Daniel L Hartl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539239/publications.pdf Version: 2024-02-01

		7568	12946
204	20,194	77	131
papers	citations	h-index	g-index
211	211	211	16947
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science, 2006, 312, 111-114.	12.6	1,266
2	Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 2012, 44, 101-105.	21.4	651
3	A genome-wide view of the spectrum of spontaneous mutations in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9272-9277.	7.1	649
4	Sex-Dependent Gene Expression and Evolution of the <i>Drosophila</i> Transcriptome. Science, 2003, 300, 1742-1745.	12.6	591
5	Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Reviews Genetics, 2005, 6, 678-687.	16.3	586
6	Selection for short introns in highly expressed genes. Nature Genetics, 2002, 31, 415-418.	21.4	451
7	High intrinsic rate of DNA loss in Drosophila. Nature, 1996, 384, 346-349.	27.8	374
8	Evidence for DNA Loss as a Determinant of Genome Size. Science, 2000, 287, 1060-1062.	12.6	345
9	A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics, 2007, 39, 113-119.	21.4	320
10	Genetic Properties Influencing the Evolvability of Gene Expression. Science, 2007, 317, 118-121.	12.6	310
11	The cost of inbreeding in Arabidopsis. Nature, 2002, 416, 531-534.	27.8	304
12	Rapid evolution of male-biased gene expression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9894-9899.	7.1	291
13	Natural Selection Constrains Neutral Diversity across A Wide Range of Species. PLoS Biology, 2015, 13, e1002112.	5.6	285
14	LIMITS OF ADAPTATION: THE EVOLUTION OF SELECTIVE NEUTRALITY. Genetics, 1985, 111, 655-674.	2.9	279
15	Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 680-685.	7.1	264
16	Accelerated evolution of resistance in multidrug environments. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13977-13981.	7.1	256
17	Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature, 1998, 396, 572-575.	27.8	254
18	Evolution of Proteins and Gene Expression Levels are Coupled in Drosophila and are Independently Associated with mRNA Abundance, Protein Length, and Number of Protein-Protein Interactions. Molecular Biology and Evolution, 2005, 22, 1345-1354.	8.9	249

#	Article	IF	CITATIONS
19	Metabolic Flux and Fitness. Genetics, 1987, 115, 25-31.	2.9	242
20	Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12025-12030.	7.1	241
21	MODERN THOUGHTS ON AN ANCYENT <i>MARINERE</i> : Function, Evolution, Regulation. Annual Review of Genetics, 1997, 31, 337-358.	7.6	231
22	Polymorphic Y Chromosomes Harbor Cryptic Variation with Manifold Functional Consequences. Science, 2008, 319, 91-93.	12.6	227
23	An Equivalence Principle for the Incorporation of Favorable Mutations in Asexual Populations. Science, 2006, 311, 1615-1617.	12.6	214
24	A single mode of canalization. Trends in Ecology and Evolution, 2002, 17, 468-473.	8.7	211
25	Compensatory cis-trans Evolution and the Dysregulation of Gene Expression in Interspecific Hybrids of Drosophila. Genetics, 2005, 171, 1813-1822.	2.9	209
26	Epigenetic memory at malaria virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 899-902.	7.1	204
27	Evidence for S. cerevisiae Fermentation in Ancient Wine. Journal of Molecular Evolution, 2003, 57, S226-S232.	1.8	200
28	Genetic incompatibilities are widespread within species. Nature, 2013, 504, 135-137.	27.8	200
29	Recent Origin of <i>Plasmodium falciparum</i> from a Single Progenitor. Science, 2001, 293, 482-484.	12.6	197
