Anand Vaidya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545355/publications.pdf

Version: 2024-02-01

93 4,080 34 60
papers citations h-index g-index

93 93 93 4149
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes and Endocrinology,the, 2018, 6, 51-59.	11.4	417
2	The Unrecognized Prevalence of Primary Aldosteronism. Annals of Internal Medicine, 2020, 173, 10-20.	3.9	320
3	The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocrine Reviews, 2018, 39, 1057-1088.	20.1	168
4	Incidence of Atrial Fibrillation and Mineralocorticoid Receptor Activity in Patients With Medically and Surgically Treated Primary Aldosteronism. JAMA Cardiology, 2018, 3, 768.	6.1	148
5	Renal Outcomes in Medically and Surgically Treated Primary Aldosteronism. Hypertension, 2018, 72, 658-666.	2.7	146
6	Role of Complement and Complement Regulatory Proteins in the Complications of Diabetes. Endocrine Reviews, 2015, 36, 272-288.	20.1	127
7	The Spectrum of Subclinical Primary Aldosteronism and Incident Hypertension. Annals of Internal Medicine, 2017, 167, 630.	3.9	127
8	The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metabolism: Clinical and Experimental, 2012, 61, 450-458.	3.4	124
9	Continuum of Renin-Independent Aldosteronism in Normotension. Hypertension, 2017, 69, 950-956.	2.7	122
10	Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension, 2019, 73, 885-892.	2.7	121
11	Age-Related Autonomous Aldosteronism. Circulation, 2017, 136, 347-355.	1.6	117
12	Blood Pressure Trajectories and the Risk of Intracerebral Hemorrhage and Cerebral Infarction. Hypertension, 2017, 70, 508-514.	2.7	106
13	"Nonfunctional―Adrenal Tumors and the Risk for Incident Diabetes and Cardiovascular Outcomes. Annals of Internal Medicine, 2016, 165, 533.	3.9	98
14	The Independent Association Between 25â€Hydroxyvitamin D and Adiponectin and Its Relation With BMI in Two Large Cohorts: The NHS and the HPFS. Obesity, 2012, 20, 186-191.	3.0	76
15	Human Interventions to Characterize Novel Relationships Between the Renin–Angiotensin–Aldosterone System and Parathyroid Hormone. Hypertension, 2014, 63, 273-280.	2.7	69
16	Physical Activity and the Risk of Primary Hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1590-1597.	3.6	68
17	Evolution of the Primary Aldosteronism Syndrome: Updating the Approach. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3771-3783.	3.6	67
18	Aldosterone, Parathyroid Hormone, and the Use of Renin-Angiotensin-Aldosterone System Inhibitors: The Multi-Ethnic Study of Atherosclerosis. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 490-499.	3.6	60

