
Arthur N Popper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2544241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 2010, 25, 419-427.	4.2	718
2	The effects of anthropogenic sources of sound on fishes. Journal of Fish Biology, 2009, 75, 455-489.	0.7	330
3	Rethinking sound detection by fishes. Hearing Research, 2011, 273, 25-36.	0.9	320
4	Sound Detection and Processing by Fish: Critical Review and Major Research Questions (Part 1 of 2). Brain, Behavior and Evolution, 1993, 41, 14-25.	0.9	313
5	High intensity anthropogenic sound damages fish ears. Journal of the Acoustical Society of America, 2003, 113, 638-642.	0.5	272
6	Noise-induced stress response and hearing loss in goldfish (Carassius auratus). Journal of Experimental Biology, 2004, 207, 427-435.	0.8	239
7	An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. Journal of Fish Biology, 2019, 94, 692-713.	0.7	230
8	Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research, 2005, 56, 497.	0.7	229
9	Evolution of hearing in vertebrates: the inner ears and processing. Hearing Research, 2000, 149, 1-10.	0.9	220
10	Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hearing Research, 1984, 15, 133-142.	0.9	191
11	Ultrasound detection by clupeiform fishes. Journal of the Acoustical Society of America, 2001, 109, 3048-3054.	0.5	185
12	Structure–function relationships in fish otolith organs. Fisheries Research, 2000, 46, 15-25.	0.9	183
13	Acoustic detection and communication by decapod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 83-89.	0.7	176
14	Sound detection and processing by teleost fishes: a critical review. Journal of the Acoustical Society of America, 1973, 53, 1515-1529.	0.5	175
15	Effects of exposure to seismic airgun use on hearing of three fish species. Journal of the Acoustical Society of America, 2005, 117, 3958-3971.	0.5	173
16	The importance of particle motion to fishes and invertebrates. Journal of the Acoustical Society of America, 2018, 143, 470-488.	0.5	173
17	A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. Journal of Morphology, 1977, 153, 397-417.	0.6	171
18	Bioacoustics of Fishes of the Family Sciaenidae (Croakers and Drums). Transactions of the American Fisheries Society, 2006, 135, 1409-1431.	0.6	170

#	Article	IF	CITATIONS
19	Application of Sound and other Stimuli to Control Fish Behavior. Transactions of the American Fisheries Society, 1998, 127, 673-707.	0.6	161
20	Information gaps in understanding the effects of noise on fishes and invertebrates. Reviews in Fish Biology and Fisheries, 2015, 25, 39-64.	2.4	161
21	Effects of Anthropogenic Sounds on Fishes. Fisheries, 2003, 28, 24-31.	0.6	156
22	The Morphology and Evolution of the Ear in Actinopterygian Fishes. American Zoologist, 1982, 22, 311-328.	0.7	149
23	Sound Detection Mechanisms and Capabilities of Teleost Fishes. , 2003, , 3-38.		145
24	A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES Journal of Marine Science, 2017, 74, 635-651.	1.2	139
25	Age- and Size-Related Changes in the Inner Ear and Hearing Ability of the Adult Zebrafish (Danio rerio). JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 174-184.	0.9	138
26	Acoustic Stimulation of the Ear of the Goldfish (<i>Carassius Auratus</i>). Journal of Experimental Biology, 1974, 61, 243-260.	0.8	138
27	A clupeid fish can detect ultrasound. Nature, 1997, 389, 341-341.	13.7	136
28	Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. Journal of Experimental Biology, 2006, 209, 4193-4202.	0.8	127
29	The effects of humanâ€generated sound on fish. Integrative Zoology, 2009, 4, 43-52.	1.3	127