30	SELECTIVE NEUTRALITY OF 6PGD ALLOZYMES IN <i>E. COLI</i> AND THE EFFECTS OF GENETIC BACKGROUND. Genetics, 1980, 96, 801-817.	2.9	197
31	Chromosomal Regions Specific to Pathogenic Isolates of <i>Escherichia coli</i> Have a Phylogenetically Clustered Distribution. Journal of Bacteriology, 1998, 180, 1159-1165.	2.2	191
32	Population Genetic Variation in Genome-Wide Gene Expression. Molecular Biology and Evolution, 2003, 20, 955-963.	8.9	185
33	Directional Selection and the Site-Frequency Spectrum. Genetics, 2001, 159, 1779-1788.	2.9	177
34	Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15826-15831.	7.1	174
35	Population Genomics of Inversion Polymorphisms in Drosophila melanogaster. PLoS Genetics, 2012, 8, e1003056.	3.5	172
36	Genetic Diversity in Yeast Assessed With Whole-Genome Oligonucleotide Arrays. Genetics, 2003, 163, 79-89.	2.9	171

#	Article	IF	CITATIONS
37	Optimization of gene expression by natural selection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1133-1138.	7.1	167
38	Transgene Coplacement and High Efficiency Site-Specific Recombination With the Cre/ <i>loxP</i> System in Drosophila. Genetics, 1996, 144, 715-726.	2.9	165
39	Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7067-7072.	7.1	163
40	Evidence for interspecific transfer of the transposable element mariner betweenDrosophila andZaprionus. Journal of Molecular Evolution, 1991, 33, 514-524.	1.8	162
41	Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6706-6711.	7.1	159
42	Distribution and Abundance of Insertion Sequences Among Natural Isolates of <i>Escherichia coli</i> . Genetics, 1987, 115, 51-63.	2.9	153
43	DNA-binding specificity changes in the evolution of forkhead transcription factors. Proceedings of the United States of America, 2013, 110, 12349-12354.	7.1	150
44	POPULATION DYNAMICS OF THE SEGREGATION DISTORTER POLYMORPHISM OF <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1978, 89, 171-192.	2.9	149
45	A sex-ratio Meiotic Drive System in Drosophila simulans. II: An X-linked Distorter. PLoS Biology, 2007, 5, e293.	5.6	144
46	Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biology, 2002, 3, research0071.1.	9.6	142
47	What restricts the activity of mariner-like transposable elements?. Trends in Genetics, 1997, 13, 197-201.	6.7	141
48	A sex-ratio Meiotic Drive System in Drosophila simulans. I: An Autosomal Suppressor. PLoS Biology, 2007, 5, e292.	5.6	141
49	Anomalies in the Expression Profile of Interspecific Hybrids of Drosophila melanogaster and Drosophila simulans. Genome Research, 2004, 14, 373-379.	5.5	140
50	A portrait of copy-number polymorphism in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19920-19925.	7.1	139
51	Dominance and the evolutionary accumulation of <i>cis</i> - and <i>trans</i> -effects on gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14471-14476.	7.1	138
52	Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6504-6510.	7.1	137
53	Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1470-8.	7.1	132
54	RATES OF DIVERGENCE IN GENE EXPRESSION PROFILES OF PRIMATES, MICE, AND FLIES: STABILIZING SELECTION AND VARIABILITY AMONG FUNCTIONAL CATEGORIES. Evolution; International Journal of Organic Evolution, 2005, 59, 126-137.	2.3	131

#	Article	IF	CITATIONS
55	Genetic Dissection of Hybrid Incompatibilities Between <i>Drosophila simulans</i> and <i>D. mauritiana</i> . I. Differential Accumulation of Hybrid Male Sterility Effects on the <i>X</i> and Autosomes. Genetics, 2003, 164, 1383-1398.	2.9	131
