
Stuart Orkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544456/publications.pdf Version: 2024-02-01

STUADT ODVIN

#	Article	IF	CITATIONS
1	Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood, 2022, 139, 2534-2546.	1.4	14
2	A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes and Development, 2022, 36, 368-389.	5.9	14
3	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	6.4	12
4	Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes and Development, 2022, 36, 38-52.	5.9	11
5	Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discovery, 2022, 12, 1760-1781.	9.4	15
6	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	6.4	5
7	Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discovery, 2022, 3, 394-409.	5.0	8
8	Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells. Cell Chemical Biology, 2022, 29, 1273-1287.e8.	5.2	14
9	Molecular Medicine: Found in Translation. Med, 2021, 2, 122-136.	4.4	13
10	Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nature Genetics, 2021, 53, 511-520.	21.4	43
11	Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nature Communications, 2021, 12, 3933.	12.8	7
12	Reactivation of a developmentally silenced embryonic globin gene. Nature Communications, 2021, 12, 4439.	12.8	19
13	A unified model of human hemoglobin switching through single-cell genome editing. Nature Communications, 2021, 12, 4991.	12.8	22
14	Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell, 2021, 28, 1922-1935.e5.	11.1	67
15	Mapping the evolving landscape of super-enhancers during cell differentiation. Genome Biology, 2021, 22, 269.	8.8	19
16	Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nature Communications, 2021, 12, 6241.	12.8	25
17	Transcriptional Immunoediting of AML Cells after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2021, 138, 647-647.	1.4	0
18	Unleashing Cell-Intrinsic Inflammation As a Strategy to Kill AML Blasts. Blood, 2021, 138, 3305-3305.	1.4	1

#	Article	IF	CITATIONS
19	Enhancer dependence of cell-type–specific gene expression increases with developmental age. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21450-21458.	7.1	32
20	ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit. Journal of Biological Chemistry, 2020, 295, 17738-17751.	3.4	13
21	An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells. Cell, 2020, 181, 1410-1422.e27.	28.9	172
22	Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biology, 2020, 21, 59.	8.8	27
23	Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nature Genetics, 2020, 52, 138-145.	21.4	73
24	Live-animal imaging of native haematopoietic stem and progenitor cells. Nature, 2020, 578, 278-283.	27.8	171
25	A saturating mutagenesis CRISPR-Cas9–mediated functional genomic screen identifies cis- and trans-regulatory elements of Oct4 in murine ESCs. Journal of Biological Chemistry, 2020, 295, 15797-15809.	3.4	6
26	BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature, 2019, 572, 676-680.	27.8	89
27	Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nature Genetics, 2019, 51, 1149-1159.	21.4	83
28	CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biology, 2019, 20, 192.	8.8	83
29	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	9.7	36
30	Extensive Recovery of Embryonic Enhancer and Gene Memory Stored in Hypomethylated Enhancer DNA. Molecular Cell, 2019, 74, 542-554.e5.	9.7	65
31	Emerging Genetic Therapy for Sickle Cell Disease. Annual Review of Medicine, 2019, 70, 257-271.	12.2	90
32	Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell, 2018, 33, 386-400.e5.	16.8	99
33	Mapping the Mouse Cell Atlas by Microwell-Seq. Cell, 2018, 172, 1091-1107.e17.	28.9	1,068
34	Dissecting super-enhancer hierarchy based on chromatin interactions. Nature Communications, 2018, 9, 943.	12.8	179
35	Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nature Protocols, 2018, 13, 946-986.	12.0	70
36	14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Human Molecular Genetics, 2018, 27, 1411-1420.	2.9	25

