
J Silvestre-Albero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539600/publications.pdf Version: 2024-02-01

I SUVESTDE-ALREDO

#	Article	IF	CITATIONS
1	Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717.	38.1	422
2	A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nature Materials, 2018, 17, 174-179.	27.5	386
3	High‣urfaceâ€Area Carbon Molecular Sieves for Selective CO ₂ Adsorption. ChemSusChem, 2010, 3, 974-981.	6.8	316
4	Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon, 2014, 67, 230-235.	10.3	187
5	Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6, 6432.	12.8	187
6	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	12.8	180
7	High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position?. Chemistry of Materials, 2015, 27, 959-964.	6.7	178
8	Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47, 6840.	4.1	166
9	Chemoselective Hydrogenation Catalysts:Â Pt on Mesostructured CeO2Nanoparticles Embedded within Ultrathin Layers of SiO2Binder. Journal of the American Chemical Society, 2004, 126, 5523-5532.	13.7	154
10	Improved Metal-Support Interaction in Pt/CeO2/SiO2 Catalysts after Zinc Addition. Journal of Catalysis, 2002, 210, 127-136.	6.2	131
11	Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. Journal of Catalysis, 2006, 240, 58-65.	6.2	127
12	Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4K), carbon dioxide (273K) and argon (87.3K) adsorption in combination with immersion calorimetry. Carbon, 2012, 50, 3128-3133.	10.3	119
13	Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 151-165.	4.7	111
14	CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials, 2012, 164, 280-287.	4.4	108
15	Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chemical Communications, 2016, 52, 3639-3642.	4.1	106
16	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	7.4	103
17	Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. Journal of the American Chemical Society, 2020, 142, 6661-6674.	13.7	103
18	Ethanol removal using activated carbon: Effect of porous structure and surface chemistry. Microporous and Mesoporous Materials, 2009, 120, 62-68.	4.4	102

#	Article	IF	CITATIONS
19	Ammonia Removal Using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions. Environmental Science & Technology, 2011, 45, 10605-10610.	10.0	102
20	Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate. Microporous and Mesoporous Materials, 2009, 120, 132-140.	4.4	95
21	Assessment of naproxen adsorption on bone char in aqueous solutions using batch and fixed-bed processes. Journal of Molecular Liquids, 2015, 209, 187-195.	4.9	88
22	A Highâ€Volumetricâ€Capacity Cathode Based on Interconnected Closeâ€Packed Nâ€Doped Porous Carbon Nanospheres for Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701082.	19.5	88
23	Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures. Chemical Engineering Journal, 2010, 165, 78-88.	12.7	87
24	Low-Pressure Hysteresis in Adsorption: An Artifact?. Journal of Physical Chemistry C, 2012, 116, 16652-16655.	3.1	86
25	Cluster-mediated filling of water vapor in intratube and interstitial nanospaces of single-wall carbon nanohorns. Chemical Physics Letters, 2002, 366, 463-468.	2.6	83
26	Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on Pd single crystals: effect of CO addition. Journal of Catalysis, 2005, 235, 52-59.	6.2	78
27	CO2 adsorption on binderless activated carbon monoliths. Adsorption, 2011, 17, 497-504.	3.0	77
28	Influence of Zn on the characteristics and catalytic behavior of TiO2-supported Pt catalysts. Journal of Catalysis, 2004, 223, 179-190.	6.2	76
29	Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons. Physical Chemistry Chemical Physics, 2016, 18, 20607-20614.	2.8	73
30	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	3.0	73
31	Metal–Organic Frameworks as Drug Delivery Platforms for Ocular Therapeutics. ACS Applied Materials & Interfaces, 2019, 11, 1924-1931.	8.0	73
32	Synthesis of activated carbon with highly developed "mesoporosity― Microporous and Mesoporous Materials, 2009, 117, 519-521.	4.4	70
33	From Pd nanoparticles to single crystals: 1,3-butadiene hydrogenation on well-defined model catalysts. Chemical Communications, 2006, , 80-82.	4.1	69
34	Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catalysis Communications, 2014, 44, 35-39.	3.3	69
35	Preparation of activated carbon from date pits: Effect of the activation agent and liquid phase oxidation. Journal of Analytical and Applied Pyrolysis, 2009, 86, 168-172.	5.5	68
36	Preparation and characterization of CeO2 highly dispersed on activated carbon. Materials Research Bulletin, 2008, 43, 1850-1857.	5.2	66