56	Glycophorin B is the erythrocyte receptor of <i>Plasmodium falciparum</i> erythrocyte-binding ligand, EBL-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5348-5352.	7.1	130
57	Population Structure and Transmission Dynamics ofPlasmodium vivaxin Rural Amazonia. Journal of Infectious Diseases, 2007, 195, 1218-1226.	4.0	129
58	Compensatory Nearly Neutral Mutations: Selection without Adaptation. Journal of Theoretical Biology, 1996, 182, 303-309.	1.7	128
59	Bayesian Analysis Suggests that Most Amino Acid Replacements in Drosophila Are Driven by Positive Selection. Journal of Molecular Evolution, 2003, 57, S154-S164.	1.8	124
60	cis-Regulatory and Protein Evolution in Orthologous and Duplicate Genes. Genome Research, 2004, 14, 1530-1536.	5.5	121
61	Mosaic Structure of Plasmids From Natural Populations of <i>Escherichia coli</i> . Genetics, 1996, 143, 1091-1100.	2.9	121
62	Genotypic Context and Epistasis in Individuals and Populations. Cell, 2016, 166, 279-287.	28.9	120
63	Adaptive landscapes and protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1747-1751.	7.1	114
64	Mutations in <i>Plasmodium falciparum</i> actin-binding protein coronin confer reduced artemisinin susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12799-12804.	7.1	114
65	Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers. Molecular Biology and Evolution, 2001, 18, 246-253.	8.9	111
66	Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene, 2008, 410, 105-112.	2.2	103
67	Effects of X-Linkage and Sex-Biased Gene Expression on the Rate of Adaptive Protein Evolution in Drosophila. Molecular Biology and Evolution, 2008, 25, 1639-1650.	8.9	101
68	Pathway Processor: A Tool for Integrating Whole-Genome Expression Results into Metabolic Networks. Genome Research, 2002, 12, 1121-1126.	5.5	94
69	Ecological and evolutionary genomics of Saccharomyces cerevisiae. Molecular Ecology, 2006, 15, 575-591.	3.9	94
70	The origin of malaria: mixed messages from genetic diversity. Nature Reviews Microbiology, 2004, 2, 15-22.	28.6	93
71	Compensatory Mutations Restore Fitness during the Evolution of Dihydrofolate Reductase. Molecular Biology and Evolution, 2010, 27, 2682-2690.	8.9	93
72	Fitness as a function of β-galactosidase activity in <i>Escherichia coli</i> . Genetical Research, 1986, 48, 1-8.	0.9	91

#	Article	IF	CITATIONS
73	Geographic Structure of Plasmodium vivax: Microsatellite Analysis of Parasite Populations from Sri Lanka, Myanmar, and Ethiopia. American Journal of Tropical Medicine and Hygiene, 2010, 82, 235-242.	1.4	88
74	Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal. PLoS ONE, 2013, 8, e60780.	2.5	87
75	Salmonella Virulence Plasmid: Modular Acquisition of the spv Virulence Region by an F-Plasmid in Salmonella enterica Subspecies I and Insertion Into the Chromosome of Subspecies II, IIIa, IV and VII Isolates. Genetics, 1998, 149, 1183-1190.	2.9	85
76	GENETIC DISSECTION OF HYBRID INCOMPATIBILITIES BETWEEN DROSOPHILA SIMULANS AND D. MAURITIANA.: III. HETEROGENEOUS ACCUMULATION OF HYBRID INCOMPATIBILITIES, DEGREE OF DOMINANCE, AND IMPLICATIONS FOR HALDANE?RULE. Evolution; International Journal of Organic Evolution, 2003, 57, 2580-2598.	2.3	83
77	EVOLUTION OF TRANSPOSONS: NATURAL SELECTION FOR Tn <i>5</i> IN <i>ESCHERICHIA COLI</i> K12. Genetics, 1983, 103, 581-592.	2.9	82