#	Article	IF	CITATIONS
37	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	27.8	70
38	Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell, 2018, 173, 430-442.e17.	28.9	328
39	Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. British Journal of Haematology, 2018, 180, 630-643.	2.5	107
40	PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 3094-3114.	8.5	37
41	Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Reports, 2018, 25, 3504-3518.e6.	6.4	70
42	CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data. Nature Methods, 2018, 15, 992-993.	19.0	33
43	Polycomb Repressive Complex 2 is essential for development and maintenance of a functional TEC compartment. Scientific Reports, 2018, 8, 14335.	3.3	5
44	FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry, 2018, 293, 19797-19811.	3.4	30
45	Downregulation of Endothelin Receptor B Contributes to Defective B Cell Lymphopoiesis in Trisomy 21 Pluripotent Stem Cells. Scientific Reports, 2018, 8, 8001.	3.3	15
46	The Polycomb-Dependent Epigenome Controls β Cell Dysfunction, Dedifferentiation, and Diabetes. Cell Metabolism, 2018, 27, 1294-1308.e7.	16.2	109
47	Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary organoids. PLoS Biology, 2018, 16, e2004986.	5.6	10
48	Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. ELife, 2018, 7, .	6.0	33
49	A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Research, 2017, 27, 386-401.	12.0	20
50	Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nature Genetics, 2017, 49, 625-634.	21.4	96
51	Transcription control by the ENL YEATS domain in acute leukaemia. Nature, 2017, 543, 270-274.	27.8	248
52	The 2017 ASPHO distinguished career award goes to Holcombe E. Grier, MD. Pediatric Blood and Cancer, 2017, 64, e26483.	1.5	0
53	Reduced <i>Erg</i> Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells. Stem Cells, 2017, 35, 1773-1785.	3.2	16
54	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	3.8	28

#	Article	IF	CITATIONS
55	The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nature Immunology, 2017, 18, 184-195.	14.5	56
56	First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10125-10130.	7.1	39
57	Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11257-E11266.	7.1	96
58	PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Research, 2017, 77, 4613-4625.	0.9	30
59	Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.	8.8	258
60	Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Advances, 2017, 1, 903-914.	5.2	18
61	EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. ELife, 2017, 6, .	6.0	44
62	Erythropoietin signaling regulates heme biosynthesis. ELife, 2017, 6, .	6.0	36
63	Genome-Wide CRISPR/Cas9 Screen Reveals That the Dcps Scavenger Decapping Enzyme Is Essential for AML Cell Survival. Blood, 2017, 130, 782-782.	1.4	1
64	Analyzing CRISPR genome-editing experiments with CRISPResso. Nature Biotechnology, 2016, 34, 695-697.	17.5	410
65	Loss of <i>Ezh2</i> synergizes with <i>JAK2</i> -V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. Journal of Experimental Medicine, 2016, 213, 1479-1496.	8.5	101
66	Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood, 2016, 128, 2338-2342.	1.4	33
67	Paying for future success in gene therapy. Science, 2016, 352, 1059-1061.	12.6	43
68	Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in Adult Cells. Cell, 2016, 165, 1389-1400.	28.9	101
69	High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature, 2016, 531, 53-58.	27.8	602
70	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	16.8	227
71	Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood, 2016, 127, 839-848.	1.4	138
72	Customizing the genome as therapy for the \hat{l}^2 -hemoglobinopathies. Blood, 2016, 127, 2536-2545.	1.4	48

#	Article	IF	CITATIONS
73	Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Reports, 2016, 16, 3181-3194.	6.4	85
74	Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5 + Intestinal Stem Cells. Cell Reports, 2016, 16, 2053-2060.	6.4	69
75	Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nature Communications, 2016, 7, 12047.	12.8	47
76	Chronic Myelogenous Leukemia– Initiating Cells Require Polycomb Group Protein EZH2. Cancer Discovery, 2016, 6, 1237-1247.	9.4	72
77	Interferon-Î \pm signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	1.4	36
78	Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology, 2016, 44, 947-963.	0.4	52
79	Hemoglobin genetics: recent contributions of GWAS and gene editing. Human Molecular Genetics, 2016, 25, R99-R105.	2.9	38
80	Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia. Cell Reports, 2016, 14, 1953-1965.	6.4	65
81	Serum-Based Culture Conditions Provoke Gene Expression Variability in Mouse Embryonic Stem Cells as Revealed by Single-Cell Analysis. Cell Reports, 2016, 14, 956-965.	6.4	73
82	Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016, 351, 285-289.	12.6	260
83	Recent advances in globin research using genomeâ€wide association studies and gene editing. Annals of the New York Academy of Sciences, 2016, 1368, 5-10.	3.8	13
84	Polycomb Repressive Complex 2 Is a Barrier to KRAS-Driven Inflammation and Epithelial-Mesenchymal Transition in Non-Small-Cell Lung Cancer. Cancer Cell, 2016, 29, 17-31.	16.8	96
85	Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis. Developmental Cell, 2016, 36, 9-23.	7.0	204
86	An Achilles' Heel for MLL-Rearranged Leukemias: Writers and Readers of H3 Lysine 36 Dimethylation. Cancer Discovery, 2016, 6, 700-702.	9.4	5
87	Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. Journal of Clinical Investigation, 2016, 126, 3868-3878.	8.2	129
88	Generation of Genomic Deletions in Mammalian Cell Lines via CRISPR/Cas9. Journal of Visualized Experiments, 2015, , e52118.	0.3	123
89	EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood, 2015, 126, 1930-1939.	1.4	76
90	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	1.4	20

