Sara C Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2542053/publications.pdf

Version: 2024-02-01

687363 610901 1,012 25 13 24 citations h-index g-index papers 25 25 25 1952 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors. Clinical Cancer Research, 2014, 20, 2051-2059.	7.0	140
2	CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 2015, 28, 15-28.	16.8	124
3	Combined Targeting of JAK2 and Bcl-2/Bcl-xL to Cure Mutant JAK2-Driven Malignancies and Overcome Acquired Resistance to JAK2 Inhibitors. Cell Reports, 2013, 5, 1047-1059.	6.4	116
4	Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncology, The, 2014, 15, e382-e394.	10.7	106
5	Loss of <i>Ezh2</i> synergizes with <i>JAK2</i> V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. Journal of Experimental Medicine, 2016, 213, 1479-1496.	8.5	101
6	Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. Journal of Clinical Investigation, 2019, 129, 1596-1611.	8.2	84
7	Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell, 2018, 33, 44-59.e8.	16.8	71
8	Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance. Haematologica, 2017, 102, 1650-1660.	3.5	49
9	JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis. Blood, 2016, 128, 839-851.	1.4	35
10	Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine, 2017, 26, 112-125.	6.1	35
11	Mechanisms of Resistance to JAK2 Inhibitors in Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2017, 31, 627-642.	2.2	32
12	Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. HemaSphere, 2021, 5, e516.	2.7	24
13	Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy. Leukemia, 2021, 35, 2875-2884.	7.2	19
14	Severe cutaneous toxicity related to Eltrombopag. British Journal of Haematology, 2013, 160, 412-414.	2.5	13
15	Genetics of Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2021, 35, 217-236.	2.2	13
16	MPN patients with low mutant <i>JAK2</i> allele burden show late expansion restricted to erythroid and megakaryocytic lineages. Blood, 2020, 136, 2591-2595.	1.4	12
17	JAK2 in Myeloproliferative Neoplasms: Still a Protagonist. Pharmaceuticals, 2022, 15, 160.	3.8	11
18	Renal post-mortem findings in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 1013-1020.	2.8	10

#	Article	IF	CITATION
19	Anti-Platelet Factor 4/Heparin Antibody Formation Occurs Endogenously and at Unexpected High Frequency in Polycythemia Vera. BioMed Research International, 2017, 2017, 1-13.	1.9	7
20	Co-Occurring CSF3R W791* Germline and Somatic T618I Driver Mutations Induce Early CNL and Clonal Progression to Mixed Phenotype Acute Leukemia. Current Oncology, 2022, 29, 805-815.	2.2	3
21	In response to the comment by Hechler <i>et al</i> .: Amotosalen/UVA pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance Haematologica, 2017, 102, e504-e505.	3.5	2
22	Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Hamostaseologie, 2021, 41, 197-205.	1.9	2
23	Addition of Omega-3 α-Linolenic Acid to Platelet Apheresis Units Preserves Platelet Activatability Over Time and Reduces Baseline Activation Under Routine Storage Conditions: A Pilot Study. Blood, 2012, 120, 3433-3433.	1.4	2
24	Recent Advances in Molecular Diagnostics and Targeted Therapy of Myeloproliferative Neoplasms. Cancers, 2021, 13, 5035.	3.7	1
25	Prognostic Impact of Iron Overload During Follow-up After Allogeneic Stem Cell Transplantation. Blood, 2011, 118, 347-347.	1.4	O