#	Article	IF	Citations
19	Vitamin D3 Therapy Corrects the Tissue Sensitivity to Angiotensin II Akin to the Action of a Converting Enzyme Inhibitor in Obese Hypertensives: An Interventional Study. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 2456-2465.	3.6	59
20	Resting Heart Rate Trajectory Pattern Predicts Arterial Stiffness in a Community-Based Chinese Cohort. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 359-364.	2.4	55
21	The Evaluation of Incidentally Discovered Adrenal Masses. Endocrine Practice, 2019, 25, 178-192.	2.1	53
22	Dietary Sodium Restriction Increases the Risk of Misinterpreting Mild Cases of Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3989-3996.	3.6	51
23	The influence of body mass index and renin–angiotensin–aldosterone system activity on the relationship between 25-hydroxyvitamin D and adiponectin in Caucasian men. European Journal of Endocrinology, 2011, 164, 995-1002.	3.7	49
24	Intraindividual Variability of Aldosterone Concentrations in Primary Aldosteronism. Hypertension, 2021, 77, 891-899.	2.7	49
25	Abnormal Aldosterone Physiology and Cardiometabolic Risk Factors. Hypertension, 2013, 61, 886-893.	2.7	47
26	Aging and Adrenal Aldosterone Production. Hypertension, 2018, 71, 218-223.	2.7	47
27	Statin Use and Adrenal Aldosterone Production in Hypertensive and Diabetic Subjects. Circulation, 2015, 132, 1825-1833.	1.6	44
28	Adrenocortical carcinoma: The management of metastatic disease. Critical Reviews in Oncology/Hematology, 2014, 92, 123-132.	4.4	43
29	Aldosterone Dysregulation With Aging Predicts Renal Vascular Function and Cardiovascular Risk. Hypertension, 2014, 63, 1205-1211.	2.7	42
30	The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor. International Journal of Molecular Sciences, 2018, 19, 546.	4.1	42
31	Caveolin 1 Modulates Aldosteroneâ€Mediated Pathways of Glucose and Lipid Homeostasis. Journal of the American Heart Association, 2016, 5, .	3.7	41
32	<i>EPAS1</i> Mutations and Paragangliomas in Cyanotic Congenital Heart Disease. New England Journal of Medicine, 2018, 378, 1259-1261.	27.0	41
33	Cortisol dysregulation in obesity-related metabolic disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 143-149.	2.3	40
34	Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk. Stroke, 2018, 49, 27-33.	2.0	40
35	Treatment of Adrenocortical Carcinoma. Surgical Pathology Clinics, 2019, 12, 997-1006.	1.7	40
36	Renin Phenotypes Characterize Vascular Disease, Autonomous Aldosteronism, and Mineralocorticoid Receptor Activity. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1835-1843.	3.6	39

#	Article	IF	CITATIONS
37	Vitamin D and Vascular Disease: The Current and Future Status of Vitamin D Therapy in Hypertension and Kidney Disease. Current Hypertension Reports, 2012, 14, 111-119.	3.5	38
38	Plasma Glycated CD59, a Novel Biomarker for Detection of Pregnancy-Induced Glucose Intolerance. Diabetes Care, 2017, 40, 981-984.	8.6	35
39	Clinical Outcomes following Percutaneous Radiofrequency Ablation of Unilateral Aldosterone-Producing Adenoma: Comparison with Adrenalectomy. Journal of Vascular and Interventional Radiology, 2016, 27, 961-967.	0.5	33
40	A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism: Clinical and Experimental, 2015, 64, 1674-1681.	3.4	31
41	Succinate Dehydrogenase Gene Mutations in Cardiac Paragangliomas. American Journal of Cardiology, 2015, 115, 1753-1759.	1.6	30
42	Fibroblast Growth Factor 23, Mineral Metabolism, and Adiposity in Normal Kidney Function. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1387-1395.	3.6	29
43	Screening Rates for Primary Aldosteronism Among Individuals With Hypertension Plus Hypokalemia: A Population-Based Retrospective Cohort Study. Hypertension, 2022, 79, 178-186.	2.7	29
44	Clinical, Biochemical, and Genetic Characteristics of "Nonclassic―Apparent Mineralocorticoid Excess Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 595-603.	3.6	26
45	Primary Aldosteronism: State-of-the-Art Review. American Journal of Hypertension, 2022, 35, 967-988.	2.0	26
46	Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web application. International Journal of Epidemiology, 2019, 48, 640-653.	1.9	25
47	American Association of Clinical Endocrinology Disease State Clinical Review on the Evaluation and Management of Adrenocortical Carcinoma in an Adult: a Practical Approach. Endocrine Practice, 2020, 26, 1366-1383.	2.1	25
48	Adrenocortical carcinoma and succinate dehydrogenase gene mutations: an observational case series. European Journal of Endocrinology, 2017, 177, 439-444.	3.7	23
49	Hypertension, Antihypertensive Medications, and Risk of Incident Primary Hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2396-2404.	3.6	22
50	Genetic and Histopathologic Intertumor Heterogeneity in Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1792-1796.	3.6	22
51	Primary Aldosteronism Diagnosis and Management. Endocrinology and Metabolism Clinics of North America, 2019, 48, 681-700.	3.2	22
52	Parathyroid Hormone and the Use of Diuretics and Calcium-Channel Blockers: The Multi-Ethnic Study of Atherosclerosis. Journal of Bone and Mineral Research, 2016, 31, 1137-1145.	2.8	21
53	The Lateralizing Asymmetry of Adrenal Adenomas. Journal of the Endocrine Society, 2018, 2, 374-385.	0.2	21
54	Variability of Aldosterone Measurements During Adrenal Venous Sampling for Primary Aldosteronism. American Journal of Hypertension, 2021, 34, 34-45.	2.0	21

