Dong-Sing Wuu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545329/publications.pdf

Version: 2024-02-01

259 papers

4,524 citations

33 h-index 53 g-index

260 all docs

260 docs citations

times ranked

260

4174 citing authors

#	Article	IF	CITATIONS
1	Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Solar Energy Materials and Solar Cells, 2006, 90, 2710-2719.	6.2	260
2	Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Applied Physics Letters, 2001, 79, 2925-2927.	3.3	172
3	Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors. Optical Materials Express, 2015, 5, 1240.	3.0	155
4	High-quality InGaNâ [•] GaN heterojunctions and their photovoltaic effects. Applied Physics Letters, 2008, 93, .	3.3	110
5	Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition. Materials Chemistry and Physics, 2012, 133, 700-705.	4.0	100
6	Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications. Plasma Processes and Polymers, 2007, 4, 180-185.	3.0	91
7	Properties of SiO2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition. Thin Solid Films, 2004, 468, 105-108.	1.8	84
8	Thermal annealing effect on material characterizations of \hat{l}^2 -Ga2O3 epilayer grown by metal organic chemical vapor deposition. Applied Physics Letters, 2013, 102, .	3.3	67
9	Tunability of p- and n-channel TiOx thin film transistors. Scientific Reports, 2018, 8, 9255.	3.3	61
10	Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates. IEEE Journal of Quantum Electronics, 2005, 41, 1403-1409.	1.9	60
11	Improvement of thermal management of high-power GaN-based light-emitting diodes. Microelectronics Reliability, 2012, 52, 861-865.	1.7	59
12	Surface/structural characteristics and band alignments of thin Ga2O3 films grown on sapphire by pulse laser deposition. Applied Surface Science, 2019, 479, 1246-1253.	6.1	58
13	Water and oxygen permeation of silicon nitride films prepared by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology, 2005, 198, 114-117.	4.8	56
14	Plasma-deposited silicon oxide barrier films on polyethersulfone substrates: temperature and thickness effects. Surface and Coatings Technology, 2005, 197, 253-259.	4.8	55
15	Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates. Thin Solid Films, 2006, 514, 188-192.	1.8	55
16	Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier. Applied Physics Letters, 2011, 98, 211107.	3.3	55
17	Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates. Journal of Crystal Growth, 2009, 311, 3063-3066.	1.5	53
18	Deposition and permeation properties of SiNX/parylene multilayers on polymeric substrates. Surface and Coatings Technology, 2006, 200, 5843-5848.	4.8	52

#	Article	IF	Citations
19	Optimized Thermal Management From a Chip to a Heat Sink for High-Power GaN-Based Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2010, 57, 2203-2207.	3.0	52
20	Fabrication and Study on Red Light Micro-LED Displays. IEEE Journal of the Electron Devices Society, 2018, 6, 1064-1069.	2.1	50
21	Surface Treatments on the Characteristics of Metal–Oxide Semiconductor Capacitors. Crystals, 2019, 9, 1.	2.2	50
22	GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques. Japanese Journal of Applied Physics, 2004, 43, 5239-5242.	1.5	48
23	Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF4/O2 Plasma Chambers Using Y2O3 and YF3 Protective Coatings. Nanomaterials, 2017, 7, 183.	4.1	47
24	Improved Responsivity Drop From 250 to 200 nm in Sputtered Gallium Oxide Photodetectors by Incorporating Trace Aluminum. IEEE Electron Device Letters, 2018, 39, 220-223.	3.9	46
25	Improved Light Extraction of Nitride-Based Flip-Chip Light-Emitting Diodes Via Sapphire Shaping and Texturing. IEEE Photonics Technology Letters, 2006, 18, 2623-2625.	2.5	45
26	Transparent Barrier Coatings for Flexible Organic Light-Emitting Diode Applications. Chemical Vapor Deposition, 2006, 12, 220-224.	1.3	43
27	85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Scientific Reports, 2017, 7, 14422.	3.3	43
28	Study on the effect of size on InGaN red micro-LEDs. Scientific Reports, 2022, 12, 1324.	3.3	41
29	Zinc Gallium Oxide—A Review from Synthesis to Applications. Nanomaterials, 2020, 10, 2208.	4.1	40
30	Effect of resonant cavity in wafer-bonded Green InGaN LED with dielectric and silver mirrors. IEEE Photonics Technology Letters, 2006, 18, 457-459.	2.5	38
31	High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications. Optics Express, 2013, 21, 14452.	3.4	38
32	Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1196-1201.	2.9	37
33	Surface Modification on Wet-Etched Patterned Sapphire Substrates Using Plasma Treatments for Improved GaN Crystal Quality and LED Performance. Journal of the Electrochemical Society, 2011, 158, H988.	2.9	34
34	Thermal Management and Interfacial Properties in High-Power GaN-Based Light-Emitting Diodes Employing Diamond-Added Sn-3Âwt.%Ag-0.5Âwt.%Cu Solder as a Die-Attach Material. Journal of Electronic Materials, 2010, 39, 2618-2626.	2.2	33
35	High-Efficiency 1-mm\$^{2}\$ AlGaInP LEDs Sandwiched by ITO Omni-Directional Reflector and Current-Spreading Layer. IEEE Photonics Technology Letters, 2007, 19, 492-494.	2.5	32
36	Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates. Japanese Journal of Applied Physics, 2005, 44, 2512-2515.	1.5	31