30	The Auditory Periphery in Fishes. Springer Handbook of Auditory Research, 1999, , 43-100.	0.3	124
31	Fine Structure and Function of the Ear. Proceedings in Life Sciences, 1981, , 3-38.	0.5	123
32	Anthropogenic Sound: Effects on the Behavior and Physiology of Fishes. Marine Technology Society Journal, 2003, 37, 35-40.	0.3	121
33	Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1979, 132, 203-207.	0.7	117
34	Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hearing Research, 1993, 64, 166-174.	0.9	117
35	Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the european hake,merluccius merluccius (gadiformes, teleostei). Journal of Comparative Neurology, 1994, 345, 419-428.	0.9	116
36	Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). Journal of the Acoustical Society of America, 2003, 113, 1145-1154.	0.5	114

#	Article	IF	CITATIONS
37	Threshold for Onset of Injury in Chinook Salmon from Exposure to Impulsive Pile Driving Sounds. PLoS ONE, 2012, 7, e38968.	1.1	112
38	Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture, 2007, 272, 687-697.	1.7	106
39	Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 1995, 91, 63-71.	0.9	102
40	Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?. Journal of Experimental Biology, 2004, 207, 3591-3602.	0.8	102
41	Functional Aspects of the Evolution of the Auditory System of Actinopterygian Fish. , 1992, , 295-322.		101
42	Effects of lowâ€frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus. Journal of the Acoustical Society of America, 1996, 99, 1759-1766.	0.5	99
43	Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). Journal of the Acoustical Society of America, 1998, 104, 562-568.	0.5	98
44	Parallel Evolution in Fish Hearing Organs. Springer Handbook of Auditory Research, 2004, , 95-127.	0.3	92
45	Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4705-4714.	1.2	87
46	Processing of acoustic signals in the auditory system of bony fish. Journal of the Acoustical Society of America, 1988, 83, 338-349.	0.5	85
47	The effects of high-intensity, low-frequency active sonar on rainbow trout. Journal of the Acoustical Society of America, 2007, 122, 623-635.	0.5	85
48	The Localization and Potential Function of Glycosyltransferases in Chick Embryos. American Zoologist, 1973, 13, 1141-1167.	0.7	84
49	Acoustic Communication in Fishes and Frogs. Springer Handbook of Auditory Research, 1999, , 363-411.	0.3	84
50	Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. Journal of Comparative Neurology, 1981, 200, 357-374.	0.9	80
51	Growth of a fish ear II. Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hearing Research, 1990, 45, 33-40.	0.9	75
52	The effect of vaterite deposition on sound reception, otolith morphology, and inner ear sensory epithelia in hatchery-reared Chinook salmon (<i>Oncorhynchus tshawytscha</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1469-1478.	0.7	71
53	Heterogeneity of sensory hair cells in a fish ear. Journal of Comparative Neurology, 1992, 324, 621-640.	0.9	69
54	Effects of exposure to pile driving sounds on fish inner ear tissues. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 352-360.	0.8	69

#	Article	IF	CITATIONS
55	Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax) Tj ETQq1	1 0.784314 0.8	• rgBT /Over
56	Parvulescu Revisited: Small Tank Acoustics for Bioacousticians. Advances in Experimental Medicine and Biology, 2016, 875, 933-941.	0.8	67
57	Scanning electron microscopic study of the otolithic organs in the bichir (polypterus bichir) and shovel-nose sturgeon (scaphirhynchus platorynchus). Journal of Comparative Neurology, 1978, 181, 117-128.	0.9	65
