List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variant of <i>TYR</i> and Autoimmunity Susceptibility Loci in Generalized Vitiligo. New England Journal of Medicine, 2010, 362, 1686-1697.	27.0	352
2	Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nature Genetics, 2012, 44, 676-680.	21.4	293
3	Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity, 2015, 42, 1185-1196.	14.3	246
4	Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nature Genetics, 2016, 48, 1418-1424.	21.4	225
5	Autoimmunity as an aetiological factor in vitiligo. Journal of the European Academy of Dermatology and Venereology, 2007, 21, 865-876.	2.4	124
6	The Transcription Factors SOX9 and SOX10 Are Vitiligo Autoantigens in Autoimmune Polyendocrine Syndrome Type I. Journal of Biological Chemistry, 2001, 276, 35390-35395.	3.4	122
7	Localization of GerAA and GerAC Germination Proteins in the <i>Bacillus subtilis</i> Spore. Journal of Bacteriology, 2001, 183, 4317-4322.	2.2	114
8	Autoimmune Aspects of Vitiligo. Autoimmunity, 2001, 34, 65-77.	2.6	110
9	A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes and Immunity, 2005, 6, 584-587.	4.1	109
10	Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmunity Reviews, 2016, 15, 379-392.	5.8	107
11	Comprehensive Association Analysis of Candidate Genes for Generalized Vitiligo Supports XBP1, FOXP3, and TSLP. Journal of Investigative Dermatology, 2011, 131, 371-381.	0.7	106
12	Polymorphisms in the Cytotoxic T Lymphocyte Antigen-4 Gene Region Confer Susceptibility to Addison's Disease. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3474-3476.	3.6	105
13	The Calcium-Sensing Receptor Is a Target of Autoantibodies in Patients with Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2107-2114.	3.6	102
14	Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. British Journal of Dermatology, 1998, 139, 798-805.	1.5	100
15	A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison's disease in English patients. Clinical Endocrinology, 1998, 49, 609-613.	2.4	97
16	Common variants in FOXP1 are associated with generalized vitiligo. Nature Genetics, 2010, 42, 576-578.	21.4	95
17	Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics. Autoimmunity Reviews, 2015, 14, 49-56.	5.8	95
18	The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. Journal of Clinical Investigation, 2002, 109, 923-930.	8.2	89

#	Article	IF	CITATIONS
19	PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator–dependent autoimmunity. Journal of Allergy and Clinical Immunology, 2015, 135, 1578-1588.e5.	2.9	84
20	Detection of Tyrosinase Autoantibodies in Patients With Vitiligo Using 35S-Labeled Recombinant Human Tyrosinase in a Radioimmunoassay. Journal of Investigative Dermatology, 1997, 109, 69-73.	0.7	83
21	Autoantibody responses to melanocytes in the depigmenting skin disease vitiligo. Autoimmunity Reviews, 2007, 6, 138-142.	5.8	83
22	Detection and localization of chemokine gene expression in autoimmune thyroid disease. Clinical Endocrinology, 2003, 59, 207-213.	2.4	82
23	Mutation screening of PTPN22: association of the 1858T-allele with Addison's disease. European Journal of Human Genetics, 2008, 16, 977-982.	2.8	81
24	Association Analysis of the Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) and Autoimmune Regulator-1 (AIRE-1) Genes in Sporadic Autoimmune Addison's Disease. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 688-691.	3.6	73
25	Inhibition of Tumor Necrosis Factor-α Stimulated NFκB/p65 in Human Keratinocytes by α-Melanocyte Stimulating Hormone and Adrenocorticotropic Hormone Peptides. Journal of Investigative Dermatology, 2002, 119, 1244-1253.	0.7	69
26	Activating Autoantibodies against the Calcium-Sensing Receptor Detected in Two Patients with Autoimmune Polyendocrine Syndrome Type 1. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4749-4756.	3.6	68
27	The genetic analysis of bacterial spore germination. Journal of Applied Bacteriology, 1994, 76, 9S.	1.1	67
28	Autoantibodies to human melanocyte-specific protein Pmel17 in the sera of vitiligo patients: a sensitive and quantitative radioimmunoassay (RIA). Clinical and Experimental Immunology, 1998, 114, 333-338.	2.6	67
29	Immune Checkpoint Inhibitor-Induced Hypoparathyroidism Associated With Calcium-Sensing Receptor-Activating Autoantibodies. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 550-556.	3.6	66
30	Anti-inflammatory and anti-invasive effects of α-melanocyte-stimulating hormone in human melanoma cells. British Journal of Cancer, 2003, 89, 2004-2015.	6.4	65