#	Article	IF	CITATIONS
37	Water adsorption in hydrophilic zeolites: experiment and simulation. Physical Chemistry Chemical Physics, 2013, 15, 17374.	2.8	66
38	Micro/Mesoporous Activated Carbons Derived from Polyaniline: Promising Candidates for CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2014, 53, 15398-15405.	3.7	66
39	A new synthesis route for bone chars using CO2 atmosphere and their application as fluoride adsorbents. Microporous and Mesoporous Materials, 2015, 209, 38-44.	4.4	66
40	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	13.7	65
41	Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas. Journal of Colloid and Interface Science, 2015, 448, 41-50.	9.4	62
42	Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Applied Surface Science, 2015, 355, 748-760.	6.1	62
43	MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics. ACS Applied Materials & Interfaces, 2020, 12, 30189-30197.	8.0	62
44	Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation. Applied Catalysis A: General, 2005, 292, 244-251.	4.3	60
45	High selectivity of TiC-CDC for CO2/N2 separation. Carbon, 2013, 59, 221-228.	10.3	60
46	Methane Hydrate in Confined Spaces: An Alternative Storage System. ChemPhysChem, 2018, 19, 1298-1314.	2.1	59
47	Methane hydrates: Nucleation in microporous materials. Chemical Engineering Journal, 2019, 360, 569-576.	12.7	59
48	Is There Any Microporosity in Ordered Mesoporous Silicas?. Langmuir, 2009, 25, 939-943.	3.5	55
49	Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous and Mesoporous Materials, 2015, 209, 157-164.	4.4	54
50	Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Applied Surface Science, 2010, 257, 143-150.	6.1	53
51	High saturation capacity of activated carbons prepared from mesophase pitch in the removal of volatile organic compounds. Carbon, 2010, 48, 548-556.	10.3	53
52	Kinetic Restrictions in the Characterization of Narrow Microporosity in Carbon Materials. Journal of Physical Chemistry C, 2007, 111, 3803-3805.	3.1	52
53	Very high methane uptake on activated carbons prepared from mesophase pitch: A compromise between microporosity and bulk density. Carbon, 2015, 93, 11-21.	10.3	52
54	Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Processing Technology, 2016, 149, 209-217.	7.2	52

#	Article	IF	CITATIONS
55	Effect of the presence of chlorine in bimetallic PtZn/CeO2 catalysts for the vapor-phase hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2006, 304, 159-167.	4.3	50
56	Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. Journal of Materials Chemistry A, 2017, 5, 20938-20946.	10.3	50
57	Hybrid isotherms for adsorption and capillary condensation of N2 at 77K on porous and non-porous materials. Chemical Engineering Journal, 2010, 162, 424-429.	12.7	49
58	Biodiesel wastes: An abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction. Chemical Engineering Journal, 2014, 256, 468-474.	12.7	46
59	Catalytic nanomedicine: A new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. European Journal of Medicinal Chemistry, 2010, 45, 1982-1990.	5.5	45
60	Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous and Mesoporous Materials, 2008, 115, 603-608.	4.4	44
61	Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 113-114, 308-317.	20.2	44
62	Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum–tin catalysts. Physical Chemistry Chemical Physics, 2001, 3, 1782-1788.	2.8	42
63	Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution. Adsorption Science and Technology, 2016, 34, 368-387.	3.2	42
64	Assessment of CO ₂ Adsorption Capacity on Activated Carbons by a Combination of Batch and Dynamic Tests. Langmuir, 2014, 30, 5840-5848.	3.5	40
65	A continuous site energy distribution function from Redlich–Peterson isotherm for adsorption on heterogeneous surfaces. Chemical Physics Letters, 2010, 492, 187-192.	2.6	38
66	Well-defined mesoporosity on lignocellulosic-derived activated carbons. Carbon, 2012, 50, 66-72.	10.3	38
67	CO ₂ Adsorption on Ionic Liquid—Modified Cu-BTC: Experimental and Simulation Study. Adsorption Science and Technology, 2015, 33, 223-242.	3.2	37
68	Methane hydrate formation in the confined nanospace of activated carbons in seawater environment. Microporous and Mesoporous Materials, 2018, 255, 220-225.	4.4	37
69	Zn-modified MCM-41 as support for Pt catalysts. Applied Catalysis A: General, 2008, 351, 16-23.	4.3	36
70	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	6.7	35
71	The Impact of Synthesis Method on the Properties and CO2 Sorption Capacity of UiO-66(Ce). Catalysts, 2019, 9, 309.	3.5	35
72	Mercury removal from aqueous solution by adsorption onÂactivated carbons prepared from olive stones. Adsorption, 2011, 17, 603-609.	3.0	34