58	Structure and function of the ear in the marine catfish,Arius felis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1981, 144, 27-34.	0.7	64
59	Vibration detection by the macula neglecta of sharks. Comparative Biochemistry and Physiology A, Comparative Physiology, 1974, 47, 1235-1240.	0.7	63
60	Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hearing Research, 1998, 126, 47-57.	0.9	62
61	The auditory system of the goldfish (Carassius auratus): Effects of intense acoustic stimulation. Comparative Biochemistry and Physiology A, Comparative Physiology, 1976, 53, 11-18.	0.7	61
62	Examining the hearing abilities of fishes. Journal of the Acoustical Society of America, 2019, 146, 948-955.	0.5	60
63	Audition in sciaenid fishes with different swim bladder-inner ear configurations. Journal of the Acoustical Society of America, 2006, 119, 439-443.	0.5	59
64	Pure‶one Auditory Thresholds for the Carp, Cyprinis carpio. Journal of the Acoustical Society of America, 1972, 52, 1714-1717.	0.5	58
65	Form and function in the unique inner ear of a teleost: The silver perch (Bairdiella chrysoura). Journal of Comparative Neurology, 2004, 475, 531-539.	0.9	58
66	Zebrafishpax5 regulates development of the utricular macula and vestibular function. Developmental Dynamics, 2006, 235, 3026-3038.	0.8	57
67	Auditory sensitivity and psychophysical tuning curves in the elephant nose fish,Gnathonemus petersii. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 155, 753-761.	0.7	56
68	Directional hearing and sound source localization by fishes. Journal of the Acoustical Society of America, 2018, 144, 3329-3350.	0.5	55
69	Possible precursors to new hair cells, support cells, and Schwann cells in the ear of a post-embryonic fish. Hearing Research, 1990, 46, 9-21.	0.9	52
70	Factors Affecting the Responses of Marine Mammals to Acoustic Disturbance. Marine Technology Society Journal, 2003, 37, 6-15.	0.3	52
71	The herring ear has a unique receptor pattern. Nature, 1979, 280, 832-833.	13.7	51
72	Sound localization by the hawaiian squirrelfishes, Myripristis berndti and M. argyromus. Animal Behaviour, 1973, 21, 86-97.	0.8	50

#	Article	IF	CITATIONS
73	Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hearing Research, 2000, 143, 1-13.	0.9	50
74	Neural response directionality correlates of hair cell orientation in a teleost fish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 453-465.	0.7	50
75	Response of clupeid fish to ultrasound: a review. ICES Journal of Marine Science, 2004, 61, 1057-1061.	1.2	50
76	Scanning electron microscopic study of the sacculus and lagena in several deep-sea fishes. American Journal of Anatomy, 1980, 157, 115-136.	0.9	49
77	The fine structure Of the sacculus and lagena of a teleost fish. Hearing Research, 1981, 5, 245-263.	0.9	49
78	Sciaenid Inner Ears: A Study in Diversity. Brain, Behavior and Evolution, 2001, 58, 152-162.	0.9	48
79	Taking the Animals' Perspective Regarding Anthropogenic Underwater Sound. Trends in Ecology and Evolution, 2020, 35, 787-794.	4.2	48
80	Sensory surface of the saccule and lagena in the ears of ostariophysan fishes. Journal of Morphology, 1983, 176, 121-129.	0.6	46
81	Recovery of Barotrauma Injuries Resulting from Exposure to Pile Driving Sound in Two Sizes of Hybrid Striped Bass. PLoS ONE, 2013, 8, e73844.	1.1	46
82	Structure and innervation of the inner ear of the bowfin,Amia calva. Journal of Comparative Neurology, 1983, 213, 279-286.	0.9	44
83	The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish. Journal of Experimental Biology, 2009, 212, 3091-3099.	0.8	43