#	Article	IF	CITATIONS
91	Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. Journal of Neuroscience, 2015, 35, 8640-8652.	3.6	48
92	Functional Proteomic Analysis of Repressive Histone Methyltransferase Complexes Reveals ZNF518B as a G9A Regulator*. Molecular and Cellular Proteomics, 2015, 14, 1435-1446.	3.8	39
93	The mTORC1/4E-BP pathway coordinates hemoglobin production with <scp>L</scp> -leucine availability. Science Signaling, 2015, 8, ra34.	3.6	54
94	Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15988-15993.	7.1	131
95	LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Nature Communications, 2015, 6, 10116.	12.8	38
96	Developmental Control of Polycomb Subunit Composition by GATA Factors Mediates a Switch to Non-Canonical Functions. Molecular Cell, 2015, 57, 304-316.	9.7	119
97	Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO Journal, 2015, 34, 759-777.	7.8	64
98	miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Molecular Therapy, 2015, 23, 1465-1474.	8.2	101
99	Inactivation of Eed impedes MLL-AF9–mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model. Experimental Hematology, 2015, 43, 930-935.e6.	0.4	20
100	2014 William Allan Award: A Hematologist's Pursuit of Hemoglobin Genetics1. American Journal of Human Genetics, 2015, 96, 354-360.	6.2	0
101	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
102	Opposing Roles for the IncRNA Haunt and Its Genomic Locus in Regulating HOXA Gene Activation during Embryonic Stem Cell Differentiation. Cell Stem Cell, 2015, 16, 504-516.	11.1	247
103	Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Current Opinion in Genetics and Development, 2015, 33, 62-70.	3.3	94
104	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41
105	The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop. Molecular and Cellular Biology, 2015, 35, 4199-4211.	2.3	12
106	Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.	19.0	123
107	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	27.8	726
108	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64

#	Article	IF	CITATIONS
109	SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nature Medicine, 2015, 21, 1491-1496.	30.7	334
110	BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. Journal of Clinical Investigation, 2015, 125, 2363-2368.	8.2	122
111	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	6.0	30
112	Hematopoietic Stem Cells Develop in the Absence of Endothelial Cadherin 5 Expression. Blood, 2015, 126, 1165-1165.	1.4	0
113	Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5564-73.	7.1	355
114	Reprogramming Committed Murine Blood Cells to Induced Hematopoietic Stem Cells with Defined Factors. Cell, 2014, 157, 549-564.	28.9	290
115	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	9.7	112
116	Polycomb Repressive Complex 2 Regulates Normal Hematopoietic Stem Cell Function in a Developmental-Stage-Specific Manner. Cell Stem Cell, 2014, 14, 68-80.	11.1	275
117	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
118	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	12.6	244
119	Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing <i>JAK2</i> -V617F. Journal of Experimental Medicine, 2014, 211, 2213-2230.	8.5	88
120	Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes and Development, 2014, 28, 2597-2612.	5.9	214
121	Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*. Journal of Biological Chemistry, 2014, 289, 21312-21324.	3.4	309
122	Corepressor Rcor1 is essential for murine erythropoiesis. Blood, 2014, 123, 3175-3184.	1.4	24
123	Optimization of Bcl11a Knockdown By miRNA Scaffold Embedded Shrnas Leading to Enhanced Induction of Fetal Hemoglobin in Erythroid Cells for the Treatment of Beta-Hemoglobinopathies. Blood, 2014, 124, 2150-2150.	1.4	8
124	JAK2V617F and Loss of Ezh2 in Hematopoietic Cells Contribute Synergistically to Myeloproliferative Neoplasm Initiation Potential, and Accelerate Progression of Disease. Blood, 2014, 124, 158-158.	1.4	0
125	Context Dependent Role of Polycomb Repressive Complex 2 in Acute Leukemia. Blood, 2014, 124, 610-610.	1.4	0
126	An SCF-FBXW7 Ubiquitin Ligase Mediated Feedback Loop Facilitates GATA Factor Switching and Reinforces Commitment to Terminal Erythroid Maturation. Blood, 2014, 124, 245-245.	1.4	0