#	Article	IF	Citations
37	Properties of double-layer Al2O3/TiO2 antireflection coatings by liquid phase deposition. Thin Solid Films, 2015, 584, 248-252.	1.8	31
38	Transparent Conductive Oxide Films Embedded with Plasmonic Nanostructure for Light-Emitting Diode Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2546-2553.	8.0	31
39	Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates. Journal of Alloys and Compounds, 2018, 765, 894-900.	5.5	31
40	Thinning Technology for Lithium Niobate Wafer by Surface Activated Bonding and Chemical Mechanical Polishing. Japanese Journal of Applied Physics, 2006, 45, 3822-3827.	1.5	30
41	Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications. Journal of the Electrochemical Society, 2010, 157, C47.	2.9	29
42	Co-doped ZnO dilute magnetic semiconductor thin films by pulsed laser deposition: Excellent transmittance, low resistivity and high mobility. Journal of Alloys and Compounds, 2016, 663, 107-115.	5.5	28
43	Surface, structural and optical properties of AlN thin films grown on different face sapphire substrates by metalorganic chemical vapor deposition. Applied Surface Science, 2018, 458, 972-977.	6.1	28
44	Wear and immersion corrosion of Ni–P electrodeposit in NaCl solution. Tribology International, 2010, 43, 235-244.	5.9	27
45	Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell. Materials Chemistry and Physics, 2012, 133, 63-68.	4.0	26
46	Simulation and fabrication of heterojunction silicon solar cells from numerical computer and hotâ€wire CVD. Progress in Photovoltaics: Research and Applications, 2009, 17, 489-501.	8.1	25
47	Fabrication of an Ultra-Flexible ZnO Nanogenerator for Harvesting Energy from Respiration. ECS Journal of Solid State Science and Technology, 2013, 2, P400-P404.	1.8	25
48	Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications. Optics Express, 2013, 21, 26468.	3.4	25
49	Preparation and Characterization of Sprayed-Yttrium Oxyfluoride Corrosion Protective Coating for Plasma Process Chambers. Coatings, 2018, 8, 373.	2.6	25
50	Impact of thermal-induced sapphire substrate erosion on material and photodetector characteristics of sputtered Ga2O3 films. Journal of Alloys and Compounds, 2020, 823, 153755.	5.5	25
51	Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates. Journal of Physics and Chemistry of Solids, 2008, 69, 714-718.	4.0	24
52	The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Solar Energy, 2020, 196, 462-467.	6.1	24
53	Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light-Emitting Diodes. Japanese Journal of Applied Physics, 2005, 44, 3028-3031.	1.5	23
54	Performance of Flip-Chip Thin-Film GaN Light-Emitting Diodes With and Without Patterned Sapphires. IEEE Photonics Technology Letters, 2010, 22, 550-552.	2.5	23

#	Article	IF	Citations
55	Characteristics of yttrium fluoride and yttrium oxide coatings for plasma process equipment prepared by atmospheric plasma spraying. Japanese Journal of Applied Physics, 2016, 55, 126201.	1.5	23
56	Influences of temperature ramping rate on GaN buffer layers and subsequent GaN overlayers grown by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2000, 220, 235-242.	1.5	22
57	Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition. Thin Solid Films, 2012, 520, 5860-5866.	1.8	22
58	Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition. Surface and Coatings Technology, 2017, 320, 252-258.	4.8	22
59	Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD. Thin Solid Films, 2008, 516, 747-750.	1.8	21
60	High-Performance InGaN-Based Green Resonant-Cavity Light-Emitting Diodes for Plastic Optical Fiber Applications. Journal of Lightwave Technology, 2009, 27, 4084-4094.	4.6	21
61	An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask. IEEE Electron Device Letters, 2013, 34, 274-276.	3.9	21
62	Surface evolution and effect of V/III ratio modulation on etch-pit-density improvement of thin AlN templates on nano-patterned sapphire substrates by metalorganic chemical vapor deposition. Applied Surface Science, 2018, 455, 1123-1130.	6.1	21
63	Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing. Surface and Coatings Technology, 2019, 358, 968-975.	4.8	21
64	Novel Device Design for High-Power InGaN/Sapphire LEDs Using Copper Heat Spreader With Reflector. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1281-1286.	2.9	20
65	Enhanced Output Power of Near-Ultraviolet InGaN/AlGaN LEDs With Patterned Distributed Bragg Reflectors. IEEE Transactions on Electron Devices, 2011, 58, 173-179.	3.0	20
66	Effects of growth temperature and thickness on structure and optical properties of Ga2O3 films grown by pulsed laser deposition. Superlattices and Microstructures, 2019, 131, 21-29.	3.1	20
67	Etching Characteristics and Mechanism of Ba0.7Sr0.3TiO3Thin Films in an Inductively Coupled Plasma. Japanese Journal of Applied Physics, 2000, 39, 2068-2072.	1.5	19
68	Improvement in the Figure of Merit of ITO-Metal-ITO Sandwiched Films on Poly Substrate by High-Power Impulse Magnetron Sputtering. Coatings, 2021, 11, 144.	2.6	19
69	Light extraction enhancement of InGaN light-emitting diode by roughening both undoped micropillar-structure GaN and p-GaN as well as employing an omnidirectional reflector. Applied Physics Letters, 2008, 93, 021125.	3.3	18
70	Improved Conversion Efficiency of Textured InGaN Solar Cells With Interdigitated Imbedded Electrodes. IEEE Electron Device Letters, 2010, 31, 585-587.	3.9	18
71	Permeation barrier coatings by inductively coupled plasma CVD on polycarbonate substrates for flexible electronic applications. Surface and Coatings Technology, 2011, 205, 4267-4273.	4.8	18
72	Influence of oxygen on sputtering of aluminum-gallium oxide films for deep-ultraviolet detector applications. Journal of Alloys and Compounds, 2019, 791, 1213-1219.	5.5	18