84	ASA S3/SC1.4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. SpringerBriefs in Oceanography, 2014, , .	0.1	43
85	Role of the Fish Ear in Sound Processing. , 1988, , 687-710.		43
86	Recovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound. PLoS ONE, 2012, 7, e39593.	1.1	42
87	Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus. Hearing Research, 1996, 100, 1-9.	0.9	40
88	Evasive responses of American shad (Alosa sapidissima) to ultrasonic stimuli. Acoustics Research Letters Online: ARLO, 2003, 4, 25-30.	0.7	40
89	Hearing and Acoustic Behavior: Basic and Applied Considerations. , 2008, , 17-48.		40
90	Effects of mid-frequency active sonar on hearing in fish. Journal of the Acoustical Society of America, 2012, 131, 599-607.	0.5	40

#	Article	IF	CITATIONS
91	Acoustic functions in the fish ear. Trends in Neurosciences, 1982, 5, 276-280.	4.2	39
92	Substrate vibrations and their potential effects upon fishes and invertebrates. Journal of the Acoustical Society of America, 2021, 149, 2782-2790.	0.5	38
93	Masked auditory thresholds in sciaenid fishes: A comparative study. Journal of the Acoustical Society of America, 2004, 116, 1687-1691.	0.5	37
94	Evolution of Sensory Hair Cells. Springer Handbook of Auditory Research, 2004, , 55-94.	0.3	37
95	Structure and Function of the Elasmobranch Auditory System. American Zoologist, 1977, 17, 443-452.	0.7	36
96	Sensory and Nonsensory Ciliated Cells In the Ear of the Sea Lamprey, <i>Petromyzon marinus</i> . Brain, Behavior and Evolution, 1987, 30, 43-61.	0.9	36
97	Hair cell precursors are ultrastructurally indistinguishable from mature support cells in the ear of a postembryonic fish. Hearing Research, 1996, 100, 10-20.	0.9	36
98	The inner ear of the lungfishProtopterus. Journal of Comparative Neurology, 2004, 471, 277-288.	0.9	36
99	Cepstral and stationarity analyses of fullâ€ŧerm and premature infants' cries. Journal of the Acoustical Society of America, 1974, 56, 975-980.	0.5	35
100	Ultrastructure of the sacculus and lagena in a moray eel (Gymnothorax sp.). Journal of Morphology, 1979, 161, 241-256.	0.6	35
101	Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1277-1280.	1.8	35
102	The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds. Journal of the Acoustical Society of America, 2008, 124, 1360-1366.	0.5	35
103	Hair Cell Orientation Patterns on the Saccules of Juvenile and Adult Toadfish, <i>Opsanus tau</i> . Acta Zoologica, 1995, 76, 257-265.	0.6	34
104	Pacific herring hearing does not include ultrasound. Biology Letters, 2005, 1, 158-161.	1.0	34
105	Fish Hearing: New Perspectives from Two â€ [~] Senior' Bioacousticians. Brain, Behavior and Evolution, 2012, 79, 215-217.	0.9	34
106	Auditory Threshold in the Goldfish (Carassius auratus) as a Function of Signal Duration. Journal of the Acoustical Society of America, 1972, 52, 596-602.	0.5	33
107	Structural variation in the inner ears of four deep-sea elopomorph fishes. Journal of Morphology, 2005, 265, 215-225.	0.6	33
108	Fish hearing "specialization―– a re-evaluation. Hearing Research, 2022, 425, 108393.	0.9	32

#	Article	IF	CITATIONS
109	Auditory Evoked Potential Audiograms Compared with Behavioral Audiograms in Aquatic Animals. Advances in Experimental Medicine and Biology, 2016, 875, 1049-1056.	0.8	31
110	Gross and ultrastructural development of the saccule of the toadfishOpsanus tau. Journal of Morphology, 1987, 194, 323-348.	0.6	30
111	Auditory response of saccular neurons of the catfish,Ictalurus punctatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 155, 615-624.	0.7	29