78	Molecular melodies in high and low C. Nature Reviews Genetics, 2000, 1, 145-149.	16.3	81
79	Excess Polymorphisms in Genes for Membrane Proteins inPlasmodium falciparum. Science, 2002, 298, 216-218.	12.6	80
80	Patterns of Insertion and Deletion in Contrasting Chromatin Domains. Molecular Biology and Evolution, 2002, 19, 2211-2225.	8.9	78
81	The roles of <i>cis</i> - and <i>trans</i> -regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression. Genome Research, 2014, 24, 84-95.	5.5	78
82	Genetic Dissection of Hybrid Incompatibilities Between <i>Drosophila simulans</i> and <i>D. mauritiana</i> . II. Mapping Hybrid Male Sterility Loci on the Third Chromosome. Genetics, 2003, 164, 1399-1418.	2.9	76
83	Maximum likelihood and Bayesian methods for estimating the distribution of selective effects among classes of mutations using DNA polymorphism data. Theoretical Population Biology, 2003, 63, 91-103.	1.1	75
84	[21] Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods in Enzymology, 1993, 218, 309-321.	1.0	71
85	Towards a theory of evolutionary adaptation. Genetica, 1998, 102/103, 525-533.	1.1	71
86	COIL: a methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malaria Journal, 2015, 14, 4.	2.3	71
87	Clonal Outbreak of <i>Plasmodium falciparum</i> Infection in Eastern Panama. Journal of Infectious Diseases, 2015, 211, 1087-1096.	4.0	71
88	FUNCTIONAL EFFECTS OF PGI ALLOZYMES IN <i>ESCHERICHIA COLI</i> . Genetics, 1983, 105, 1-18.	2.9	71
89	Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance. PLoS Computational Biology, 2016, 12, e1004710.	3.2	71
90	Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene, 1997, 205, 279-289.	2.2	67

#	Article	IF	CITATIONS
91	GENETIC DISSECTION OF HYBRID INCOMPATIBILITIES BETWEEN DROSOPHILA SIMULANS AND D. MAURITIANA. III. HETEROGENEOUS ACCUMULATION OF HYBRID INCOMPATIBILITIES, DEGREE OF DOMINANCE, AND IMPLICATIONS FOR HALDANE'S RULE. Evolution; International Journal of Organic Evolution, 2003, 57, 2580.	2.3	67
92	A Maximum Likelihood Method for Analyzing Pseudogene Evolution: Implications for Silent Site Evolution in Humans and Rodents. Molecular Biology and Evolution, 2002, 19, 110-117.	8.9	66
93	Cytoplasmic Dynein Intermediate-Chain Isoforms with Different Targeting Properties Created by Tissue-Specific Alternative Splicing. Molecular and Cellular Biology, 1998, 18, 6816-6825.	2.3	65
94	Germline Transformation of Drosophila virilis With the Transposable Element mariner. Genetics, 1996, 143, 365-374.	2.9	59
95	Genomic Sequencing of Plasmodium falciparum Malaria Parasites from Senegal Reveals the Demographic History of the Population. Molecular Biology and Evolution, 2012, 29, 3427-3439.	8.9	58
96	Inverse Polymerase Chain Reaction. Nature Biotechnology, 1990, 8, 759-760.	17.5	56
97	Subunit Interactions in the <i>mariner</i> Transposase. Genetics, 1996, 144, 1087-1095.	2.9	55
98	Harnessing evolutionary fitness in <i>Plasmodium falciparum</i> for drug discovery and suppressing resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 799-804.	7.1	54
99	Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2043-2048.	7.1	53
100	Germline Transformation of <i>Drosophila virilis</i> Mediated by the Transposable Element <i>hobo</i> . Genetics, 1996, 142, 173-177.	2.9	52
101	Discovery of the Transposable Element <i>Mariner</i> . Genetics, 2001, 157, 471-476.	2.9	52
102	Gene Conversion as a Source of Nucleotide Diversity in Plasmodium falciparum. Molecular Biology and Evolution, 2003, 20, 726-734.	8.9	51