#	Article	IF	CITATIONS
73	Water gas shift reaction on carbon-supported Pt catalysts promoted by CeO2. Catalysis Today, 2012, 180, 19-24.	4.4	34
74	Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon. Carbon, 2017, 123, 299-301.	10.3	34
75	Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption. Carbon, 2014, 66, 699-704.	10.3	33
76	Influence of the metal precursor on the catalytic behavior of Pt/Ceria catalysts in the preferential oxidation of CO in the presence of H2 (PROX). Journal of Colloid and Interface Science, 2015, 443, 45-55.	9.4	32
77	CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66. Catalysts, 2020, 10, 39.	3.5	32
78	Title is missing!. Catalysis Letters, 2001, 74, 17-25.	2.6	31
79	Effect of the support, Al2O3 or SiO2, on the catalytic behaviour of Cr–ZnO promoted Pt catalysts in the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2011, 402, 50-58.	4.3	31
80	Structural Characterization of Micro- and Mesoporous Carbon Materials Using In Situ High Pressure ¹²⁹ Xe NMR Spectroscopy. Chemistry of Materials, 2014, 26, 3280-3288.	6.7	31
81	Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations. Applied Catalysis A: General, 2015, 507, 14-25.	4.3	31
82	Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. Carbon, 2017, 115, 539-545.	10.3	31
83	Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage. Materials Chemistry and Physics, 2018, 216, 42-46.	4.0	31
84	Textural Characterization of Micro- and Mesoporous Carbons Using Combined Gas Adsorption and <i>n</i> -Nonane Preadsorption. Langmuir, 2013, 29, 8133-8139.	3.5	30
85	Novel synthesis of a micro-mesoporous nitrogen-doped nanostructured carbon from polyaniline. Microporous and Mesoporous Materials, 2015, 218, 199-205.	4.4	30
86	Preparation and characterization of zinc containing MCM-41 spheres. Microporous and Mesoporous Materials, 2008, 113, 362-369.	4.4	29
87	Superior performance of multi-wall carbon nanotubes as support of Pt-based catalysts for the preferential CO oxidation: Effect of ceria addition. Applied Catalysis B: Environmental, 2012, 113-114, 72-78.	20.2	29
88	Superior performance of gold supported on doped CeO 2 catalysts for the preferential CO oxidation (PROX). Applied Catalysis A: General, 2014, 487, 119-129.	4.3	29
89	Freezing/melting of water in the confined nanospace of carbon materials: Effect of an external stimulus. Carbon, 2020, 158, 346-355.	10.3	29
90	Preferential oxidation of CO in excess of H2 on Pt/CeO2–Nb2O5 catalysts. Applied Catalysis A: General, 2015, 492, 201-211.	4.3	28