112	Variations in receptor cell innervation in the saccule of a teleost fish ear. Hearing Research, 1990, 46, 211-227.	0.9	29
113	Proliferation of vertebrate inner ear supporting cells. , 1999, 39, 527-535.		29
114	Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits. Aquacultural Engineering, 2007, 37, 125-131.	1.4	29
115	How to set sound exposure criteria for fishes. Journal of the Acoustical Society of America, 2020, 147, 1762-1777.	0.5	29
116	Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication. Hearing Research, 2001, 154, 62-72.	0.9	28
117	The inner ear and its coupling to the swim bladder in the deep-sea fish Antimora rostrata (Teleostei:) Tj ETQq1 1	0.784314	rgBT /Overloo
118	Interspecific Variations of Inner Ear Structure in the Deep‧ea Fish Family Melamphaidae. Anatomical Record, 2013, 296, 1064-1082.	0.8	28
119	Structure and Function of the Auditory System in the Clown Knifefish, Notopterus Chitala. Journal of Experimental Biology, 1982, 97, 225-239.	0.8	28
120	Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. Journal of the Acoustical Society of America, 2022, 151, 205-215.	0.5	28
121	Spatial organization in the saccule and lagena of a teleost: Hair cell pattern and innervation. Journal of Morphology, 1983, 177, 301-317.	0.6	27
122	Two types of sensory hair cell in the saccule of a teleost fish. Hearing Research, 1993, 64, 211-216.	0.9	27
123	Hair Cell Heterogeneity in the Goldfish Saccule. Brain, Behavior and Evolution, 1995, 46, 362-370.	0.9	27
124	Effects of noise on fishes: What we can learn from humans and birds. Integrative Zoology, 2015, 10, 29-37.	1.3	27
125	Short- and long-term monitoring of underwater sound levels in the Hudson River (New York, USA). Journal of the Acoustical Society of America, 2016, 139, 1886-1897.	0.5	27
126	Fish hearing and how it is best determined. ICES Journal of Marine Science, 2021, 78, 2325-2336.	1.2	27

#	Article	IF	CITATIONS
127	Sound reception in two anabantid fishes. Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 88, 37-44.	0.7	26
128	Effects of Man-Made Sound on Fishes. Springer Handbook of Auditory Research, 2018, , 145-177.	0.3	25
129	Physical effects of sound exposure from underwater explosions on Pacific sardines (<i>Sardinops) Tj ETQq1 1 0.7</i>	784314 rg 0.5	BT/Overlock 24
130	The ultrastructure and innervation of the ear of the gar,Lepisosteus osseus. Journal of Morphology, 1987, 194, 129-142.	0.6	23
131	Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 171, 105-9.	0.7	23
132	Novel afferent terminal structure in the crista ampullaris of the goldfish,Carassius auratus. , 1996, 366, 572-579.		23
133	Myosin VI and VIIa distribution among inner ear epithelia in diverse fishes. Hearing Research, 2007, 224, 15-26.	0.9	23
134	Hearing Sensitivity of the Walleye Pollock. Transactions of the American Fisheries Society, 2009, 138, 1000-1008.	0.6	21
135	Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, <i>Acipenser fulvescens</i> . Journal of Experimental Biology, 2010, 213, 1567-1578.	0.8	21
136	The Ear as Part of the Octavolateralis System. , 1989, , 633-651.		19
137	Spatial and morphological differentiation of trigger zones in afferent fibers to the teleost utricle. Journal of Comparative Neurology, 1990, 302, 629-642.	0.9	19
138	Exposure of fish to highâ€intensity sonar does not induce acute pathology. Journal of Fish Biology, 2010, 76, 1825-1840.	0.7	19
139	The Octavolateralis System and Mauthner Cell: Interactions and Questions. Brain, Behavior and Evolution, 1995, 46, 124-130.	0.9	18