103	What can we learn from fitness landscapes?. Current Opinion in Microbiology, 2014, 21, 51-57.	5.1	51
104	Mosquito Vectors and the Globalization ofPlasmodium falciparumMalaria. Annual Review of Genetics, 2016, 50, 447-465.	7.6	51
105	Factors contributing to the hybrid dysgenesis syndrome in <i>Drosophila virilis</i> . Genetical Research, 1998, 71, 109-117.	0.9	50
106	P1 clones from Drosophila melanogaster as markers to study the chromosomal evolution of Muller's A element in two species of the obscura group of Drosophila. Chromosoma, 1995, 104, 129-136.	2.2	49
107	Chromosomal Effects of Rapid Gene Evolution in Drosophila melanogaster. Science, 2001, 291, 128-130.	12.6	47
108	Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2006, 150, 10-24.	1.1	47

#	Article	IF	CITATIONS
109	Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Medicine, 2017, 9, 5.	8.2	47
110	COUPLED INSTABILITY OF TWO <i>X</i> -LINKED GENES IN <i>DROSOPHILA MAURITIANA</i> : GERMINAL AND SOMATIC MUTABILITY. Genetics, 1985, 111, 57-65.	2.9	47
111	Regulation of the transposable element mariner. Genetica, 1997, 100, 177-184.	1.1	45
112	The paradoxical population genetics of Plasmodium falciparum. Trends in Parasitology, 2002, 18, 266-272.	3.3	45
113	DEFECTIVE HISTONE TRANSITION DURING SPERMIOGENESIS IN HETEROZYGOUS <i>SEGREGATION DISTORTER</i> MALES OF <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1982, 101, 57-69.	2.9	45
114	Patterns of DNA Sequence Variation Suggest the Recent Action of Positive Selection in the <i>janus</i> - <i>ocnus</i> Region of <i>Drosophila simulans</i> . Genetics, 2001, 159, 647-657.	2.9	45
115	Distribution of transposable elements in prokaryotes. Theoretical Population Biology, 1986, 30, 1-16.	1.1	44
116	Mutational Reversions During Adaptive Protein Evolution. Molecular Biology and Evolution, 2007, 24, 1608-1610.	8.9	44
117	Molecular considerations in the evolution of bacterial genes. Journal of Molecular Evolution, 1991, 33, 241-250.	1.8	43
118	A framework physical map of Drosophila virilis based on P1 clones: applications in genome evolution. Chromosoma, 1997, 106, 99-107.	2.2	42
119	Diversifying Selection Governs Sequence Polymorphism in the Major Adhesin Proteins FimA, PapA, and SfaA of Escherichia coli. Journal of Molecular Evolution, 1998, 47, 258-267.	1.8	41
120	Discordant Rates of Chromosome Evolution in the <i>Drosophila virilis</i> Species Group. Genetics, 1997, 147, 223-230.	2.9	39
121	Modeling the genetic relatedness of Plasmodium falciparum parasites following meiotic recombination and cotransmission. PLoS Computational Biology, 2018, 14, e1005923.	3.2	39
122	Reconstructing the ancient mariners of humans. Nature Genetics, 1996, 12, 360-361.	21.4	38
123	Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum. PLoS ONE, 2011, 6, e19636.	2.5	38
124	Cascading transcriptional effects of a naturally occurring frameshift mutation in <i>Saccharomyces cerevisiae</i> . Molecular Ecology, 2008, 17, 2985-2997.	3.9	37
125	Adaptive impact of the chimeric gene <i>Quetzalcoatl</i> in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10943-10948.	7.1	37
126	Self-Inflicted Wounds, Template-Directed Gap Repair and a Recombination Hotspot: Effects of the mariner Transposase. Genetics, 2000, 154, 647-656.	2.9	37

#	Article	IF	CITATIONS
127	Analysis of the Type 1 Pilin Gene Cluster <i>fim</i> in <i>Salmonella</i> : Its Distinct Evolutionary Histories in the 5′ and 3′ Regions. Journal of Bacteriology, 1999, 181, 1301-1308.	2.2	37