#	Article	IF	CITATIONS
91	Effect of the metal precursor on the properties of Ru/ZnO catalysts. Applied Catalysis A: General, 2010, 374, 221-227.	4.3	27
92	A reference high-pressure CH4 adsorption isotherm for zeolite Y: results of an interlaboratory study. Adsorption, 2020, 26, 1253-1266.	3.0	27
93	Immersion Calorimetry as a Tool To Evaluate the Catalytic Performance of Titanosilicate Materials in the Epoxidation of Cyclohexene. Langmuir, 2011, 27, 3618-3625.	3.5	26
94	Liquid phase removal of propanethiol by activated carbon: Effect of porosity and functionality. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 180-190.	4.7	25
95	The impact of synthesis method of CNT supported CeZrO2 and Ni-CeZrO2 on catalytic activity in WGS reaction. Catalysis Today, 2018, 301, 172-182.	4.4	24
96	Carbon Molecular Sieves Prepared from Polymeric Precursors: Porous Structure and Hydrogen Adsorption Properties. Industrial & Engineering Chemistry Research, 2009, 48, 7125-7131.	3.7	23
97	Effect of support and pre-treatment conditions on Pt–Sn catalysts: Application to nitrate reduction in water. Journal of Colloid and Interface Science, 2012, 369, 294-301.	9.4	22
98	High-Resolution N ₂ Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration. Journal of Physical Chemistry C, 2013, 117, 16885-16889.	3.1	22
99	High performance of Cu/CeO2-Nb2O5 catalysts for preferential CO oxidation and total combustion of toluene. Applied Catalysis A: General, 2015, 502, 129-137.	4.3	22
100	Effect of additives in the nucleation and growth of methane hydrates confined in a high-surface area activated carbon material. Chemical Engineering Journal, 2020, 388, 124224.	12.7	22
101	Use of Eutectic Mixtures for Preparation of Monolithic Carbons with CO2-Adsorption and Gas-Separation Capabilities. Langmuir, 2014, 30, 12220-12228.	3.5	21
102	Understanding ZIFâ€8 Performance upon Gas Adsorption by Means of Inelastic Neutron Scattering. ChemistrySelect, 2017, 2, 2750-2753.	1.5	21
103	Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 19924-19933.	10.3	21
104	Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water. Journal of Cleaner Production, 2021, 291, 125219.	9.3	21
105	Chlorination of a Zeolitic-Imidazolate Framework Tunes Packing and van der Waals Interaction of Carbon Dioxide for Optimized Adsorptive Separation. Journal of the American Chemical Society, 2021, 143, 4962-4968.	13.7	21
106	Infrared study of CO and 2-butenal co-adsorption on Zn modified Pt/CeO2–SiO2catalysts. Physical Chemistry Chemical Physics, 2003, 5, 208-216.	2.8	20
107	The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials. Materials Chemistry and Physics, 2012, 132, 1077-1088.	4.0	20
108	Characterization of carbon materials with the help of NMR methods. Microporous and Mesoporous Materials, 2009, 120, 91-97.	4.4	19

#	Article	IF	CITATIONS
109	Synthesis of Ordered Mesoporous Carbon Materials by Dry Etching. Chemistry - A European Journal, 2015, 21, 14753-14757.	3.3	19
110	Improved mechanical stability of HKUST-1 in confined nanospace. Chemical Communications, 2015, 51, 14191-14194.	4.1	19
111	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	3.3	19
112	Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels. Chemical Engineering Journal, 2020, 402, 126276.	12.7	19
113	Preparation and characterization of carbon-supported Pt-CeO2 catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1013-1018.	1.5	18
114	Combined UHV and ambient pressure studies of 1,3-butadiene adsorption and reaction on Pd(1 1 1) by GC, IRAS and XPS. Catalysis Communications, 2007, 8, 292-298.	3.3	18
115	Novel silica membrane material for molecular sieve applications. Microporous and Mesoporous Materials, 2013, 179, 22-29.	4.4	18
116	Synthesis of denim waste-based adsorbents and their application in water defluoridation. Journal of Molecular Liquids, 2016, 221, 469-478.	4.9	18
117	The effect of the cerium precursor and the carbon surface chemistry on the dispersion of ceria on activated carbon. Journal of Materials Science, 2008, 43, 1525-1531.	3.7	17
118	CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.	6.8	17
119	Direct Measurement of Microporosity and Molecular Accessibility in Stöber Spheres by Adsorption Isotherms. Journal of Physical Chemistry C, 2018, 122, 22008-22017.	3.1	17
120	Magnetic dispersive solid-phase extraction using a zeolite-based composite for direct electrochemical determination of lead(II) in urine using screen-printed electrodes. Mikrochimica Acta, 2020, 187, 87.	5.0	17
121	Layered double hydroxides as base catalysts for the synthesis of dimethyl carbonate. Catalysis Today, 2017, 296, 254-261.	4.4	16
122	Sulfonated activated carbons as potential catalysts for biolubricant synthesis. Molecular Catalysis, 2020, 488, 110888.	2.0	16
123	The origin of the particle-size-dependent selectivity in 1-butene isomerization and hydrogenation on Pd/Al2O3 catalysts. Nature Communications, 2021, 12, 6098.	12.8	16
124	HKUST-1@ACM hybrids for adsorption applications: A systematic study of the synthesis conditions. Microporous and Mesoporous Materials, 2017, 237, 74-81.	4.4	15
125	Structural Flexibility in Activated Carbon Materials Prepared under Harsh Activation Conditions. Materials, 2019, 12, 1988.	2.9	15
126	New insights into the breathing phenomenon in ZIF-4. Journal of Materials Chemistry A, 2019, 7, 14552-14558.	10.3	15