140	Barging Effects on Sensory Systems of Chinook Salmon Smolts. Transactions of the American Fisheries Society, 2009, 138, 777-789.	0.6	18
141	Coding of sound direction in the auditory periphery of the lake sturgeon, <i>Acipenser fulvescens</i> . Journal of Neurophysiology, 2012, 107, 658-665.	0.9	18
142	Transmission electron microscopic study of the saccule in the embryonic, larval, and adult toadfishOpsanus tau. Journal of Morphology, 1988, 198, 49-69.	0.6	17
143	Neuronal Encoding of Ultrasonic Sound by a Fish. Journal of Neurophysiology, 2004, 91, 2590-2597.	0.9	17
144	Structure of the inner ear of bluefin tuna Thunnus thynnus. Journal of Fish Biology, 2006, 68, 1767-1781.	0.7	17

#	Article	lF	CITATIONS
145	Central-Peripheral and Rostral-Caudal Organization of the Innervation of the Saccule in a Cichlid Fish. Brain, Behavior and Evolution, 1992, 39, 197-207.	0.9	16
146	Are Sharks Even Bothered by a Noisy Environment?. Advances in Experimental Medicine and Biology, 2012, 730, 93-97.	0.8	16
147	"Large―Tank Acoustics: How Big Is Big Enough?. Advances in Experimental Medicine and Biology, 2016, 875, 363-369.	0.8	16
148	The morphology of the Weberian ossicles of two species of the genusAstyanax (Ostariophysi:) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 62
149	Hair Cell Death in a Hearing-Deficient Canary. , 2001, 2, 79-86.		15
150	Structural Diversity in the Inner Ear of Teleost Fishes: Implications for Connections to the Mauthner Cell. Brain, Behavior and Evolution, 1995, 46, 131-140.	0.9	13
151	INTRODUCTION: INTERNATIONAL CONFERENCE ON THE EFFECTS OF NOISE ON AQUATIC LIFE. Bioacoustics, 2008, 17, 1-3.	0.7	13
152	Use of sound to guide the movement of eels and other fishes within rivers: a critical review. Reviews in Fish Biology and Fisheries, 2020, 30, 605-622.	2.4	13
153	An evaluation of methods for behavioral investigations of teleost audition. Behavior Research Methods, 1973, 5, 470-472.	2.3	12
154	Comparative frequency selectivity in fishes: Simultaneously and forwardâ€masked psychophysical tuning curves. Journal of the Acoustical Society of America, 1982, 71, 133-141.	0.5	12
155	Effects of low-frequency naval sonar exposure on three species of fish. Journal of the Acoustical Society of America, 2013, 134, EL205-EL210.	0.5	12
156	Sound Exposure Guidelines. SpringerBriefs in Oceanography, 2014, , 33-51.	0.1	12
157	Dendritic arbors on the saccule and lagena in the ear of the goldfish, Carassius auratus. Hearing Research, 2000, 141, 229-242.	0.9	11
158	Some lessons from the effects of highway noise on birds. Proceedings of Meetings on Acoustics, 2016, , .	0.3	11
159	A ganglionic source of new eighth nerve neurons in a post-embryonic fish. Hearing Research, 1990, 46, 23-28.	0.9	10
160	Introduction to Fish Bioacoustics. , 2008, , 1-15.		10
161	Onset of barotrauma injuries related to number of pile driving strike exposures in hybrid striped bass. Journal of the Acoustical Society of America, 2017, 141, 4380-4387.	0.5	10
162	Sound detection by Atlantic cod: An overview. Journal of the Acoustical Society of America, 2020, 148, 3027-3041.	0.5	10

#	Article	IF	CITATIONS
163	Effects of Exposure to the Sound from Seismic Airguns on Pallid Sturgeon and Paddlefish. PLoS ONE, 2016, 11, e0159486.	1.1	10
164	Introduction to the special issue on the effects of sound on aquatic life. Journal of the Acoustical Society of America, 2020, 148, 934-938.	0.5	9
165	The teleost octavolateralis system: Structure and function. Marine and Freshwater Behaviour and Physiology, 1996, 27, 95-110.	0.4	8
166	QUESTIONS IN CETACEAN BIOACOUSTICS: SOME SUGGESTIONS FOR FUTURE RESEARCH. Bioacoustics, 1997, 8, 163-182.	0.7	8