128	Insertion sites of the transposable elementmariner are fixed in the genome ofDrosophila sechellia. Journal of Molecular Evolution, 1991, 33, 450-456.	1.8	36
129	THE EXPERIMENTAL ASSESSMENT OF FITNESS IN DROSOPHILA. I. COMPARATIVE MEASURES OF COMPETITIVE REPRODUCTIVE SUCCESS. Genetics, 1982, 102, 455-466.	2.9	35
130	Mud Sticks: On the Alleged Falsification of Mendel's Data. Genetics, 2007, 175, 975-979.	2.9	35
131	BIOTYPING CONFIRMS A NEARLY CLONAL POPULATION STRUCTURE IN <i>ESCHERICHIA COLI</i> . Evolution; International Journal of Organic Evolution, 1986, 40, 1-12.	2.3	33
132	Origin and Evolution of a New Gene Expressed in the Drosophila Sperm Axoneme. Genetica, 2003, 118, 233-244.	1.1	32
133	Dramatic Changes in Malaria Population Genetic Complexity in Dielmo and Ndiop, Senegal, Revealed Using Genomic Surveillance. Journal of Infectious Diseases, 2018, 217, 622-627.	4.0	31
134	The evolutionary landscape of antifolate resistance in Plasmodium falciparum. Journal of Genetics, 2011, 90, 187-190.	0.7	30
135	Proteostasis Environment Shapes Higher-Order Epistasis Operating on Antibiotic Resistance. Genetics, 2019, 212, 565-575.	2.9	30
136	Reduced Germline Mobility of a mariner Vector Containing Exogenous DNA: Effect of Size or Site?. Genetics, 1996, 143, 1299-1306.	2.9	30
137	Unexpected Stability of mariner Transgenes in Drosophila. Genetics, 2002, 160, 527-535.	2.9	30
138	Deletion of a Conserved Regulatory Element in the Drosophila <i>Adh</i> Gene Leads to Increased Alcohol Dehydrogenase Activity but Also Delays Development. Genetics, 2000, 156, 219-227.	2.9	28
139	The most unkindest cut of all. Nature Genetics, 1996, 12, 227-228.	21.4	25
140	Accessible Mutational Trajectories for the Evolution of Pyrimethamine Resistance in the Malaria Parasite Plasmodium vivax. Journal of Molecular Evolution, 2013, 77, 81-91.	1.8	24
141	Efficient Mobilization ofmariner in VivoRequires Multiple Internal Sequences. Genetics, 2002, 160, 519-526.	2.9	24
142	GENETIC CONTROL OF THE RATE OF EMBRYONIC DEVELOPMENT: SELECTION FOR FASTER DEVELOPMENT AT ELEVATED TEMPERATURES. Evolution; International Journal of Organic Evolution, 1993, 47, 1625-1631.	2.3	22
143	A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax. Malaria Journal, 2016, 15, 40.	2.3	22
144	Cohort Profile: The Madagascar Health and Environmental Research (MAHERY) study in north-eastern Madagascar. International Journal of Epidemiology, 2017, 46, 1747-1748d.	1.9	21

#	Article	IF	CITATIONS
145	Genome size as a mutation-selection-drift process Genes and Genetic Systems, 1999, 74, 201-207.	0.7	19
146	Evolution of Noncoding and Silent Coding Sites in the Plasmodium falciparum and Plasmodium reichenowi Genomes. Molecular Biology and Evolution, 2005, 22, 1621-1626.	8.9	19
147	The evolution of the novel Sdic gene cluster in Drosophila melanogaster. Gene, 2006, 376, 174-183.	2.2	19
148	Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: The varied and elusive functions of "speciation genes" BMC Evolutionary Biology, 2010, 10, 385.	3.2	19
149	A Primer of Population Genetics and Genomics. , 2020, , .		19
150	Inference of selection and recombination from nucleotide sequence data*. Journal of Evolutionary Biology, 1991, 4, 519-532.	1.7	18
151	Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4200-E4207.	7.1	18