31	Genome-Wide Analysis Identifies a Quantitative Trait Locus in the MHC Class II Region Associated with Generalized Vitiligo Age of Onset. Journal of Investigative Dermatology, 2011, 131, 1308-1312.	0.7	62
32	Analysis of a microsatellite polymorphism of the cytotoxic T-lymphocyte antigen-4 gene in patients with vitiligo. British Journal of Dermatology, 1999, 140, 73-78.	1.5	60
33	Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo. Experimental Dermatology, 2011, 20, 35-40.	2.9	59
34	Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochemical and Biophysical Research Communications, 2006, 345, 1586-1591.	2.1	58
35	CTLA4 polymorphisms are associated with vitiligo, in patients with concomitant autoimmune diseases. Pigment Cell & Melanoma Research, 2005, 18, 55-58.	3.6	57
36	Immunological pathomechanisms in vitiligo. Expert Reviews in Molecular Medicine, 2001, 3, 1-22.	3.9	52

#	Article	IF	CITATIONS
37	Melanoma cell migration is upregulated by tumour necrosis factor- $\hat{l}\pm$ and suppressed by $\hat{l}\pm$ -melanocyte-stimulating hormone. British Journal of Cancer, 2004, 90, 1457-1463.	6.4	48
38	Immunoglobulin Gκ Antithyroid Peroxidase Antibodies in Hashimoto's Thyroiditis: Epitope-Mapping Analysis1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2639-2644.	3.6	46
39	Detection of Binding and Blocking Autoantibodies to the Human Sodium-Iodide Symporter in Patients with Autoimmune Thyroid Disease*. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2020-2027.	3.6	45
40	α-Melanocyte-Stimulating Hormone, MSH 11–13 KPV and Adrenocorticotropic Hormone Signalling in Human Keratinocyte Cells. Journal of Investigative Dermatology, 2004, 122, 1010-1019.	0.7	45
41	Immunoglobulin GÂ Antithyroid Peroxidase Antibodies in Hashimoto's Thyroiditis: Epitope-Mapping Analysis. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2639-2644.	3.6	42
42	Detection of Binding and Blocking Autoantibodies to the Human Sodium-Iodide Symporter in Patients with Autoimmune Thyroid Disease. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2020-2027.	3.6	42
43	The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. Journal of Clinical Investigation, 2002, 109, 923-930.	8.2	39
44	The Non-Synonymous C1858T Substitution in the PTPN22 Gene is Associated with Susceptibility to the Severe Forms of Alopecia Areata. Human Immunology, 2006, 67, 535-539.	2.4	38
45	Development of a 3D human in vitro skin coâ€culture model for detecting irritants in realâ€time. Biotechnology and Bioengineering, 2010, 106, 794-803.	3.3	36
46	Prevalence and Clinical Associations of Calcium-Sensing Receptor and NALP5 Autoantibodies in Finnish APECED Patients. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1064-1071.	3.6	31
47	Identification of Epitopes on Tyrosinase which are Recognized by Autoantibodies from Patients with Vitiligo. Journal of Investigative Dermatology, 1999, 113, 267-271.	0.7	30
48	Anti-Melanoma immunity and local regression of cutaneous metastases in melanoma patients treated with monobenzone and imiquimod; a phase 2 a trial. Oncolmmunology, 2018, 7, e1419113.	4.6	29
49	Autoimmune Hypocalciuric Hypercalcemia Unresponsive to Glucocorticoid Therapy in a Patient with Blocking Autoantibodies against the Calcium-Sensing Receptor. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 672-680.	3.6	27
50	Activating Antibodies to The Calcium-sensing Receptor in Immunotherapy-induced Hypoparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1581-1588.	3.6	27
51	Function-blocking autoantibodies to the melanin-concentrating hormone receptor in vitiligo patients. Laboratory Investigation, 2006, 86, 781-789.	3.7	26
52	Autoantigens in Vitiligo Identified by the Serological Selection of a Phage-Displayed Melanocyte cDNA Expression Library. Journal of Investigative Dermatology, 2010, 130, 230-240.	0.7	26
53	Melanocyte antigenâ€specific antibodies cannot be used as markers for recent disease activity in patients with vitiligo. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 1172-1175.	2.4	26
54	Analysis of Immunoglobulin Cκ Antithyroid Peroxidase Antibodies from Different Tissues in Hashimoto's Thyroiditis1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3818-3825.	3.6	25

#	Article	IF	CITATIONS
55	A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity. Thyroid, 2014, 24, 371-382.	4.5	25
56	International survey on high―and lowâ€dose synacthen test and assessment of accuracy in preparing lowâ€dose synacthen. Clinical Endocrinology, 2018, 88, 744-751.	2.4	25