#	Article	IF	CITATIONS
127	Inflammatory Signaling Regulates Embryonic Hematopoietic Stem and Lymphoid Progenitor Cell Formation. Blood, 2014, 124, 2902-2902.	1.4	0
128	Erythroid Cells Adapt to L-Leucine Scarcity By Reducing Hemoglobin Production Via the mTORC1/4E-BP Pathway. Blood, 2014, 124, 2660-2660.	1.4	0
129	Developmental Control of Polycomb Subunit Composition Mediates a Switch to Non-Canonical Functions during Hematopoiesis. Blood, 2014, 124, 241-241.	1.4	0
130	An Erythroid Enhancer of <i>BCL11A</i> Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science, 2013, 342, 253-257.	12.6	518
131	Calpain 2 Activation of P-TEFb Drives Megakaryocyte Morphogenesis and Is Disrupted by Leukemogenic GATA1 Mutation. Developmental Cell, 2013, 27, 607-620.	7.0	27
132	Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Current Opinion in Genetics and Development, 2013, 23, 339-344.	3.3	31
133	Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6518-6523.	7.1	189
134	Identification Of BCL11A Structure-Function Domains For Fetal Hemoglobin Silencing. Blood, 2013, 122, 435-435.	1.4	3
135	Genetics and Epigenetics of Fetal Hemoglobin Control. Blood, 2013, 122, SCI-12-SCI-12.	1.4	0
136	ADAR1 Is Essential For Erythroid Development. Blood, 2013, 122, 9-9.	1.4	13
137	MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biology, 2012, 13, R16.	9.6	355
138	Hematopoietic SIN Lentiviral Micro RNA-Mediated Silencing of BCL11A: Pre-Clinical Evidence for a Sickle Cell Disease Gene-Therapy Trial. Blood, 2012, 120, 753-753.	1.4	1
139	Reduced Erg Dosage Perturbs Fetal and Adult Hematopoiesis. Blood, 2012, 120, 1189-1189.	1.4	0
140	Scl/Tal1 Directly Activates Hematopoiesis and Represses Cardiogenesis During Mesodermal Diversification. Blood, 2012, 120, 3446-3446.	1.4	0
141	Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Medicine, 2011, 3, 75.	8.2	112
142	Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing. Science, 2011, 334, 993-996.	12.6	281
143	MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1519-1524.	7.1	186
144	A Functional Element Necessary for Fetal Hemoglobin Silencing. New England Journal of Medicine, 2011. 365. 807-814.	27.0	161

