Justin C Fay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544938/publications.pdf

Version: 2024-02-01

		94433	88630
71	7,621	37	70
papers	citations	h-index	g-index
9.0	9.6	9.6	11704
86	86	86	11704
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The structure and diversity of strain-level variation in vaginal bacteria. Microbial Genomics, 2021, 7, .	2.0	11
2	Cis-regulatory variants affect gene expression dynamics in yeast. ELife, 2021, 10, .	6.0	6
3	Associations between the vaginal microbiome and Candida colonization in women of reproductive age. American Journal of Obstetrics and Gynecology, 2020, 222, 471.e1-471.e9.	1.3	52
4	High-throughput analysis of adaptation using barcoded strains of <i>Saccharomyces cerevisiae </i> PeerJ, 2020, 8, e10118.	2.0	9
5	Riding the Rhythm of Melatonin Through Pregnancy to Deliver on Time. Frontiers in Endocrinology, 2019, 10, 616.	3.5	55
6	Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast. Science Advances, 2019, 5, eaav1848.	10.3	66
7	Mitochondrial DNA and temperature tolerance in lager yeasts. Science Advances, 2019, 5, eaav1869.	10.3	72
8	A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biology, 2019, 17, e3000147.	5 . 6	58
9	Multiple Changes Underlie Allelic Divergence of <i>CUP2 </i> Between <i>Saccharomyces </i> Species. G3: Genes, Genomes, Genetics, 2019, 9, 3595-3600.	1.8	5
10	The Fate of Deleterious Variants in a Barley Genomic Prediction Population. Genetics, 2019, 213, 1531-1544.	2.9	12
11	Genetic Basis of Variation in Heat and Ethanol Tolerance in <i>Saccharomyces cerevisiae</i> Genes, Genetics, 2019, 9, 179-188.	1.8	16
12	A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production. Applied Microbiology and Biotechnology, 2018, 102, 2269-2278.	3.6	14
13	Comparative Genomics Approaches Accurately Predict Deleterious Variants in Plants. G3: Genes, Genomes, Genetics, 2018, 8, 3321-3329.	1.8	36
14	Chronodisruption: An untimely cause of preterm birth?. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 52, 60-67.	2.8	21
15	Mouse models of preterm birth: suggested assessment and reporting guidelinesâ€. Biology of Reproduction, 2018, 99, 922-937.	2.7	62
16	Cis-Regulatory Divergence in Gene Expression between Two Thermally Divergent Yeast Species. Genome Biology and Evolution, 2017, 9, 1120-1129.	2.5	57
17	Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 2017, 10, 78.	6.2	78
18	Drupal, TEI and XML: How to prototype a digital humanities tool?. Library Hi Tech News, 2017, 34, 9-15.	0.9	2

#	Article	IF	CITATIONS
19	Debating Data Science. Radical History Review, 2017, 2017, 133-148.	0.4	5
20	Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae. PLoS ONE, 2017, 12, e0180814.	2.5	8
21	Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations. Frontiers in Microbiology, 2016, 7, 215.	3.5	19
22	Divergent <i>MLS1</i> Promoters Lie on a Fitness Plateau for Gene Expression. Molecular Biology and Evolution, 2016, 33, 1270-1279.	8.9	11
23	The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 2307-2317.	8.9	83
24	Selective Photonic Disinfection of Cell Culture Using a Visible Ultrashort Pulsed Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 371-378.	2.9	9
25	Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Current Biology, 2016, 26, 965-971.	3.9	69
26	Evolution of ecological dominance of yeast species in highâ€sugar environments. Evolution; International Journal of Organic Evolution, 2015, 69, 2079-2093.	2.3	53
27	Patterns of Gene Conversion in Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular Complex. Genome Biology and Evolution, 2015, 7, 3249-3258.	2.5	22
28	Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides. BMC Genomics, 2015, 16, 415.	2.8	31
29	Heterochronic Meiotic Misexpression in an Interspecific Yeast Hybrid. Molecular Biology and Evolution, 2014, 31, 1333-1342.	8.9	17
30	The molecular basis of phenotypic variation in yeast. Current Opinion in Genetics and Development, 2013, 23, 672-677.	3.3	80
31	Disease consequences of human adaptation. Applied & Translational Genomics, 2013, 2, 42-47.	2.1	18
32	Mixing of vineyard and oakâ€tree ecotypes of <i><i><scp>S</scp>accharomyces cerevisiae</i> in <scp>N</scp>orth <scp>A</scp>merican vineyards. Molecular Ecology, 2013, 22, 2917-2930.</i>	3.9	107
33	The Role of Surface Chemistry on the Toxicity of Ag Nanoparticles. Small, 2013, 9, 2628-2638.	10.0	32
34	ZRT1 Harbors an Excess of Nonsynonymous Polymorphism and Shows Evidence of Balancing Selection in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2013, 3, 665-673.	1.8	7
35	Genomic Sequence Diversity and Population Structure of <i>Saccharomyces cerevisiae </i> RAD-seq. G3: Genes, Genomes, Genetics, 2013, 3, 2163-2171.	1.8	132
36	Fine-Mapping an Association of FSHR with Preterm Birth in a Finnish Population. PLoS ONE, 2013, 8, e78032.	2.5	15