57	Autoantibodies in vitiligo patients are not directed to the melanocyte differentiation antigen MelanA/MART1. Clinical and Experimental Immunology, 2002, 129, 527-532.	2.6	24
58	Molecular mapping of epitopes on melanocyte-specific protein Pmel17 which are recognized by autoantibodies in patients with vitiligo. Clinical and Experimental Immunology, 2001, 124, 509-515.	2.6	22
59	The antibody response against <scp>MART</scp> â€l differs in patients with melanomaâ€essociated leucoderma and vitiligo. Pigment Cell and Melanoma Research, 2014, 27, 1086-1096.	3.3	22
60	Calcium-sensing receptor autoantibody-mediated hypoparathyroidism associated with immune checkpoint inhibitor therapy: diagnosis and long-term follow-up. , 2020, 8, e000687.		21
61	Is there loss or qualitative changes in the expression of thyroid peroxidase protein in thyroid epithelial cancer?. British Journal of Cancer, 2001, 85, 875-880.	6.4	20
62	Immunoscreening of phage-displayed cDNA-encoded polypeptides identifies B cell targets in autoimmune disease. Biochemical and Biophysical Research Communications, 2002, 298, 169-177.	2.1	20
63	An insertion/deletion polymorphism in the gene encoding angiotensin converting enzyme is not associated with generalised vitiligo in an English population. Archives of Dermatological Research, 2005, 297, 94-98.	1.9	20
64	Mapping of human autoantibody binding sites on the calcium-sensing receptor. Journal of Bone and Mineral Research, 2010, 25, 132-140.	2.8	20
65	Autoantibodies in Vitiligo Patients Recognize Multiple Domains of the Melanin-Concentrating Hormone Receptor. Journal of Investigative Dermatology, 2003, 121, 765-770.	0.7	19
66	Structural Insights into Autoreactive Determinants in Thyroid Peroxidase Composed of Discontinuous and Multiple Key Contact Amino Acid Residues Contributing to Epitopes Recognized by Patients' Autoantibodies. Endocrinology, 2006, 147, 5995-6003.	2.8	19
67	Demonstration of autoantibodies against tyrosine hydroxylase in patients with alopecia areata. British Journal of Dermatology, 2011, 165, 1236-1243.	1.5	19
68	Radiation-induced melanoma-associated leucoderma, systemic antimelanoma immunity and disease-free survival in a patient with advanced-stage melanoma: a case report and immunological analysis. British Journal of Dermatology, 2013, 168, 733-738.	1.5	18
69	Autoantibodies as Diagnostic and Predictive Markers of Vitiligo. Autoimmunity, 2004, 37, 287-290.	2.6	16
70	Real-Time Detection of Stress in 3D Tissue-Engineered Constructs Using NF-κB Activation in Transiently Transfected Human Dermal Fibroblast Cells. Tissue Engineering, 2007, 13, 1013-1024.	4.6	16
71	Alteration of Immune-Mechanisms by Human Microbiota and Development and Prevention of Human Diseases. Journal of Immunology Research, 2017, 2017, 1-2.	2.2	16
72	Mapping of melanin oncentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies. Experimental Dermatology, 2009, 18, 454-463.	2.9	15

#	Article	IF	CITATIONS
73	Melanin-concentrating hormone and melanin-concentrating hormone receptors in mammalian skin physiopathology. Peptides, 2009, 30, 2071-2075.	2.4	14
74	The possible implication of the S250C variant of the autoimmune regulator protein in a patient with autoimmunity and immunodeficiency: in silico analysis suggests a molecular pathogenic mechanism for the variant. Gene, 2014, 549, 286-294.	2.2	13
75	Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clinical and Experimental Immunology, 2022, 207, 27-43.	2.6	13
76	Autoantibodies against the calciumâ€sensing receptor and cytokines in autoimmune polyglandular syndromes types 2, 3 and 4. Clinical Endocrinology, 2018, 88, 139-145.	2.4	12
77	Calcium-Sensing Receptor Autoantibodies in Patients with Autoimmune Polyendocrine Syndrome Type 1: Epitopes, Specificity, Functional Affinity, IgG Subclass, and Effects on Receptor Activity. Journal of Immunology, 2018, 201, 3175-3183.	0.8	12
78	Vitiligo patients from India (Mumbai) show differences in clinical, demographic and autoantibody profiles compared to patients in western countries. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 279-286.	2.4	11
79	Graves' Disease, Hypoparathyroidism, Systemic Lupus Erythematosus, Alopecia, and Angioedema: Autoimmune Polyglandular Syndrome Variant or Coincidence?. International Journal of Immunopathology and Pharmacology, 2013, 26, 217-222.	2.1	11
80	Association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and susceptibility to systemic lupus erythematosus in an Indian population. Scandinavian Journal of Rheumatology, 2015, 44, 425-427.	1.1	10