#	Article	IF	CITATIONS
127	On the catalytic role of superficial VOx species and coke deposited on mesoporous MgO replica in oxidative dehydrogenation of ethylbenzene. Applied Surface Science, 2020, 504, 144336.	6.1	15
128	Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods. Carbon, 2020, 157, 495-505.	10.3	15
129	HKUST-1-Supported Cerium Catalysts for CO Oxidation. Catalysts, 2020, 10, 108.	3.5	15
130	Activated Carbons Impregnated with Na ₂ S and H ₂ SO ₄ : Texture, Surface Chemistry and Application to Mercury Removal from Aqueous Solutions. Adsorption Science and Technology, 2014, 32, 101-115.	3.2	14
131	Catalytic Transformations of 1-Butene over Palladium. A Combined Experimental and Theoretical Study. ACS Catalysis, 2018, 8, 5675-5685.	11.2	14
132	Oxidative dehydrogenation of ethylbenzene over CMK-1 and CMK-3 carbon replicas with various mesopore architectures. Microporous and Mesoporous Materials, 2018, 271, 262-272.	4.4	14
133	Hydrogen-bond supramolecular hydrogels as efficient precursors in the preparation of freestanding 3D carbonaceous architectures containing BCNO nanocrystals and exhibiting a high CO2/CH4 adsorption ratio. Carbon, 2018, 134, 470-479.	10.3	13
134	Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons. Carbon, 2021, 174, 413-422.	10.3	13
135	Carbon–GO Composites with Preferential Water versus Ethanol Uptake. ACS Applied Materials & Interfaces, 2019, 11, 24493-24503.	8.0	12
136	Reverse Hierarchy of Alkane Adsorption in Metal–Organic Frameworks (MOFs) Revealed by Immersion Calorimetry. Journal of Physical Chemistry C, 2019, 123, 11699-11706.	3.1	12
137	Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-65.	3.2	12
138	Biocompatibility and Biomechanical Effect of Single Wall Carbon Nanotubes Implanted in the Corneal Stroma: A Proof of Concept Investigation. Journal of Ophthalmology, 2016, 2016, 1-8.	1.3	10
139	CeO2-doped nanostructured materials as a support of Pt catalysts: chemoselective hydrogenation of crotonaldehyde. Topics in Catalysis, 2007, 46, 31-38.	2.8	8
140	Micropore Filling and Multilayer Formation in Stöber Spheres upon Water Adsorption. Journal of Physical Chemistry C, 2020, 124, 20922-20930.	3.1	8
141	Preparation of Porous Carbons from Petroleum Pitch and Polyaniline by Thermal Treatment for Methane Storage. Industrial & Engineering Chemistry Research, 2020, 59, 5775-5785.	3.7	8
142	Molecular Sieving Properties of Nanoporous Mixed-Linker ZIF-62: Associated Structural Changes upon Gas Adsorption Application. ACS Applied Nano Materials, 2021, 4, 3519-3528.	5.0	8
143	Synthesis, Morphostructure, Surface Chemistry and Preclinical Studies of Nanoporous Rice Husk-Derived Biochars for Gastrointestinal Detoxification. Eurasian Chemico-Technological Journal, 2017, 19, 303.	0.6	8
144	Successful application of a commercial cationic surfactant mixture (benzalkonium chloride) as porosity stabilizer in porous carbons fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 449-456.	4.7	6