#	Article	IF	CITATIONS
37	A Noncomplementation Screen for Quantitative Trait Alleles in <i>Saccharomyces cerevisiae </i> Genes, Genomes, Genetics, 2012, 2, 753-760.	1.8	21
38	Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance. PLoS Genetics, 2012, 8, e1002763.	3. 5	35
39	Tapping into yeast diversity. Molecular Ecology, 2012, 21, 5387-5389.	3.9	2
40	Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae. FEMS Yeast Research, 2011, 11, 540-551.	2.3	56
41	Weighing the evidence for adaptation at the molecular level. Trends in Genetics, 2011, 27, 343-349.	6.7	62
42	Evidence for Hitchhiking of Deleterious Mutations within the Human Genome. PLoS Genetics, 2011, 7, e1002240.	3. 5	82
43	An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing. PLoS Genetics, 2011, 7, e1001365.	3 . 5	96
44	Is Transcription Factor Binding Site Turnover a Sufficient Explanation for Cis-Regulatory Sequence Divergence?. Genome Biology and Evolution, 2010, 2, 851-858.	2.5	24
45	Primate-specific evolution of noncoding element insertion into PLA2G4Cand human preterm birth. BMC Medical Genomics, 2010, 3, 62.	1.5	13
46	Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations. PLoS Genetics, 2010, 6, e1000893.	3.5	99
47	Preventing preterm birth: the past limitations and new potential of animal models. DMM Disease Models and Mechanisms, 2010, 3, 407-414.	2.4	51
48	Identification of deleterious mutations within three human genomes. Genome Research, 2009, 19, 1553-1561.	5 . 5	926
49	A Combined-Cross Analysis Reveals Genes With Drug-Specific and Background-Dependent Effects on Drug Sensitivity in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 183, 1141-1151.	2.9	22
50	Quantification of rare allelic variants from pooled genomic DNA. Nature Methods, 2009, 6, 263-265.	19.0	136
51	Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Research, 2009, 9, 713-722.	2.3	31
52	Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma, 2008, 117, 89-102.	2.2	194
53	Evaluating the role of natural selection in the evolution of gene regulation. Heredity, 2008, 100, 191-199.	2.6	150
54	A Catalog of Neutral and Deleterious Polymorphism in Yeast. PLoS Genetics, 2008, 4, e1000183.	3.5	212

#	Article	IF	CITATIONS
55	Frequent Gain and Loss of Functional Transcription Factor Binding Sites. PLoS Computational Biology, 2007, 3, e99.	3.2	134
56	Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19387-19391.	7.1	49
57	Human Genome: Which proteins contribute to human-chimpanzee differences?. European Journal of Human Genetics, $2006, 14, 506-506$.	2.8	3
58	Phylogeny based discovery of regulatory elements. BMC Bioinformatics, 2006, 7, 266.	2.6	9
59	Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae. PLoS Genetics, 2005, 1, e5.	3.5	416
60	Identification of functional transcription factor binding sites using closely related Saccharomyces species. Genome Research, 2005, 15, 701-709.	5.5	52
61	Hypervariable Noncoding Sequences in Saccharomyces cerevisiaeSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY942206, AY942556 Genetics, 2005, 170, 1575-1587.	2.9	30
62	Detecting Hitchhiking from Patterns of DNA Polymorphism., 2005,, 65-77.		6
63	DNA Variability and Divergence at the Notch Locus in Drosophila melanogaster and D. simulans: A Case of Accelerated Synonymous Site Divergence. Genetics, 2004, 167, 171-185.	2.9	47
64	Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biology, 2004, 5, R26.	9.6	200
65	SEQUENCEDIVERGENCE, FUNCTIONALCONSTRAINT, AND SELECTION INPROTEINEVOLUTION. Annual Review of Genomics and Human Genetics, 2003, 4, 213-235.	6.2	241
66	Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature, 2002, 415, 1024-1026.	27.8	339
67	The neutral theory in the genomic era. Current Opinion in Genetics and Development, 2001, 11, 642-646.	3.3	104
68	Positive and Negative Selection on the Human Genome. Genetics, 2001, 158, 1227-1234.	2.9	565
69	Hitchhiking Under Positive Darwinian Selection. Genetics, 2000, 155, 1405-1413.	2.9	1,602
70	A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Molecular Biology and Evolution, 1999, 16, 1003-1005.	8.9	218
71	Effects of hot and cold temperatures on the survival of oospores produced by United States strains ofPhytophthora infestans. American Potato Journal, 1997, 74, 315-323.	0.3	28