#	Article	IF	CITATIONS
145	Genome Medicine: stem cells, genomics and translational research. Genome Medicine, 2011, 3, 34.	8.2	2
146	Chromatin Connections to Pluripotency and Cellular Reprogramming. Cell, 2011, 145, 835-850.	28.9	356
147	mTOR Pathway Links Suppressed Autophagy to HDAC Inhibitor-Induced Apoptosis in Myeloid Leukemia,. Blood, 2011, 118, 3614-3614.	1.4	1
148	Histone Demethylase LSD1 Is Required to Repress Hematopoietic Stem Cell Signatures in Mature Blood Cells to Permit Terminal Differentiation. Blood, 2011, 118, 550-550.	1.4	0
149	Haploinsufficiency of Dnmt1 Impairs Leukemia Stem Cell Function Through Derepression of Bivalent Chromatin Domains,. Blood, 2011, 118, 3459-3459.	1.4	3
150	Induction of Fetal Hemoglobin by Inactivation of HDAC1 or HDAC2 without Altering Cellular Proliferation. Blood, 2011, 118, 354-354.	1.4	0
151	Functional Evaluation of HbF-Associated Region of BCL11A Locus. Blood, 2011, 118, 2148-2148.	1.4	0
152	Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nature Genetics, 2010, 42, 1049-1051.	21.4	243
153	Transcriptional silencing of Î ³ -globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes and Development, 2010, 24, 783-798.	5.9	304
154	Sickle Cell Disease at 100 Years. Science, 2010, 329, 291-292.	12.6	32
155	DNA methylation in adult stem cells: New insights into self-renewal. Epigenetics, 2010, 5, 189-193.	2.7	27
156	Gene Expression-Based Chemical Genomics Identifies Valproic Acid to Revert the Oncogenic Effect of GATA1s In Down Syndrome Megakaryoblastic Leukemia Blood, 2010, 116, 3646-3646.	1.4	0
157	Analysis of TIF1gamma Conditional Knockout Establishes a Requirement for the Differentiation of Multiple Hematopoietic Lineages. Blood, 2010, 116, 744-744.	1.4	0
158	New Strategies to Define Regulators of Fetal Hemoglobin. Blood, 2010, 116, SCI-17-SCI-17.	1.4	0
159	A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes and Development, 2009, 23, 837-848.	5.9	354
160	Developmental and species-divergent globin switching are driven by BCL11A. Nature, 2009, 460, 1093-1097.	27.8	339
161	Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells. Nature Protocols, 2009, 4, 506-517.	12.0	129
162	Rb and hematopoiesis: stem cells to anemia. Cell Division, 2008, 3, 13.	2.4	17

#	Article	IF	CITATIONS
163	Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell, 2008, 132, 631-644.	28.9	2,061
164	SnapShot: Hematopoiesis. Cell, 2008, 132, 712.e1-712.e2.	28.9	50
165	Genome-wide association study shows <i>BCL11A</i> associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1620-1625.	7.1	561
166	DNA polymorphisms at the <i>BCL11A</i> , <i>HBS1L-MYB</i> , and β- <i>globin</i> loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11869-11874.	7.1	510
167	Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor <i>BCL11A</i> . Science, 2008, 322, 1839-1842.	12.6	759
168	Changed destiny. Nature, 2007, 449, 410-411.	27.8	14
169	Hematopoietic Stem Cells Emerge in the Placental Vasculature in the Absence of Circulation Blood, 2007, 110, 1258-1258.	1.4	0
170	Rb Intrinsically Promotes Erythropoiesis by Coupling Cell Cycle Exit with Mitochondrial Biogenesis Blood, 2007, 110, 638-638.	1.4	0
171	The Hypomorphic Gata1low Mutation Alters the Proliferation/Differentiation Potential of the Common Megakaryocytic-Erythroid Progenitor Blood, 2006, 108, 2549-2549.	1.4	1
172	Chipping away at the Embryonic Stem Cell Network. Cell, 2005, 122, 828-830.	28.9	45
173	A Genome-Wide Retroviral Insertional Mutagenesis Screen for Genes Cooperating with Truncated, Oncogenic GATA1s Blood, 2005, 106, 2990-2990.	1.4	2
174	Placenta Is a Niche for Hematopoietic Stem Cells Blood, 2004, 104, 2671-2671.	1.4	0
175	Developmental Stage-Selective Effect of Somatically Mutated GATA-1 in Down Syndrome AML M7a Potential Basis for Transient Myeloproliferative Disorder Blood, 2004, 104, 463-463.	1.4	1
176	Priming the Hematopoietic Pump. Immunity, 2003, 19, 633-634.	14.3	40
177	Distinct Domains of the GATA-1 Cofactor FOG-1 Differentially Influence Erythroid versus Megakaryocytic Maturation. Molecular and Cellular Biology, 2002, 22, 4268-4279.	2.3	89
178	Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 2002, 21, 3368-3376.	5.9	534
179	Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunology, 2002, 3, 323-328.	14.5	234
180	Conadal differentiation, sex determination and normal <i>Sry</i> expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development (Cambridge), 2002, 129, 4627-4634.	2.5	302