#	Article	IF	CITATIONS
73	Fabrication and Characterization of GaAs Solar Cells on Copper Substrates. IEEE Electron Device Letters, 2009, 30, 940-942.	3.9	17
74	MOCVD Growth of GaN on Sapphire Using a Ga2O3 Interlayer. Journal of the Electrochemical Society, 2011, 158, H1172.	2.9	17
75	Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice. Applied Surface Science, 2016, 362, 434-440.	6.1	17
76	Enhanced external quantum efficiencies of AlGaN-based deep-UV LEDs using reflective passivation layer. Optics Express, 2021, 29, 37835.	3.4	17
77	Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography. Japanese Journal of Applied Physics, 2005, 44, 2525-2527.	1.5	16
78	Characteristics of Flip-Chip InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates. Japanese Journal of Applied Physics, 2006, 45, 3430-3432.	1.5	16
79	Incubation Effects upon Polycrystalline Silicon on Glass Deposited by Hot-Wire CVD. Chemical Vapor Deposition, 2007, 13, 247-252.	1.3	16
80	Effects of RF power and pressure on performance of HF-PECVD silicon thin-film solar cells. Thin Solid Films, 2010, 518, 7233-7235.	1.8	16
81	High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target. Optics Express, 2012, 20, 15149.	3.4	16
82	P-side up AlGaInP-based light emitting diodes with dot-patterned GaAs contact layers. Optics Express, 2013, 21, 19668.	3.4	16
83	Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates. Optics Express, 2014, 22, A179.	3.4	16
84	Growth and Characterization of Epitaxial ZnO Nanowall Networks Using Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2008, 47, 746-750.	1.5	15
85	Characterization of MgxZn1â^'xO thin films grown on sapphire substrates by metalorganic chemical vapor deposition. Thin Solid Films, 2011, 519, 1966-1970.	1.8	15
86	Characterization of aluminum gallium oxide films grown by pulsed laser deposition. Ceramics International, 2019, 45, 702-707.	4.8	15
87	Vertical-conducting p-side-up GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques. Physica Status Solidi A, 2004, 201, 2699-2703.	1.7	14
88	Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline SiC films and their use in Si heterojunction solar cells. Thin Solid Films, 2012, 520, 2110-2114.	1.8	14
89	Thin Film GaN LEDs Using a Patterned Oxide Sacrificial Layer by Chemical Lift-Off Process. IEEE Photonics Technology Letters, 2013, 25, 2435-2438.	2.5	14
90	Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	14

#	Article	IF	Citations
91	The Effect of Annealing Ambience on the Material and Photodetector Characteristics of Sputtered ZnGa2O4 Films. Nanomaterials, 2021, 11, 2316.	4.1	14
92	GaN-Based Green Resonant Cavity Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, 3433-3435.	1.5	13
93	Thermally Stable Mirror Structures for Vertical-Conducting GaN/Mirror/Si Light-Emitting Diodes. IEEE Photonics Technology Letters, 2007, 19, 1913-1915.	2.5	13
94	Hydrogenated amorphous silicon–germanium thin films with a narrow band gap for silicon-based solar cells. Current Applied Physics, 2011, 11, S50-S53.	2.4	13
95	GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application. Electrochemical and Solid-State Letters, 2011, 14, H434.	2.2	13
96	Effect of diamond like carbon layer on heat dissipation and optoelectronic performance of vertical-type InGaN light emitting diodes. Applied Physics Letters, 2012, 101, .	3.3	13
97	Improved GaN-on-Si epitaxial quality by incorporating various SixNy interlayer structures. Journal of Crystal Growth, 2014, 399, 27-32.	1.5	13
98	External stress effects on the optical and electrical properties of flexible InGaN-based green light-emitting diodes. Optics Express, 2015, 23, 31334.	3.4	13
99	Transformation from Film to Nanorod via a Sacrifical Layer: Pulsed Laser Deposition of ZnO for Enhancing Photodetector Performance. Scientific Reports, 2017, 7, 14251.	3.3	13
100	On the Role of AlN Insertion Layer in Stress Control of GaN on 150-mm Si (111) Substrate. Crystals, 2017, 7, 134.	2.2	13
101	Quasiâ€Singleâ€Crystalline ZnGa ₂ O ₄ Films via Solid Phase Epitaxy for Enhancing Deepâ€Ultraviolet Photoresponse. Advanced Materials Interfaces, 2019, 6, 1901075.	3.7	13
102	Phosphor-Free White Light From InGaN Blue and Green Light-Emitting Diode Chips Covered With Semiconductor-Conversion AlGaInP Epilayer. IEEE Photonics Technology Letters, 2008, 20, 1139-1141.	2.5	12
103	Investigation of Light Extraction of InGaN LEDs With Surface-Textured Indium Tin Oxide by Holographic and Natural Lithography. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1327-1331.	2.9	12
104	Influence of CH4 flow rate on properties of HF-PECVD a-SiC films and solar cell application. Current Applied Physics, 2011, 11, S21-S24.	2.4	12
105	High thermal stability of high indium content InGaN films grown by pulsed laser deposition. Optics Express, 2012, 20, 21173.	3.4	12
106	Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications. Thin Solid Films, 2012, 520, 5200-5205.	1.8	12
107	Influence of Surface Morphology on the Effective Lifetime and Performance of Silicon Heterojunction Solar Cell. International Journal of Photoenergy, 2015, 2015, 1-8.	2.5	12
108	InGaN LED fabricated on Eco-GaN template with a Ga2O3 sacrificial layer for chemical lift-off application. Vacuum, 2015, 118, 8-12.	3.5	12