9

#	Article	IF	CITATIONS
145	Activated Carbon and Adsorption. , 2016, , .		6
146	Rare Biogeochemical Phenomenon Associated to Manganese Patinas on Mural Painting and Granite Ashlars. Coatings, 2021, 11, 917.	2.6	6
147	Highly N2-Selective Activated Carbon-Supported Pt-In Catalysts for the Reduction of Nitrites in Water. Frontiers in Chemistry, 2021, 9, 733881.	3.6	6
148	Basic zeolites as catalysts in the N-alkylation of imidazole: Activation by microwave irradiation. Microporous and Mesoporous Materials, 2009, 120, 115-121.	4.4	5
149	Novel Carbon Materials for CO2 Adsorption. , 2012, , 583-603.		5
150	Structural Deterioration of Wellâ€Faceted MOFs upon H ₂ S Exposure and Its Effect in the Adsorption Performance. Chemistry - A European Journal, 2020, 26, 17110-17119.	3.3	5
151	Oxygen-Nonstoichiometric YBaCo4O7+l´as a Catalyst in H2O2 Oxidation of Cyclohexene. Catalysis Letters, 2015, 145, 576-582.	2.6	4
152	Orally Administered Activated Charcoal as a Medical Countermeasure for Acute Radiation Syndrome in Rats. Applied Sciences (Switzerland), 2021, 11, 3174.	2.5	4
153	Effects of Hydrophobic Nanospaces on Structures of Lysozyme. Adsorption Science and Technology, 2015, 33, 63-69.	3.2	3
154	Polymer nanocomposites functionalised with nanocrystals of zeolitic imidazolate frameworks as ethylene control agents. Materials Today Advances, 2019, 2, 100008.	5.2	3
155	Activated carbon materials with a rich surface chemistry prepared from L-cysteine amino acid. Fluid Phase Equilibria, 2022, 558, 113446.	2.5	3
156	INFLUENCE OF TUNGSTEN CONTENT IN W-DLC NANOCOMPOSITE THIN FILMS PREPARED BY HYBRID TARGET BIASED ION BEAM ASSISTED DEPOSITION TECHNIQUE. International Journal of Nanoscience, 2011, 10, 851-855.	0.7	2
157	The scientific impact of Francisco RodrÃguez-Reinoso in carbon research and beyond. Carbon, 2021, 179, 275-287.	10.3	2
158	Liquid-Phase Adsorption/Oxidation of Sulfur-Containing Species by Activated Carbon. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 107-118.	0.2	2
159	Carbon-based monoliths with improved thermal and mechanical properties for methane storage. Fuel, 2022, 324, 124753.	6.4	2
160	Textural and chemical characterization of NaX zeolite exchanged with Zn(II) ions. Studies in Surface Science and Catalysis, 2002, 144, 107-114.	1.5	1
161	Characterization of Carbon Molecular Sieve Membranes Supported on Ceramic Tubes. Adsorption Science and Technology, 2013, 31, 233-247.	3.2	1
162	CO2 Adsorption in Activated Carbon Materials. Engineering Materials, 2021, , 139-152.	0.6	1

#	Article	IF	CITATIONS
163	Towards Highly Loaded and Finely Dispersed CuO Catalysts via ADP: Effect of the Alumina Support. Catalysts, 2022, 12, 628.	3.5	1
164	Preparation and investigation of active carbons based on furfural copolymer. Russian Chemical Bulletin, 2018, 67, 997-1001.	1.5	0
165	Clathrate-Mediated Gas Storage in Nanoporous Materials. Green Energy and Technology, 2019, , 383-403.	0.6	0
166	Sulfonated MCM-41 as potential catalyst to obtain biolubricants from vegetable oil. Brazilian Journal of Chemical Engineering, 0, , 1.	1.3	0