152	JOINT DISTRIBUTION OF INSERTION ELEMENTS IS4 AND IS5 IN NATURAL ISOLATES OF ESCHERICHIA COLI. Genetics, 1985, 111, 219-231.	2.9	18
153	Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genetics, 2020, 16, e1009266.	3.5	17
154	Recurrent bottlenecks in the malaria life cycle obscure signals of positive selection. Parasitology, 2015, 142, S98-S107.	1.5	16
155	Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission. Malaria Journal, 2016, 15, 596.	2.3	16
156	Genome-Wide Association Studies of Drug-Resistance Determinants. Trends in Parasitology, 2017, 33, 214-230.	3.3	16
157	Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 12-22.	3.4	15
158	De Novo Mutations Resolve Disease Transmission Pathways in Clonal Malaria. Molecular Biology and Evolution, 2018, 35, 1678-1689.	8.9	14
159	Cohort Description of the Madagascar Health and Environmental Research–Antongil (MAHERY–Antongil) Study in Madagascar. Frontiers in Nutrition, 2019, 6, 109.	3.7	12
160	SPECIFIC DELETION OCCURRING IN THE DIRECTED EVOLUTION OF 6-PHOSPHOGLUCONATE DEHYDROGENASE IN ESCHERICHIA COLI. Genetics, 1984, 108, 765-772.	2.9	12
161	Oviposition-site preference in Drosophila following interspecific gene transfer of the Alcohol dehydrogenase locus. Behavior Genetics, 1999, 29, 199-204.	2.1	11
162	The kinetics of transposable element autoregulation. , 2000, 108, 229-237.		11

#	Article	IF	CITATIONS
163	Forensic DNA typing dispute. Nature, 1994, 372, 398-399.	27.8	10
164	Identification ofPorto-1, a new repeated sequence that localises close to the centromere of chromosome2 ofDrosophila melanogaster. Chromosoma, 1996, 105, 211-222.	2.2	10
165	Post-genomics and the neutral theory:variation and conservation in the tumor necrosis factor- $\hat{l}\pm$ promoter. Gene, 2000, 261, 19-25.	2.2	10
166	Direct Gamete Sequencing Reveals No Evidence for Segregation Distortion in House Mouse Hybrids. PLoS ONE, 2015, 10, e0131933.	2.5	10
167	The utility of genomic data forPlasmodium vivaxpopulation surveillance. Pathogens and Global Health, 2015, 109, 153-161.	2.3	10
168	Erratum. Science, 1992, 255, 1054-1055.	12.6	9
169	Pattern of chromosomal localization of the Hoppel transposable element family in the Drosophila melanogaster subgroup. Chromosome Research, 1998, 6, 385-396.	2.2	9
170	Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria. Journal of Visualized Experiments, 2015, , e52839.	0.3	9
171	Relevance of Higher-Order Epistasis in Drug Resistance. Molecular Biology and Evolution, 2021, 38, 142-151.	8.9	9
172	Potential for hitchhiking in theeda-edd-zwfgene cluster ofEscherichia coli. Genetical Research, 1984, 43, 229-239.	0.9	8
173	DNA sequence artifacts and the estimation of time to the most recent common ancestor (TMRCA) of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2003, 130, 143-147.	1.1	8
174	Genomic heterogeneity in the density of noncoding single-nucleotide and microsatellite polymorphisms in Plasmodium falciparum. Gene, 2007, 387, 1-6.	2.2	8
175	Evidence for Reduced Malaria Parasite Population after Application of Population-Level Antimalarial Drug Strategies in Southern Province, Zambia. American Journal of Tropical Medicine and Hygiene, 2020, 103, 66-73.	1.4	8
176	Accessory DNAs in the Bacterial Gene Pool: Playground for Coevolution. Novartis Foundation Symposium, 1984, 102, 233-252.	1.1	8
177	Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. , 1999, 107, 79-85.		7
