrombocytosis (RARS-T). Blood, 2015, 126, 4067-4067. & 0.6 & 0 \\
\hline 173 & Momelotinib Therapy for Myelofibrosis: Impact on Long-Term Survival and Genotype Correlations. Blood, 2015, 126, 4062-4062. & 0.6 & 0 \\
\hline 174 & Molecular Correlates of Anemia in Primary Myelofibrosis. Blood, 2015, 126, 4068-4068. & 0.6 & 0 \\
\hline 175 & Prognostic Interaction Between ASXL1 and TET2 Mutations in Chronic Myelomonocytic Leukemia. Blood, 2015, 126, 2864-2864. & 0.6 & 0 \\
\hline
\end{tabular}

\footnotetext{
177 Next-Generation Sequencing in Myelodysplastic Syndromes: Prognostic Interaction Between Adverse Mutations and IPSS-R. Blood, 2016, 128, 1986-1986.
}
0.6

0
181 Serum Erythropoietin Levels in Essential Thrombocythemia: Phenotypic and Prognostic Correlates.
183 Determinants of Long-Term Outcome in Type 1/like Calreticulin-Mutated Myelofibrosis. Blood, 2018, 132, 1767-1767.
Indoleamine 2,3-Dioxygenase-1 Expressing Dendritic Cell Populations Are Associated with
184 Tumor-Induced Immune Tolerance \& Aggressive Disease Biology in Chronic Myelomonocytic Leukemia. \(\quad\) O
Blood, 2018, 132, 4344-4344.
\(185 \quad\)\begin{tabular}{l} 
Cytogenetic Abnormalities in Systemic Mastocytosis: Who Subcategory-Specific Incidence and \\
Prognostic Impact Among 348 Informative Cases. Blood, 2018, 132, 3050-3050.
\end{tabular}
186 Myeloproliferative Neoplasms in Young Patients: The Mayo Clinic Experience with 361 Cases Age 40
Cytogenetic Clonal Evolution in Myeloproliferative Neoplasms: Contexts and Prognostic Impact
Among 650 Patients with Serial Bone Marrow Biopsies. Blood, 2018, 132, 4291-4291.

188 MPL-Mutated Essential Thrombocythemia: A Morphologic Reappraisal. Blood, 2018, 132, 3036-3036.
0.6

0
\(189 \begin{aligned} & \text { Clinical Correlates, Prognostic Impact and Survival Outcomes in Chronic Myelomonocytic Leukemia } \\ & \text { Patients with Myeloproliferative Neoplasm Associated-Driver Mutations. Blood, 2018, 132, 3100-3100. }\end{aligned}\) 0.6 ..... 0
190 Risk Factors for Leukemic Transformation Among 1,306 Patients with Primary Myelofibrosis: Mutations Predict Early Events. Blood, 2018, 132, 3044-3044.
191 A Prospective Evaluation of Vitamin B1 (thiamine) Level in Myeloproliferative Neoplasms: Clinical 0.6 ..... 0
Correlations and Impact of JAK2 Inhibitor Therapy. Blood, 2018, 132, 1771-1771.
0.6 ..... 0
192 Peripheral Blood Cell Sorting Strategies for Transcriptomic Analysis in Chronic Myelomonocytic Leukemia. Blood, 2019, 134, 4232-4232.Phenotypic Correlates and Prognostic Outcomes of TET2 Mutations in Myelodysplastic
193 Syndrome/Myeloproliferative Neoplasm Overlap Syndromes: A Comprehensive Study of 504 Patients.0.60
Blood, 2019, 134, 3005-3005.
Distal Enhancer Elements in ASXL1-Mutant Chronic Myelomonocytic Leukemia. Blood, 2019, 134,0.60
2981-2981.Clinical Categorization of Chronic Myelomonocytic Leukemia into Proliferative and Dysplastic195 Subtypes Correlates with Distinct Genomic, Transcriptomic and Epigenomic Signatures. Blood, 2019,0.60
134, 1710-1710.Clonal Compositions Involving Epigenetic Regulator Gene Mutations in Clonal Hematopoiesis, Clonal196 Cytopenias of Undetermined Significance and Chronic Myelomonocytic Leukemia. Blood, 2021, 138,```