#	Article	IF	CITATIONS
181	The E2F1–3 transcription factors are essential for cellular proliferation. Nature, 2001, 414, 457-462.	27.8	545
182	Friend of GATA-1 Represses GATA-3–dependent Activity in CD4+ T Cells. Journal of Experimental Medicine, 2001, 194, 1461-1471.	8.5	82
183	Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genetics, 2000, 24, 266-270.	21.4	474
184	GATA-1 and Erythropoietin Cooperate to Promote Erythroid Cell Survival by Regulating bcl-xL Expression. Blood, 1999, 94, 87-96.	1.4	338
185	Transcription factor GATA‐1 in megakaryocyte development. Stem Cells, 1998, 16, 79-83.	3.2	91
186	Regulation of the Serum Concentration of Thrombopoietin in Thrombocytopenic NF-E2 Knockout Mice. Blood, 1997, 90, 1821-1827.	1.4	68
187	Transcription Factor GATA-2 Is Required for Proliferation/Survival of Early Hematopoietic Cells and Mast Cell Formation, But Not for Erythroid and Myeloid Terminal Differentiation. Blood, 1997, 89, 3636-3643.	1.4	159
188	Mouse model of X–linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nature Genetics, 1995, 9, 202-209.	21.4	846
189	Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 1995, 373, 432-434.	27.8	880
190	Regulation of Globin Gene Expression in Erythroid Cells. FEBS Journal, 1995, 231, 271-281.	0.2	4
191	An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 1994, 371, 221-226.	27.8	1,314
192	Erythroid transcription factor NF-E2 is a haematopoietic-specific basic–leucine zipper protein. Nature, 1993, 362, 722-728.	27.8	641
193	Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature, 1993, 362, 768-770.	27.8	56
194	Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nature Genetics, 1992, 1, 50-55.	21.4	216
195	Rescue of erythroid development in gene targeted GATA–1â^' mouse embryonic stem cells. Nature Genetics, 1992, 1, 92-98.	21.4	255
196	Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 1991, 349, 257-260.	27.8	1,291
197	Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature, 1990, 343, 774-778.	27.8	1,279
198	Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature, 1990, 344, 444-447.	27.8	482

#	Article	IF	CITATIONS
199	Globin gene regulation and switching: Circa 1990. Cell, 1990, 63, 665-672.	28.9	497
200	Increased Î ³ -globin expression in a nondeletion HPFH mediated by an erythroid-specif ic DNA-binding factor. Nature, 1989, 338, 435-438.	27.8	303
201	Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature, 1989, 339, 446-451.	27.8	941
202	Association of a Ras-related protein with cytochrome b of human neutrophils. Nature, 1989, 342, 198-200.	27.8	244
203	The human von Willebrand factor gene. Structure of the 5' region. FEBS Journal, 1988, 171, 51-57.	0.2	37
204	The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature, 1987, 327, 717-720.	27.8	385
205	Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature, 1986, 322, 32-38.	27.8	833
206	Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature, 1986, 323, 455-458.	27.8	484
207	Where does the message begin?. Nature, 1986, 324, 21-21.	27.8	1
208	Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structural analysis. Nature, 1985, 316, 748-750.	27.8	291
209	Post-meiotic transcription of phosphoglycerate-kinase 2 in mouse testes. Bioscience Reports, 1985, 5, 1087-1091.	2.4	13
210	Development of homozygosity for chromosome 11p markers in Wilms' tumour. Nature, 1984, 309, 172-174.	27.8	418
211	Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex. Nature, 1984, 312, 413-418.	27.8	238
212	Gene therapy: Controlling the fetal globin switch in man. Nature, 1983, 301, 108-109.	27.8	8
213	Early pre-B cells from normal and X-linked agammaglobulinaemia produce Cμ without an attached VH region. Nature, 1983, 304, 355-358.	27.8	65
214	Genetic diagnosis of the fetus. Nature, 1982, 296, 202-203.	27.8	12
215	Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature, 1982, 296, 627-631.	27.8	963
216	Abnormal RNA processing due to the exon mutation of βE-globin gene. Nature, 1982, 300, 768-769.	27.8	302

	Stuart O	Stuart Orkin		
#	Article	IF	CITATIONS	
217	Partial deletion of the α-globin structural gene in human α-thalassaemia. Nature, 1980, 286, 538-540.	27.8	79	