#	Article	IF	CITATIONS
109	Surface passivation property of aluminum oxide thin film on silicon substrate by liquid phase deposition. Thin Solid Films, 2016, 618, 118-123.	1.8	12
110	High power impulse magnetron sputtered p-type \hat{I}^3 -titanium monoxide films: Effects of substrate bias and post-annealing on microstructure characteristics and optoelectrical properties. Materials Science in Semiconductor Processing, 2017, 61, 85-92.	4.0	12
111	Growth and Photocatalytic Properties of Gallium Oxide Films Using Chemical Bath Deposition. Crystals, 2019, 9, 564.	2.2	12
112	Nitrogen and oxygen annealing effects on properties of aluminum-gallium oxide films grown by pulsed laser deposition. Ceramics International, 2020, 46, 24147-24154.	4.8	12
113	Ga2O3 nanorod-based extended-gate field-effect transistors for pH sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115542.	3.5	12
114	Advanced Atomic Layer Deposition Technologies for Micro-LEDs and VCSELs. Nanoscale Research Letters, 2021, 16, 164.	5.7	12
115	Improvements of N-Side-up GaN Light-Emitting Diodes Performance by Indium–Tin-Oxide/Al Mirror. Japanese Journal of Applied Physics, 2006, 45, 3449-3452.	1.5	11
116	Enhanced Luminance Efficiency of Wafer-Bonded InGaN–GaN LEDs With Double-Side Textured Surfaces and Omnidirectional Reflectors. IEEE Journal of Quantum Electronics, 2008, 44, 1116-1123.	1.9	11
117	Improved Light Extraction in AlGalnP-Based LEDs Using a Roughened Window Layer. Journal of the Electrochemical Society, 2008, 155, H710.	2.9	11
118	Effect of Crystalline Quality on Photovoltaic Performance for \${m In}_{0.17}{m Ga}_{0.83}{m As}\$ Solar Cell Using X-Ray Reciprocal Space Mapping. IEEE Journal of Quantum Electronics, 2011, 47, 1434-1442.	1.9	11
119	Fabrication of Flexible Amorphous-Si Thin-Film Solar Cells on a Parylene Template Using a Direct Separation Process. IEEE Transactions on Electron Devices, 2011, 58, 1433-1439.	3.0	11
120	Lattice deformation of wurtzite Mg Zn1â^'O alloys: An extended X-ray absorption fine structure study. Journal of Alloys and Compounds, 2014, 582, 157-160.	5.5	11
121	Enhanced Deep-Ultraviolet Responsivity in Aluminum–Gallium Oxide Photodetectors via Structure Deformation by High-Oxygen-Pressure Pulsed Laser Deposition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17563-17569.	8.0	11
122	On the mechanism of carrier recombination in downsized blue micro-LEDs. Scientific Reports, 2021, 11, 22788.	3.3	11
123	Growth and characterization of polycrystalline Si films prepared by hot-wire chemical vapor deposition. Thin Solid Films, 2006, 498, 9-13.	1.8	10
124	Improved Performance of 365-nm LEDs by Inserting an Un-Doped Electron-Blocking Layer. IEEE Electron Device Letters, 2014, 35, 467-469.	3.9	10
125	A High-Temperature Die-Bonding Structure Fabricated at Low Temperature for Light-Emitting Diodes. IEEE Electron Device Letters, 2015, 36, 835-837.	3.9	10
126	Optoelectronic Properties and Structural Characterization of GaN Thick Films on Different Substrates through Pulsed Laser Deposition. Applied Sciences (Switzerland), 2017, 7, 87.	2.5	10

#	Article	IF	CITATIONS
127	Process Integration and Interconnection Design of Passive-Matrix LED Micro-Displays With 256 Pixel-Per-Inch Resolution. IEEE Journal of the Electron Devices Society, 2020, 8, 251-255.	2.1	10
128	High Performance AlGaInP-Based Micro-LED Displays With Novel Pixel Structures. IEEE Photonics Technology Letters, 2021, 33, 1375-1378.	2.5	10
129	Compact Ga2O3 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition at Low Temperature. Nanomaterials, 2022, 12, 1510.	4.1	10
130	Pulsed laser deposition grown non-stoichiometry transferred ZnGa2O4 films for deep-ultraviolet applications. Applied Surface Science, 2022, 597, 153700.	6.1	10
131	Oxygen annealing induced crystallization and cracking of pulsed laser deposited Ga2O3 films. Vacuum, 2022, 202, 111176.	3.5	10
132	Enhanced Light Output in Roughened GaN-Based Light-Emitting Diodes Using Electrodeless Photoelectrochemical Etching. IEEE Photonics Technology Letters, 2006, 18, 2472-2474.	2.5	9
133	Effects of Transparent Conductive Layers on Characteristics of InGaN-Based Green Resonant-Cavity Light-Emitting Diodes. Japanese Journal of Applied Physics, 2007, 46, 3416-3419.	1.5	9
134	Deposition and characterization of ultra-high barrier coatings for flexible electronic applications. Vacuum, 2010, 84, 1444-1447.	3.5	9
135	Transferring Thin Film GaN LED Epi-Structure to the Cu Substrate by Chemical Lift-Off Technology. Electrochemical and Solid-State Letters, 2011, 14, H281-H284.	2.2	9
136	An Efficient Metal-Core Printed Circuit Board With a Copper-Filled Through (Blind) Hole for Light-Emitting Diodes. IEEE Electron Device Letters, 2013, 34, 105-107.	3.9	9
137	ZnO Nanowires Embedded in Epoxy Resin Separating from the Substrate for Wearable Electronics Applications. IEEE Nanotechnology Magazine, 2014, 13, 458-463.	2.0	9
138	Performance comparison of p-side-up thin-film AlGaInP light emitting diodes with aluminum-doped zinc oxide and indium tin oxide transparent conductive layers. Optical Materials Express, 2016, 6, 1349.	3.0	9
139	Improved Optoelectronic Performance of High-Voltage Ultraviolet Light-Emitting Diodes Through Electrode Designs. IEEE Transactions on Electron Devices, 2017, 64, 4526-4531.	3.0	9
140	Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications. Vacuum, 2021, 186, 110046.	3.5	9
141	Growth and characterization of co-sputtered Al-doped ZnGa2O4 films for enhancing deep-ultraviolet photoresponse. Applied Surface Science, 2021, 566, 150714.	6.1	9
142	Simultaneous recrystallization, phosphorous diffusion and antireflection coating of silicon films using laser treatment. Thin Solid Films, 2006, 496, 643-648.	1.8	8
143	Hot-wire CVD deposited n-type $\hat{l}^{1}/4$ c-Si films for $\hat{l}^{1}/4$ c-Si/c-Si heterojunction solar cell applications. Thin Solid Films, 2008, 516, 765-769.	1.8	8
144	Power-enhanced ITO omni-directional reflective AlGaInP LEDs by two-dimensional wavelike surface texturing. Semiconductor Science and Technology, 2008, 23, 105013.	2.0	8