167	Hearing thresholds of swimming Pacific bluefin tuna Thunnus orientalis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 441-454.	0.7	8
168	Physical effects of sound exposure from underwater explosions on Pacific mackerel (<i>Scomber) Tj ETQq0 0 0 rg 3947-3956.</i>	BT /Overl 0.5	ock 10 Tf 50 8
169	Changes in Fish Catch Rates in the Presence of Air Gun Sounds in Prudhoe Bay, Alaska. Arctic, 2016, 69, 346.	0.2	7
170	The sensory world of fish and fisheries: Impact of human activities–An international conference to evaluate the effects of environmental changes on the sensory world of fish/aquatic animals and fisheries. Integrative Zoology, 2015, 10, 1-3.	1.3	6
171	Auditory sensitivity in aquatic animals. Journal of the Acoustical Society of America, 2016, 139, 3097-3101.	0.5	6
172	From Cave Fish to Pile Driving: A Tail of Fish Bioacoustics. Springer Handbook of Auditory Research, 2014, , 467-492.	0.3	6
173	Developing Sound Exposure Criteria for Fishes. Advances in Experimental Medicine and Biology, 2016, 875, 431-439.	0.8	6
174	The Sound World of Zebrafish: A Critical Review of Hearing Assessment. Zebrafish, 2022, 19, 37-48.	0.5	6
175	ULTRASOUND DETECTION BY CLUPEIFORM FISHES. Bioacoustics, 2002, 12, 188-191.	0.7	5
176	Assessment of Barotrauma Injury and Cumulative Sound Exposure Level in Salmon After Exposure to Impulsive Sound. Advances in Experimental Medicine and Biology, 2012, 730, 235-237.	0.8	5
177	Colleagues as friends. ICES Journal of Marine Science, 2020, 77, 2033-2042.	1.2	5
178	Stimulus effectiveness in avoidance behavior in fish. Learning and Behavior, 1968, 12, 109-110.	0.6	4
179	NEURONAL AND BEHAVIOURAL RESPONSES OF AMERICAN SHAD <i>ALOSA SAPIDISSIMA</i> TO ULTRASOUND STIMULI. Bioacoustics, 2002, 12, 191-193.	0.7	4
180	Overview of the Fourth International Conference on the Effects of Noise on Aquatic Life. Proceedings of Meetings on Acoustics, 2016, , .	0.3	4

#	Article	IF	CITATIONS
181	Impacts of River-Based Air Gun Seismic Activity on Northern Fishes. Advances in Experimental Medicine and Biology, 2012, 730, 367-369.	0.8	4
182	Modes of neuronal arbor enlargement in the ear of a postembryonic fish, Astronotus ocellatus. Cell and Tissue Research, 1993, 274, 97-103.	1.5	3
183	AN OVERVIEW OF THE APPLIED USE OF SOUND IN FISHERIES AND FISH BIOLOGY. Bioacoustics, 2002, 12, 302-305.	0.7	3
184	Threshold of hearing for swimming Bluefin tuna (Thunnus orientalis). Proceedings of Meetings on Acoustics, 2013, , .	0.3	3
185	Overview of the Fifth International Conference on the Effects of Noise on Aquatic Life. Proceedings of Meetings on Acoustics, 2019, , .	0.3	3
186	The pioneering contributions of Per Stockfleth Enger to fish bioacoustics. Journal of the Acoustical Society of America, 2019, 145, 1596-1599.	0.5	3
187	The Nature of Man-Made Sound. SpringerBriefs in Oceanography, 2014, , 23-32.	0.1	3
188	STRUCTURE-FUNCTION RELATIONSHIPS IN THE EARS OF FISHES. Bioacoustics, 2002, 12, 114-118.	0.7	2
189	Methods for Predicting Potential Impacts of Pile-Driving Noise on Endangered Sturgeon During Bridge Construction. Advances in Experimental Medicine and Biology, 2016, 875, 565-572.	0.8	2
190	Effects of Seismic Air Guns on Pallid Sturgeon and Paddlefish. Advances in Experimental Medicine and Biology, 2016, 875, 871-878.	0.8	2
191	Man-Made Sounds and Animals. Springer Handbook of Auditory Research, 2018, , 1-22.	0.3	2
192	Sound Impact Studies: A Reply to Risch et al Trends in Ecology and Evolution, 2021, 36, 382-384.	4.2	2
