Ido Livneh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Reports, 2022, 38, 110418.	6.4	12
2	Concomitant variants in <i>NF1</i> , <i>LZTR1</i> and <i>GNAZ</i> genes probably contribute to the aggressiveness of plexiform neurofibroma and warrant treatment with MEK inhibitor. Experimental Dermatology, 2022, 31, 775-780.	2.9	3
3	A common presentation – turning out as uncommon diagnosis: from hip pain to Langerhans cell histiocytosis. American Journal of the Medical Sciences, 2022, , .	1.1	0
4	COVID-19-Associated Suspected Myocarditis as the Etiology for Recurrent and Protracted Fever in an Otherwise Healthy Adult. American Journal of the Medical Sciences, 2021, 361, 522-525.	1.1	6
5	p62-containing, proteolytically active nuclear condensates, increase the efficiency of the ubiquitin–proteasome system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
6	In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking. Cell Chemical Biology, 2021, 28, 1192-1205.e9.	5.2	4
7	The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nature Communications, 2021, 12, 5397.	12.8	20
8	<i>In vivo</i> modulation of ubiquitin chains by <i>N</i> -methylated non-proteinogenic cyclic peptides. RSC Chemical Biology, 2021, 2, 513-522.	4.1	16
9	How multi-component cascades operate in cells: lessons from the ubiquitin system-containing liquid-separated condensates. Molecular and Cellular Oncology, 2021, 8, 1989939.	0.7	0
10	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	10.2	195
11	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	3.4	13
12	Intracellular Role for the Matrix-Modifying Enzyme Lox in Regulating Transcription Factor Subcellular Localization and Activity in Muscle Regeneration. Developmental Cell, 2020, 53, 406-417.e5.	7.0	21
13	Affinity Maturation of Macrocyclic Peptide Modulators of Lys48â€Linked Diubiquitin by a Twofold Strategy. Chemistry - A European Journal, 2020, 26, 8022-8027.	3.3	15
14	Proteasome phase separation: a novel layer of quality control. Cell Research, 2020, 30, 374-375.	12.0	2
15	RNF5 Defines Acute Myeloid Leukemia Growth and Susceptibility to Histone Deacetylase Inhibitors. Blood, 2020, 136, 31-32.	1.4	0
16	Identification of proteins regulated by the proteasome following induction of endoplasmic reticulum stress. Biochemical and Biophysical Research Communications, 2019, 517, 188-192.	2.1	11
17	De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nature Chemistry, 2019, 11, 644-652.	13.6	63
18	Comparison of <i>Drosophila melanogaster</i> Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. Journal of Proteome Research, 2019, 18, 2525-2534.	3.7	7

Ido Livneh

#	Article	IF	CITATIONS
19	Modulation of the cell cycle regulating transcription factor E2F1 pathway by the proteasome following amino acid starvation. Biochemical and Biophysical Research Communications, 2019, 513, 721-725.	2.1	4
20	Monitoring stress-induced autophagic engulfment and degradation of the 26S proteasome in mammalian cells. Methods in Enzymology, 2019, 619, 337-366.	1.0	3
21	Identification of UBact, a ubiquitin-like protein, along with other homologous components of a conjugation system and the proteasome in different gram-negative bacteria. Biochemical and Biophysical Research Communications, 2017, 483, 946-950.	2.1	12
22	Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy, 2017, 13, 759-760.	9.1	23
23	Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal. BioEssays, 2017, 39, 1700027.	2.5	34
24	Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4639-47.	7.1	127
25	The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Research, 2016, 26, 869-885.	12.0	266
26	The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. International Journal of Biochemistry and Cell Biology, 2016, 79, 403-418.	2.8	135
27	p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7490-E7499.	7.1	205