Daxin Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2538863/publications.pdf

Version: 2024-02-01

18 papers	980 citations	7 h-index	996975 15 g-index
18	18	18	755
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	InP/GaAsSb Double Heterojunction Bipolar Transistor Emitter-Fin Technology With <i>f</i> _{MAX} = 1.2 THz. IEEE Transactions on Electron Devices, 2022, 69, 2122-2129.	3.0	16
2	High-Speed Steep-Slope GalnAs Impact Ionization MOSFETs (I-MOS) With ⟨i⟩SS⟨/i⟩ = 1.25 mV/decâ€"Part II: Dynamic Switching and RF Performance. IEEE Transactions on Electron Devices, 2022, 69, 3549-3556.	3.0	3
3	High-Speed Steep-Slope GalnAs Impact Ionization MOSFETs (I-MOS) With SS = 1.25 mV/decâ€"Part I: Material and Device Characterization, DC Performance, and Simulation. IEEE Transactions on Electron Devices, 2022, 69, 3542-3548.	3.0	2
4	Impact of Reduced Gateâ€toâ€Source Spacing on Indium Phosphide High Electron Mobility Transistor Performance. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000191.	1.8	2
5	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods, 2021, 5, e2100889.	8.6	59
6	Ultrafine Cellulose Nanofiberâ€Assisted Physical and Chemical Crossâ€Linking of MXene Sheets for Electromagnetic Interference Shielding (Small Methods 12/2021). Small Methods, 2021, 5, .	8.6	0
7	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	10.3	64
8	Low-Noise Microwave Performance of 30 nm GalnAs MOS-HEMTs: Comparison to Low-Noise HEMTs. IEEE Electron Device Letters, 2020, 41, 1320-1323.	3.9	6
9	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	21.0	234
10	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	11.2	303
11	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	14.6	254
12	InAs Channel Inset Effects on the DC, RF, and Noise Properties of InP pHEMTs. IEEE Transactions on Electron Devices, 2019, 66, 4685-4691.	3.0	10
13	New GalnAs/InAs/InP Composite Channels for mm-Wave Low-Noise InP HEMTs., 2019, , .		1
14	Impact Ionization Control in 50 nm Low-Noise High-Speed InP HEMTs with InAs Channel Insets. , 2019, , .		8
15	Effects of Electrochemical Etching on InP HEMT Fabrication. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 496-501.	1.7	6
16	A facile route to synthesize porous ethyl cellulose spheres loaded with superparamagnetic iron oxide nanoparticles. Colloid and Polymer Science, 2015, 293, 1915-1922.	2.1	4
17	Synthesis of "brain-like―hierarchical porous microspheres by emulsion-solvent evaporation. Materials Letters, 2015, 155, 130-133.	2.6	3
18	A physical route to porous ethyl cellulose microspheres loaded with TiO ₂ nanoparticles. Journal of Applied Polymer Science, 2014, 131, .	2.6	5