81	Complete nucteotide sequence and deduced amino acid sequence of the M5 polypeptide gene ofEscherichia coli. Nucleic Acids Research, 1987, 15, 3924-3924.	14.5	9
82	The angiotensin-converting enzyme gene insertion/deletion polymorphism in Indian patients with vitiligo: a case-control study and meta-analysis. British Journal of Dermatology, 2013, 168, 1195-1204.	1.5	9
83	<scp>IL</scp> â€14 and <scp>IL</scp> â€16 are expressed in the thyroid of patients with either Graves' disea or Hashimoto's thyroiditis. Clinical Endocrinology, 2015, 83, 726-732.	se 2.4	9
84	Immunophenotypic Analysis Reveals Differences in Circulating Immune Cells in the Peripheral Blood of Patients with Segmental and Nonsegmental Vitiligo. Journal of Investigative Dermatology, 2022, 142, 876-883.e3.	0.7	9
85	Identification of antigenic domains on the human sodium-iodide symporter which are recognized by autoantibodies from patients with autoimmune thyroid disease. Clinical and Experimental Immunology, 2001, 124, 377-385.	2.6	7
86	Acquired Hypocalciuric Hypercalcemia in a Patient With CKD. American Journal of Kidney Diseases, 2013, 62, 1151-1154.	1.9	7
87	Low Frequency of Pendrin Autoantibodies Detected Using a Radioligand Binding Assay in Patients With Autoimmune Thyroid Disease. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E309-E313.	3.6	7
88	Pharmacodynamic studies of nasal tetracosactide with salivary glucocorticoids for a noninvasive Short Synacthen Test. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2692-2703.	3.6	7
89	Spore germination genes of Bacillus subtilis 168. Research in Microbiology, 1991, 142, 847-850.	2.1	6
90	Autoantibodies to the flavoprotein subunit of succinate dehydrogenase: analysis of specificity in autoimmune thyroid disease. Clinical Endocrinology, 2000, 53, 291-299.	2.4	6

#	Article	IF	CITATIONS
91	First report of anti-calcium-sensing receptor antibodies in a patient with Sjogren's syndrome and primary hypoparathyroidism. Rheumatology, 2011, 50, 1173-1175.	1.9	6
92	Epitopes, avidity and IgG subclasses of tyrosine hydroxylase autoantibodies in vitiligo and alopecia areata patients. British Journal of Dermatology, 2012, 167, 17-28.	1.5	6
93	Immunosuppressive therapy of autoimmune hypoparathyroidism in a patient with activating autoantibodies against the calciumâ€sensing receptor. Clinical Endocrinology, 2019, 90, 214-221.	2.4	6
94	Vitiligo following a combined liver-kidney transplant. Nephrology Dialysis Transplantation, 2008, 24, 686-688.	0.7	5
95	Earlyâ€onset hypoparathyroidism and chronic keratitis revealing <scp>APECED</scp> . Clinical Case Reports (discontinued), 2015, 3, 809-813.	0.5	4
96	Serological proteome analysis reveals new specific biases in the IgM and IgG autoantibody repertoires in autoimmune polyendocrine syndrome type 1. Autoimmunity, 2015, 48, 532-541.	2.6	4
97	Severe Symptomatic Hypocalcemia from HIV Related Hypoparathyroidism. Case Reports in Endocrinology, 2018, 2018, 1-4.	0.4	4
98	HLA-G does not have a pathophysiological role in Graves' disease. Journal of Clinical Pathology, 2003, 56, 475-477.	2.0	3
99	Autoimmune Hypercalcemia Due to Autoantibodies Against the Calcium-sensing Receptor. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2229-2236.	3.6	3
100	Tumour necrosis factor-α antagonists as therapies for vitiligo. British Journal of Dermatology, 2015, 173, 635-635.	1.5	2
101	Case report: a 10-year-old girl with primary hypoparathyroidism and systemic lupus erythematosus. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 1231-1235.	0.9	2
102	Antithyroid hormone autoantibodies in vitiligo. British Journal of Dermatology, 2014, 171, 690-690.	1.5	1
103	084 An investigation of Lamin A autoantibodies in vitiligo. Journal of Investigative Dermatology, 2017, 137, S14.	0.7	1
104	Immune/Inflammatory Aspects. , 2010, , 239-267.		1
105	The CC genotype of the ERCC 1 C118T singleâ€nucleotide polymorphism impacts positively on the efficacy of narrowband ultraviolet B therapy for vitiligo. British Journal of Dermatology, 2015, 173, 324-325.	1.5	0
106	Programmed death 1 expressing regulatory T cells in vitiligo. British Journal of Dermatology, 2015, 172, 847-848.	1.5	0
107	Late-onset postsurgical hypoparathyroidism following parathyroidectomy for recurrent primary hyperparathyroidism: a case report and literature review. Endocrine, 2020, 69, 402-409.	2.3	0

108 Autoimmune Hypoparathyroidism. , 2015, , 177-188.