178	James F. Crow and the Art of Teaching and Mentoring. Genetics, 2011, 189, 1129-1133.	2.9	6
179	Study Protocol: A Cross-Sectional Examination of Socio-Demographic and Ecological Determinants of Nutrition and Disease Across Madagascar. Frontiers in Public Health, 2020, 8, 500.	2.7	6
180	Fly meets shotgun: shotgun wins. Nature Genetics, 2000, 24, 327-328.	21.4	5

#	Article	IF	CITATIONS
181	Position-specific polymorphism of Plasmodium falciparum stuttering motif in a PHISTc PFI1780w. Experimental Parasitology, 2006, 114, 126-128.	1.2	5
182	Novel Genes from Formation to Function. International Journal of Evolutionary Biology, 2012, 2012, 1-9.	1.0	5
183	Evolutionary History and Population Genetics of Human Malaria Parasites. , 2014, , 95-109.		5
184	Reply to Velavan et al.: Polymorphisms ofpfcoroninin natural populations: Implications for functional significance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12613-12614.	7.1	5
185	Fine-scale variation in malaria prevalence across ecological regions in Madagascar: a cross-sectional study. BMC Public Health, 2021, 21, 1018.	2.9	5
186	Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. , 2000, , 79-85.		5
187	A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution. PLoS Computational Biology, 2016, 12, e1005046.	3.2	5
188	Remembering Richard Lewontin (1929–2021). Biological Theory, 2021, 16, 257-267.	1.5	5
189	EST! EST!! EST!!!. BioEssays, 1996, 18, 1021-1023.	2.5	4
190	reply: How was the Sdic gene fixed?. Nature, 1999, 400, 520-520.	27.8	4
191	Variable SNP density in aspartyl-protease genes of the malaria parasite Plasmodium falciparum. Gene, 2006, 376, 163-173.	2.2	4
192	USING FREQUENCY DISTRIBUTIONS TO DETECT SELECTION: INVERSION POLYMORPHISMS IN <i>DROSOPHILA PSEUDOOBSCURA</i> . Evolution; International Journal of Organic Evolution, 1981, 35, 1243-1246.	2.3	3
193	Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity. Protein Science, 2019, 28, 1359-1367.	7.6	3
194	Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles. Molecular Biology and Evolution, 2019, 36, 1874-1883.	8.9	3
195	A Response to Léa Drieu et al., 2020, "ls It Possible to Identify Ancient Wine Production Using Biomolecular Approaches?―(<i>STAR: Science & Technology of Archaeological Research</i> ,) Tj ETQq1 1 0	.7 8 44314 ı	g₿₮ /Overloo
196	Gregor Johann Mendel: From peasant to priest, pedagogue, and prelate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
197	Identification of Porto-1 , a new repeated sequence that localises close to the centromere of chromosome 2 of Drosophila melanogaster. Chromosoma, 1996, 105, 211-222.	2.2	2
198	Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes. MicrobiologyOpen, 2020, 9, e968.	3.0	2

#	Article	IF	CITATIONS
199	Regulation of the transposable element mariner. Contemporary Issues in Genetics and Evolution, 1997, , 177-184.	0.9	2
200	Gene expression profiling in evolutionary genetics. , 2004, , 74-93.		0
201	James Franklin Crow. 18 January 1916 — 4 January 2012. Biographical Memoirs of Fellows of the Royal Society, 2014, 60, 151-167.	0.1	0
202	Q & A with Daniel L. Hartl, Recipient of the 2019 Thomas Hunt Morgan Medal. Genetics, 2019, 212, 361-363.	2.9	0
203	Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophysical Journal, 2021, 120, 4738-4750.	0.5	0
204	Genome Organization and Gene Expression Shape the Distribution of Transposable Elements in the Euchromatin of Drosophila Melanogaster. PLoS Genetics, 2005, preprint, e210.	3.5	0