#	Article	IF	CITATIONS
145	Repeated Growing and Annealing Towards ZnO Film by Metalâ€Organic CVD. Chemical Vapor Deposition, 2009, 15, 234-241.	1.3	8
146	Study of 375 nm ultraviolet InGaN/AlGaN light-emitting diodes with heavily Si-doped GaN transition layer in growth mode, internal quantum efficiency, and device performance. Journal of Applied Physics, 2011, 110, 123102.	2 . 5	8
147	Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition. Optics Express, 2013, 21, 7337.	3.4	8
148	Hot-wire chemical vapor deposition of nanocrystalline silicon for ambipolar thin-film transistor applications. Applied Surface Science, 2015, 354, 216-220.	6.1	8
149	Chemical liftâ€off process for nitride LEDs from an Ecoâ€GaN template using an AlN/stripâ€patternedâ€SiO ₂ sacrificial layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600657.	1.8	8
150	Antireflection and passivation property of aluminium oxide thin film on silicon nanowire by liquid phase deposition. Surface and Coatings Technology, 2018, 350, 1058-1064.	4.8	8
151	Structural and Stress Properties of AlGaN Epilayers Grown on AlN-Nanopatterned Sapphire Templates by Hydride Vapor Phase Epitaxy. Nanomaterials, 2018, 8, 704.	4.1	8
152	Improved Performance of Passive-Matrix Micro-LED Displays Using a Multi-Function Passivation Structure. IEEE Photonics Journal, 2020, 12, 1-11.	2.0	8
153	Structural and photodetector characteristics of Zn and Al incorporated ZnGa2O4 films via co-sputtering. Results in Physics, 2022, 33, 105206.	4.1	8
154	Characterization of Large-Area AlGalnP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding. Japanese Journal of Applied Physics, 2004, 43, 2510-2514.	1.5	7
155	High-Power AlGaInP Light-Emitting Diodes with Patterned Copper Substrates by Electroplating. Japanese Journal of Applied Physics, 2004, 43, L576-L578.	1.5	7
156	Improvement of indium–tin oxide films on polyethylene terephthalate substrates using hot-wire surface treatment. Thin Solid Films, 2006, 501, 346-349.	1.8	7
157	An ultrathin ($\hat{a}^{1}/4100\hat{1}/4$ m thick) flexible light plate fabricated using self-alignment and lift-off techniques. Applied Physics Letters, 2007, 91, .	3.3	7
158	Electron-Beam and Sputter-Deposited Indium–Tin Oxide Omnidirectional Reflectors for High-Power Wafer-Bonded AlGaInP Light-Emitting Diodes. Journal of the Electrochemical Society, 2009, 156, H281.	2.9	7
159	Phase separation phenomenon in MOCVD-grown GalnP epitaxial layers. Journal of Crystal Growth, 2009, 311, 3220-3224.	1.5	7
160	Light Extraction Investigation for Thin-Film GaN Light-Emitting Diodes With Imbedded Electrodes. IEEE Photonics Technology Letters, 2011, 23, 54-56.	2.5	7
161	Analysis of the Thickness Effect of Undoped Electron-Blocking Layer in Ultraviolet LEDs. IEEE Transactions on Electron Devices, 2014, 61, 3790-3795.	3.0	7
162	Improved Performance and Heat Dissipation of Flip-Chip White High-Voltage Light Emitting Diodes. IEEE Transactions on Device and Materials Reliability, 2017, 17, 197-203.	2.0	7