#	Article	IF	Citations
55	Determinants of Self-reported Health Outcomes in Adrenal Insufficiency: A Multisite Survey Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1408-e1419.	3.6	19
56	Adrenocorticotropic Hormone–Stimulated Adrenal Venous Sampling Underestimates Surgically Curable Primary Aldosteronism: A Retrospective Cohort Study and Review of Contemporary Studies. Hypertension, 2021, 78, 94-103.	2.7	19
57	Dietary sodium intake and cortisol measurements. Clinical Endocrinology, 2020, 93, 539-545.	2.4	18
58	MANAGEMENT OF ENDOCRINE DISEASE: The role of surgical adrenalectomy in primary aldosteronism. European Journal of Endocrinology, 2020, 183, R185-R196.	3.7	18
59	Cardiac Structure and Function Across the Spectrum of Aldosteronism: the Atherosclerosis Risk in Communities Study. Hypertension, 2022, 79, 1984-1993.	2.7	17
60	Improving the Management of Diabetes in Hospitalized Patients: The Results of a Computer-Based House Staff Training Program. Diabetes Technology and Therapeutics, 2012, 14, 610-618.	4.4	16
61	An Individualized Approach to The Evaluation and Management of Primary Aldosteronism. Endocrine Practice, 2017, 23, 680-689.	2.1	16
62	Cytoreductive Surgery of the Primary Tumor in Metastatic Adrenocortical Carcinoma: Impact on Patients' Survival. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 964-971.	3.6	16
63	Fibroblast Growth Factor-23, Heart Failure Risk, and Renin–Angiotensin–Aldosterone-System Blockade in Hypertension: The MESA Study. American Journal of Hypertension, 2019, 32, 18-25.	2.0	15
64	Vitamin D and cardio-metabolic disease. Metabolism: Clinical and Experimental, 2013, 62, 1697-1699.	3.4	13
65	The Impact of the COVID-19 Pandemic on Self-Reported Outcomes in Patients With Adrenal Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2469-e2479.	3.6	13
66	Disentangling the Relationships Between the Renin–Angiotensin–Aldosterone System, Calcium Physiology, and Risk for Kidney Stones. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1937-1946.	3.6	12
67	Recalibrating Interpretations of Aldosterone Assays Across the Physiologic Range: Immunoassay and Liquid Chromatography–Tandem Mass Spectrometry Measurements Under Multiple Controlled Conditions. Journal of the Endocrine Society, 2022, 6, bvac049.	0.2	12
68	Assessment of mild autonomous cortisol secretion among incidentally discovered adrenal masses. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101491.	4.7	11
69	Body Size and the Risk of Primary Hyperparathyroidism in Women: A Cohort Study. Journal of Bone and Mineral Research, 2017, 32, 1900-1906.	2.8	10
70	Plasminogen Activator Inhibitor-1 and Pericardial Fat in Individuals with Type 2 Diabetes Mellitus. Metabolic Syndrome and Related Disorders, 2017, 15, 269-275.	1.3	9
71	Angiotensin-Converting Enzyme Inhibition and Parathyroid Hormone Secretion. International Journal of Endocrinology, 2017, 2017, 1-8.	1.5	9
72	A randomized intervention study to evaluate the effect of calcitriol therapy on the renin-angiotensin system in diabetes. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2018, 19, 147032031775417.	1.7	9