193	Effects of Sound Exposure. SpringerBriefs in Oceanography, 2014, , 17-21.	0.1	2
194	It Started in Hawai'i Kai: Reminiscences of 43 Years (and Counting) of Collaboration and Friendship. Advances in Experimental Medicine and Biology, 2016, 877, 31-51.	0.8	2
195	Avoidance of Pile-Driving Noise by Hudson River Sturgeon During Construction of the New NY Bridge at Tappan Zee. Advances in Experimental Medicine and Biology, 2016, 875, 555-563.	0.8	2
196	ALBERT L. TESTER (1908–1974). American Zoologist, 1977, 17, 289-291.	0.7	1
197	COMPARATIVE AND EVOLUTIONARY BIOLOGY OF HEARING AT THE UNIVERSITY OF MARYLAND, COLLEGE PARK, USA. Bioacoustics, 1996, 7, 45-51.	0.7	1
198	DISTRIBUTION OF UNCONVENTIONAL MYOSINS IN THE ZEBRAFISH EAR. Bioacoustics, 2002, 12, 140-142.	0.7	1

#	Article	IF	CITATIONS
199	PRELIMINARY EVIDENCE FOR THE USE OF SOUND TO DECREASE LOSSES OF AQUATIC ORGANISMS AT A POWER PLANT COOLING WATER INTAKE. Bioacoustics, 2002, 12, 306-307.	0.7	1
200	IN VITRO WHOLE BRAIN PREPARATION OF FISH FOR THE ELECTROPHYSIOLOGICAL ANALYSIS OF SENSORY PATHWAYS. Bioacoustics, 2002, 12, 328-330.	0.7	1
201	FISH BIOACOUSTICS: INTRODUCTION. Bioacoustics, 2002, 12, 98-101.	0.7	1
202	EFFECTS OF ANTHROPOGENIC SOUNDS ON FISH. Bioacoustics, 2008, 17, 214-217.	0.7	1
203	New perspectives in fish evolution and neurobiology. Integrative Zoology, 2009, 4, 1-2.	1.3	1
204	Hearing – A General Overview. SpringerBriefs in Oceanography, 2014, , 7-13.	0.1	1
205	Discovery of sound in the sea: Resources for decision makers. Proceedings of Meetings on Acoustics, 2016, , .	0.3	1
206	Effects of Impulsive Pile-Driving Exposure on Fishes. Advances in Experimental Medicine and Biology, 2016, 875, 125-132.	0.8	1
207	Discovery of sound in the sea: Communicating underwater acoustics research to decision makers. Proceedings of Meetings on Acoustics, 2019, , .	0.3	1
208	Bioacoustics of Marine Vertebrates. , 0, , 1831-1836.		1
209	Time Resolution in Auditory Systems. Proceedings of the 11th Danavox Symposium on Hearing, Gamle Avernaes, Denmark, August 28-31, 1984.Axel Michelsen. Quarterly Review of Biology, 1986, 61, 434-434.	0.0	1
210	A general-purpose animal holder for dissections. Behavior Research Methods, 1976, 8, 339-340.	2.3	0
211	Echolocation in Whales and Dolphins. Trends in Neurosciences, 1985, 8, 36-37.	4.2	0
212	DETERMINATION OF THE EFFECTS OF SEISMIC EXPLORATION ON FISH (PROJECT SEIFISH). Bioacoustics, 2008, 17, 212-214.	0.7	0
213	EFFECTS OF EXPOSURE TO PILE-DRIVING SOUNDS ON FISH. Bioacoustics, 2008, 17, 305-307.	0.7	0
214	Comparative Hearing: Honoring Dick Fay. Proceedings of Meetings on Acoustics, 2016, , .	0.3	0
215	Implementing multiple digital platforms to effectively communicate research on underwater acoustics. Proceedings of Meetings on Acoustics, 2016, , .	0.3	0
216	A Change in the Use of Regulatory Criteria for Assessing Potential Impacts of Sound on Fishes. Advances in Experimental Medicine and Biology, 2016, 875, 497-503.	0.8	0

#	Article	IF	CITATIONS
217	Pile Driving at the New Bridge at Tappan Zee: Potential Environmental Impacts. Advances in Experimental Medicine and Biology, 2016, 875, 861-870.	0.8	Ο
218	Discovery of Sound in the Sea: Resources for Educators, Students, the Public, and Policymakers. Advances in Experimental Medicine and Biology, 2016, 875, 1183-1190.	0.8	0
219	Fish: Hearing, Lateral Lines (Mechanisms, Role in Behavior, Adaptations to Life Underwater). , 2019, , 270-276.		Ο
220	Research Recommendations. SpringerBriefs in Oceanography, 2014, , 53-57.	0.1	0
221	Bioacoustics: A Comparative Approach.Brian Lewis. Quarterly Review of Biology, 1984, 59, 94-95.	0.0	0