#	Article	IF	CITATIONS
163	Effects of high substrate temperature during pulsed laser deposition on the quality of aluminum-doped gallium oxide and its photodetector characteristics. Japanese Journal of Applied Physics, 2018, 57, 070301.	1.5	7
164	Deposition of Silicon-Based Stacked Layers for Flexible Encapsulation of Organic Light Emitting Diodes. Nanomaterials, 2019, 9, 1053.	4.1	7
165	Characterization of semi-polar (20\$\$overline{2}\$\$1) InGaN microLEDs. Scientific Reports, 2020, 10, 15966.	3.3	7
166	Preparation of AgNWs@NiO–Co3O4 dopant material for an activated carbon thin-film electrode of pseudocapacitors. Journal of Materials Science, 2021, 56, 15229-15240.	3.7	7
167	Structural design and performance improvement of flip-chip AlGaInP mini light-emitting diodes. Semiconductor Science and Technology, 2021, 36, 095008.	2.0	7
168	Improved Characteristics of CdSe/CdS/ZnS Core-Shell Quantum Dots Using an Oleylamine-Modified Process. Nanomaterials, 2022, 12, 909.	4.1	7
169	Growth and characterization of Si-doped Ga2O3 thin films by remote plasma atomic layer deposition: Toward UVC-LED application. Surface and Coatings Technology, 2022, 435, 128252.	4.8	7
170	Influence of Al doping on crystal structure, optical, and photoluminescence characteristics of ZnGa2O4 films. Materials Science in Semiconductor Processing, 2022, 150, 106962.	4.0	7
171	Characterization of (Ba,Sr)TiO3 thin-film capacitors with Ir bottom electrodes and its improvement by plasma treatment. Microelectronic Engineering, 2003, 66, 600-607.	2.4	6
172	Fabrication and Characterization of InGaN-Based Green Resonant-Cavity LEDs Using Hydrogen Ion-Implantation Techniques. Journal of the Electrochemical Society, 2007, 154, H962.	2.9	6
173	Effect of GaAs substrate misorientation on In Ga1â^'As crystalline quality and photovoltaic performance. Thin Solid Films, 2010, 518, 7213-7217.	1.8	6
174	Hot-wire chemical vapor deposition and characterization of polycrystalline silicon thin films using a two-step growth method. Materials Chemistry and Physics, 2011, 126, 665-668.	4.0	6
175	Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer. International Journal of Photoenergy, 2012, 2012, 1-6.	2.5	6
176	Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications. Thin Solid Films, 2013, 529, 50-53.	1.8	6
177	Performance of Flexible Photovoltaic Modules Encapsulated by Silicon Oxide/Organic Silicon Stacked Layers. IEEE Transactions on Electron Devices, 2016, 63, 1615-1620.	3.0	6
178	Zinc oxide-based current spreading layer behavior on the performance of P-side-up thin-film red light emitting diodes. Applied Surface Science, 2018, 432, 196-201.	6.1	6
179	Annealing temperature controlled crystallization mechanism and properties of gallium oxide film in forming gas atmosphere. Journal of the American Ceramic Society, 2022, 105, 4487-4499.	3.8	6
180	Thermal behavior of AlGaN-based deep-UV LEDs. Optics Express, 2022, 30, 16827.	3.4	6

#	Article	IF	CITATIONS
181	Synthesis of SiO2-coated CdSe/ZnS quantum dots using various dispersants in the photoresist for color-conversion micro-LED displays. Materials Science in Semiconductor Processing, 2022, 148, 106790.	4.0	6
182	Rapid-Thermal-Processed BaTiO3Thin Films Deposited by Liquid-Source Misted Chemical Deposition. Japanese Journal of Applied Physics, 1998, 37, 885-888.	1.5	5
183	Effects of O2 plasma treatment on the electric and dielectric characteristics of Ba0.7Sr0.3TiO3 thin films. Microelectronics Reliability, 2000, 40, 679-682.	1.7	5
184	Wafer-Bonded AlGaInP/Au/AuBe/SiO2/Si Light-Emitting Diodes. Japanese Journal of Applied Physics, 2000, 39, 2357-2359.	1.5	5
185	Transformation of microcrystalline silicon films by excimer-laser-induced crystallization. Thin Solid Films, 2005, 473, 169-175.	1.8	5
186	Wet Mesa Etching Process in InGaN-based Light Emitting Diodes. Electrochemical and Solid-State Letters, 2008, 11, H169.	2.2	5
187	High-Performance AlGalnP/GaAs Light-Emitting Diodes with a Carbon-Doped GaP/Indium–Tin Oxide Contact Layer. Japanese Journal of Applied Physics, 2008, 47, 7023.	1.5	5
188	Enhancing Light Output Power of InGaN-Based Light-Emitting Diodes with an Embedded Self-Textured Oxide Mask Structure. Journal of the Electrochemical Society, 2011, 158, H1242.	2.9	5
189	Crystalline quality and photovoltaic performance of InGaAs solar cells grown on GaAs substrate with large-misoriented angle. Vacuum, 2012, 86, 843-847.	3. 5	5
190	Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-6.	2.5	5
191	Self-textured oxide structure for improved performance of 365 nm ultraviolet vertical-type light-emitting diodes. Optics Express, 2014, 22, 17600.	3.4	5
192	Improvement in performance of Si-based thin film solar cells with a nanocrystalline SiO2–TiO2 layer. Thin Solid Films, 2014, 570, 200-203.	1.8	5
193	Enhanced light extraction in wafer-bonded p-side-up thin-film AlGaInP light emitting diodes via zinc oxide nanorods. Optical Materials Express, 2016, 6, 3293.	3.0	5
194	ITO/nanoâ€Ag plasmonic window applied for efficiency improvement of nearâ€ultraviolet light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600609.	1.8	5
195	Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy. Materials, 2017, 10, 605.	2.9	5
196	AlGaN/GaN MOS-HEMTs with Corona-Discharge Plasma Treatment. Crystals, 2017, 7, 146.	2,2	5
197	Formation of ZnO/Zn0.5Cd0.5Se Alloy Quantum Dots in the Presence of High Oleylamine Contents. Nanomaterials, 2019, 9, 999.	4.1	5
198	Improvement of p-electrode structures for 280 nm AlGaN LED applications. Semiconductor Science and Technology, 2020, 35, 105023.	2.0	5