#	Article	IF	CITATIONS
73	Genetics of Primary Aldosteronism. Endocrine Practice, 2015, 21, 400-405.	2.1	7
74	Morphologically Normal-Appearing Adrenal Glands as a Prevalent Source of Aldosterone Production in Primary Aldosteronism. American Journal of Hypertension, 2022, 35, 561-571.	2.0	7
75	Primary adrenal insufficiency in the United States: diagnostic error and patient satisfaction with treatment. Diagnosis, 2019, 6, 343-350.	1.9	6
76	Lying Low. New England Journal of Medicine, 2011, 364, 871-875.	27.0	5
77	The prevalence of primary aldosteronism and evolving approaches for treatment. Current Opinion in Endocrine and Metabolic Research, 2019, 8, 30-39.	1.4	5
78	The Unrecognized Prevalence of Primary Aldosteronism. Annals of Internal Medicine, 2020, 173, 683.	3.9	5
79	Quality of Life and its Determinants in Patients With Adrenal Insufficiency: A Survey Study at 3 Centers in the United States. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2851-e2861.	3.6	5
80	Primary aldosteronism. Gland Surgery, 2020, 9, 14-24.	1.1	3
81	The Spectrum of Subclinical Primary Aldosteronism and Incident Hypertension. Annals of Internal Medicine, 2018, 168, 755.	3.9	2
82	Discriminative Capacity of CT Volumetry to Identify Autonomous Cortisol Secretion in Incidental Adrenal Adenomas. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1946-e1953.	3.6	1
83	Response to Letter Regarding Article, "Statin Use and Adrenal Aldosterone Production in Hypertensive and Diabetic Subjects― Circulation, 2016, 133, e606.	1.6	0
84	Response to Letter to the Editor: "Fibroblast Growth Factor 23, Mineral Metabolism, and Adiposity in Normal Kidney Function― Journal of Clinical Endocrinology and Metabolism, 2018, 103, 358-359.	3.6	0
85	Benign Adrenocortical Tumors and the Detection of Nonadrenal Neoplasia. International Journal of Endocrinology, 2019, 2019, 1-9.	1.5	0
86	Quality of Life and Its Determinants in Patients With Adrenal Insufficiency: A Survey Study From Three Tertiary Centers in the United States. Journal of the Endocrine Society, 2021, 5, A92-A93.	0.2	0
87	SAT-388 The Influence of Dietary Sodium Intake on Cortisol and Glucose Homeostasis. Journal of the Endocrine Society, 2019, 3, .	0.2	0
88	ORO4-1 Dietary Sodium Intake, the Renin-Angiotensin-Aldosterone System, and the Risk for Incident Kidney Stones. Journal of the Endocrine Society, 2019, 3, .	0.2	0
89	OR34-03 Variable and Pulsatile Circulating Aldosterone Levels in Primary Aldosteronism: Implications for Diagnosis and Sub-Type Differentiation. Journal of the Endocrine Society, 2020, 4, .	0.2	0
90	OR25-06 Morning ACTH Levels as a Reliable Biomarker for Excluding Autonomous Cortisol Secretion in Incidetally Discovered Adrenal Adenomas. A Prospective Cohort. Journal of the Endocrine Society, 2020, 4, .	0.2	0

Anand Vaidya

#	Article	IF	CITATIONS
91	MON-160 The Burdens of Adrenal Insufficiency: A Survey Study from Two Tertiary Care Centers in the United States. Journal of the Endocrine Society, 2020, 4, .	0.2	0
92	SAT-556 Use of ACTH-Stimulated Lateralization Indices Underestimates Surgically Curable Primary Aldosteronism. Journal of the Endocrine Society, 2020, 4, .	0.2	0
93	MON-164 Determinants of Quality of Life in Primary and Secondary Adrenal Insufficiency from Two Large Tertiary Care Centers in the United States. Journal of the Endocrine Society, 2020, 4, .	0.2	O