Angelika Manhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539943/publications.pdf

Version: 2024-02-01

19 papers	391 citations	933447 10 h-index	17 g-index
21	21	21	530
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel. Annual Review of Fluid Mechanics, 2018, 50, 347-370.	25.0	76
2	Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar. BMC Evolutionary Biology, 2014, 14, 17.	3.2	56
3	Nuclear Scaling Is Coordinated among Individual Nuclei in Multinucleated Muscle Fibers. Developmental Cell, 2019, 49, 48-62.e3.	7.0	52
4	Mechanical positioning of multiple nuclei in muscle cells. PLoS Computational Biology, 2018, 14, e1006208.	3.2	35
5	Analyzing collective motion with machine learning and topology. Chaos, 2019, 29, 123125.	2.5	31
6	Centering and symmetry breaking in confined contracting actomyosin networks. ELife, 2020, 9, .	6.0	29
7	An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals. Journal of Theoretical Biology, 2015, 382, 244-258.	1.7	24
8	Agent-based modeling: case study in cleavage furrow models. Molecular Biology of the Cell, 2016, 27, 3379-3384.	2.1	16
9	An age-structured continuum model for myxobacteria. Mathematical Models and Methods in Applied Sciences, 2018, 28, 1737-1770.	3.3	16
10	Quantitative regulation of the dynamic steady state of actin networks. ELife, 2019, 8, .	6.0	16
11	A continuum model for nematic alignment of self-propelled particles. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1295-1327.	0.9	10
12	Large-Scale Dynamics of Self-propelled Particles Moving Through Obstacles: Model Derivation and Pattern Formation. Bulletin of Mathematical Biology, 2020, 82, 129.	1.9	6
13	Mathematical modeling of Myosin induced bistability of Lamellipodial fragments. Journal of Mathematical Biology, 2017, 74, 1-22.	1.9	5
14	Kinetic modelling of colonies of myxobacteria. Kinetic and Related Models, 2021, 14, 1.	0.9	5
15	Numerical Treatment of the Filament-Based Lamellipodium Model (FBLM). Contributions in Mathematical and Computational Sciences, 2017, , 141-159.	0.3	5
16	Reverse-engineering forces responsible for dynamic clustering and spreading of multiple nuclei in developing muscle cells. Molecular Biology of the Cell, 2020, 31, 1802-1814.	2.1	3
17	Existence of and decay to equilibrium of the filament end density along the leading edge of the lamellipodium. Journal of Mathematical Biology, 2017, 74, 169-193.	1.9	2
18	Counter-propagating wave patterns in a swarm model with memory. Journal of Mathematical Biology, 2019, 78, 655-682.	1.9	2

#	Article	IF	CITATIONS
19	Mathematical modeling accurately predicts the dynamics and scaling of nuclear growth in discrete cytoplasmic volumes. Journal of Theoretical Biology, 2021, 533, 110936.	1.7	1