#	Article	IF	Citations
199	Growth characteristics of GaN on (001) GaP substrates by MOVPE. Journal of Crystal Growth, 2000, 221, 286-292.	1.5	4
200	High-Brightness Wafer-Bonded Indium-Tin Oxide/Light-Emitting Diode/Mirror/Si. Japanese Journal of Applied Physics, 2001, 40, 2747-2751.	1.5	4
201	Wafer-Bonded 850-nm Vertical-Cavity Surface-Emitting Lasers on Si Substrate with Metal Mirror. Japanese Journal of Applied Physics, 2002, 41, 5849-5852.	1.5	4
202	Study on Hydrogen Ion-Implanted Characteristic of Thin-Film Green Resonant-Cavity Light-Emitting Diodes. IEEE Photonics Technology Letters, 2010, 22, 404-406.	2.5	4
203	Demonstration of InGaN Light-Emitting Diodes by Incorporating a Self-Textured Oxide Mask Structure. IEEE Photonics Technology Letters, 2011, 23, 1240-1242.	2.5	4
204	Power Enhancement of 410-nm InGaN-Based Light-Emitting Diodes on Selectively Etched GaN/Sapphire Templates. IEEE Transactions on Electron Devices, 2011, 58, 3962-3969.	3.0	4
205	Highly Stable Micromorph Tandem Solar Cells Fabricated by ECRCVD With Separate Silane Gas Inlets System. IEEE Journal of Quantum Electronics, 2014, 50, 515-521.	1.9	4
206	Enhanced Light Extraction of High-Voltage Light Emitting Diodes Using a Sidewall Chamfer Structure. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	4
207	Characteristics of atomic layer deposition–grown zinc oxide thin film with and without aluminum. Applied Surface Science, 2019, 491, 535-543.	6.1	4
208	Surface and optical properties of indium-rich InGaN layers grown on sapphire by migration-enhanced plasma assisted metal organic chemical vapor deposition. Materials Research Express, 2019, 6, 016407.	1.6	4
209	Growth characteristics of Fe-doped GaN epilayers on SiC (001) substrates and their effects on high breakdown voltage devices. Materials Science in Semiconductor Processing, 2020, 119, 105228.	4.0	4
210	Role of Interfacial Oxide in the Preferred Orientation of Ga ₂ O ₃ on Si for Deep Ultraviolet Photodetectors. ACS Omega, 2021, 6, 29149-29156.	3.5	4
211	Thermal Stability of Co-Sputtered Ru-Ti Alloy Electrodes for Dynamic Random Access Memory Applications. Japanese Journal of Applied Physics, 1998, 37, L1247-L1250.	1.5	3
212	Improvements of transparent electrode materials for GaN metal–semiconductor–metal photodetectors. Journal of Materials Science: Materials in Electronics, 2004, 15, 793-796.	2.2	3
213	Improved Output Power of 380 nm InGaN-Based LEDs Using a Heavily Mg-Doped GaN Insertion Layer Technique. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1132-1136.	2.9	3
214	Thermal effects and plasma damage upon encapsulation of polymer solar cells. Thin Solid Films, 2009, 517, 4179-4183.	1.8	3
215	Fabrication of selective-emitter silicon heterojunction solar cells using hot-wire chemical vapor deposition and laser doping. Thin Solid Films, 2009, 517, 4749-4752.	1.8	3
216	Performance of Cu-Plating Vertical LEDs in Heat Dissipation Using Diamond-Like Carbon. IEEE Electron Device Letters, 2014, 35, 169-171.	3.9	3

#	Article	IF	CITATIONS
217	Silicon films deposited on flexible substrate by hot-wire chemical-vapor deposition. Vacuum, 2015, 118, 109-112.	3.5	3
218	Effect of the Phosphor Permanent Substrate on the Angular CCT for White Thin-Film Flip-Chip Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2016, 63, 3977-3982.	3.0	3
219	Performance of p-side-up thin-film AlGaInP light-emitting diodes with textured composite aluminum-doped zinc oxide transparent conductive layers. Surface and Coatings Technology, 2017, 320, 421-425.	4.8	3
220	Ohmic contact behavior of aluminum-doped zinc oxide with carbon-doped p -GaP epilayer for AlGaInP LEDs applications. Current Applied Physics, 2017, 17, 966-971.	2.4	3
221	Improved Performance of High-Voltage Vertical GaN LEDs via Modification of Micro-Cell Geometry. Applied Sciences (Switzerland), 2017, 7, 506.	2.5	3
222	Slow Electron Making More Efficient Radiation Emission. Scientific Reports, 2018, 8, 4865.	3.3	3
223	A Study on the Hydrogen Evolving Activity of Electroplated Ni-P Coating by Using the Taguchi Method. Journal of New Materials for Electrochemical Systems, 2011, 14, 237-245.	0.6	3
224	Incorporation of Au Nanoparticles on ZnO/ZnS Core Shell Nanostructures for UV Light/Hydrogen Gas Dual Sensing Enhancement. Membranes, 2021, 11, 903.	3.0	3
225	Characterization of Thin-Film Electroluminescent Devices with MultipleTa2O5Interlayers Incorporated into SrS:Pr,Ce Phosphor. Japanese Journal of Applied Physics, 1997, 36, 7245-7249.	1.5	2
226	Fabrications of Si Thin-Film Solar Cells by Hot-Wire Chemical Vapor Deposition and Laser Doping Techniques. Japanese Journal of Applied Physics, 2006, 45, 3516-3518.	1.5	2
227	Elimination of phase separation in metalorganic chemical vapor deposition-grown GaInP epilayers by compositionally step-graded Ga1â^'xInxP multilayers. Journal of Applied Physics, 2009, 106, 063517.	2.5	2
228	Tungsten filament effect on electronic properties of hot-wire CVD silicon films for heterojunction solar cell application. Thin Solid Films, 2009, 517, 4720-4723.	1.8	2
229	Effects of Substrate Orientation on the Photovoltaic Performance of InGaAs Solar Cells. IEEE Transactions on Electron Devices, 2010, 57, 2138-2143.	3.0	2
230	Light Extraction Study on Thin-Film GaN Light-Emitting Diodes With Electrodes Covering by Wafer Bonding and Textured Surfaces. IEEE Transactions on Electron Devices, 2010, 57, 2651-2654.	3.0	2
231	Performance of a-SiGe:H Thin-Film Solar Cells on High-Heat Dissipation Flexible Ceramic Printable Circuit Board. IEEE Transactions on Electron Devices, 2014, 61, 3125-3130.	3.0	2
232	On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters. Applied Physics Letters, 2016, 109, 021110.	3.3	2
233	Improved Performance of Deep Ultraviolet Photodetector From Sputtered Ga2O3 Films Using Post-Thermal Treatments. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	2
234	Thickness effects on microstructural evolution of low-pressure-chemical-vapor-deposited amorphous silicon films during excimer-laser-induced crystallization. Thin Solid Films, 2005, 493, 185-191.	1.8	1

#	Article	IF	CITATIONS
235	Texture-Etched SnO ₂ Glasses Applied to Silicon Thin-Film Solar Cells. Journal of Nanomaterials, 2014, 2014, 1-9.	2.7	1
236	Effect of Plasma Radical Composition in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells. IEEE Transactions on Plasma Science, 2014, 42, 3786-3791.	1.3	1
237	Metal chloride precursor synthesization of Cu2ZnSnS4 solar cell materials. Journal of the Korean Physical Society, 2014, 65, 196-199.	0.7	1
238	Effect of Top-Region Area of Flat-Top Pyramid Patterned Sapphire Substrate on the Optoelectronic Performance of GaN-Based Light-Emitting Diodes. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	1
239	Planarization and fabrication of sacrificial membranes across deep grooves in silicon by glass soot deposition. Journal of Micromechanics and Microengineering, 1997, 7, 276-279.	2.6	0
240	Ion-Implantation Treatment (Ba, Sr)TiO3Thin Films. Japanese Journal of Applied Physics, 2000, 39, 6614-6618.	1.5	0
241	Stability Effects of Reflective Mirror on GaN LED/Mirror/Si Via Wafer Bonding and Laser Lift-Off Techniques. ECS Transactions, 2007, 11, 175-191.	0.5	0
242	Red-enhanced white light-emitting diodes using external AlGaInP epilayers with various aperture ratios. Journal of Luminescence, 2008, 128, 647-651.	3.1	0
243	Optimization design of cup-shaped copper heat spreaders for high-power InGaN/sapphire LEDs., 2009,,.		0
244	Light extraction enhancement of sapphire-free InGaN LEDs using single- and double-side surface roughening techniques. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S869-S872.	0.8	0
245	Fabrication and chrarcterization silicon thin film solar cells deposited by HF-PECVD. , 2010, , .		0
246	Improved Performance of Near-Ultraviolet Light Emitting Diodes on Selectively Etched GaN Templates. Electrochemical and Solid-State Letters, 2011, 14, H222.	2.2	0
247	ZnO nanowires lift-off from silicon substrate embedded in flexible films. , 2013, , .		0
248	Modified cone shapes on patterned sapphire substrates for high performance InGaN LED applications. , 2013, , .		0
249	Effect of Different Patterns Epitaxial Lift-Off Process by Finite Element Method. ECS Transactions, 2013, 53, 295-301.	0.5	0
250	Growth and Characterization of Single Crystalline Ga-doped ZnO Thin Films Using Metal-Organic Chemical Vapor Deposition. ECS Transactions, 2013, 53, 3-9.	0.5	0
251	Effect of the polymer overcoat on the performance of the SiN <inf>x</inf> /SiO <inf>x</inf> multilayer barrier for OLED gas barrier applications., 2015,,.		0
252	Fabrication of nitride LEDs using chemical lift-off from a GaN/sapphire template., 2016,,.		0

#	Article	IF	CITATIONS
253	A Low-Temperature External Electron Retarding Electrode for Improving Vertical Green LED Performance. IEEE Transactions on Electron Devices, 2017, 64, 3219-3225.	3.0	О
254	A New Material and Structures for Light-Emitting Thyristor Applications. IEEE Transactions on Electron Devices, 2018, 65, 2904-2908.	3.0	0
255	Complex Oxides: Quasiâ€Singleâ€Crystalline ZnGa ₂ O ₄ Films via Solid Phase Epitaxy for Enhancing Deepâ€Ultraviolet Photoresponse (Adv. Mater. Interfaces 18/2019). Advanced Materials Interfaces, 2019, 6, 1970116.	3.7	0
256	Editorial: The biennial TACT international thin films conference (TACT 2019). Thin Solid Films, 2020, 709, 138210.	1.8	0
257	Special Issue Editorial: Functional Oxide Based Thin-Film Materials. Crystals, 2020, 10, 195.	2,2	0
258	Ion bombardment effect on properties of MoO thin film under different PEALD plasma exposure time. Vacuum, 2022, 200, 111025.	3.5	0
259	Role of Ambient Hydrogen in HiPIMS-ITO Film during Annealing Process in a Large Temperature Range. Nanomaterials, 2022, 12, 1995.	4.1	0