Yun-Feng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2536568/publications.pdf

Version: 2024-02-01

236 papers 10,993 citations

23567 58 h-index 98 g-index

245 all docs

245 docs citations

times ranked

245

6809 citing authors

#	Article	IF	CITATIONS
1	Single-molecule optofluidic microsensor with interface whispering gallery modes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	51
2	Vibrational Kerr Solitons in an Optomechanical Microresonator. Physical Review Letters, 2022, 128, 073901.	7.8	8
3	Hybrid plasmonic-photonic microcavity for enhanced light-matter interaction. Science Bulletin, 2022, 67, 1205-1208.	9.0	5
4	Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 2022, 9, 561.	9.3	24
5	Ground-state cooling of multiple near-degenerate mechanical modes. Physical Review A, 2022, 105, .	2.5	12
6	Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting. Nano Letters, 2021, 21, 1566-1575.	9.1	28
7	Low-threshold laser from erbium-gain lithium niobate microcavity. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	2
8	What limits limits?. National Science Review, 2021, 8, nwaa210.	9.5	2
9	Laser particles with omnidirectional emission for cell tracking. Light: Science and Applications, 2021, 10, 23.	16.6	37
10	1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nature Communications, 2021, 12, 1973.	12.8	33
11	Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity. Photonics Research, 2021, 9, 364.	7.0	6
12	Synthesized soliton crystals. Nature Communications, 2021, 12, 3179.	12.8	77
13	Nonreciprocal phonon laser in a spinning microwave magnomechanical system. Physical Review A, 2021, 103, .	2.5	39
14	Single-mode characteristic of a supermode microcavity Raman laser. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
15	Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science and Applications, 2021, 10, 128.	16.6	40
16	Special Issue on the 60th anniversary of the first laserâ€"Series I: Microcavity Photonicsâ€"from fundamentals to applications. Light: Science and Applications, 2021, 10, 141.	16.6	5
17	Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking. Physical Review Applied, 2021, 16, .	3.8	3
18	Microcavity-enhanced surface nonlinear optics. , 2021, , .		0

#	Article	IF	CITATIONS
19	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space. Physical Review Letters, 2021, 127, 273902.	7.8	11
20	On-chip lithium niobate microresonators for photonics applications. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	11
21	Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nature Physics, 2020, 16, 148-153.	16.7	163
22	Optical Forces: From Fundamental to Biological Applications. Advanced Materials, 2020, 32, e2001994.	21.0	107
23	Microdrop Concentrates Light Modes. Physics Magazine, 2020, 13, .	0.1	0
24	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	9.1	16
25	Chaos-assisted two-octave-spanning microcombs. Nature Communications, 2020, 11, 2336.	12.8	67
26	Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 2020, 11, 1136.	12.8	35
27	Chiral emission and Purcell enhancement in a hybrid plasmonic-photonic microresonator. Light: Science and Applications, 2020, 9, 4.	16.6	8
28	Diabolical points in coupled active cavities with quantum emitters. Light: Science and Applications, 2020, 9, 6.	16.6	20
29	Listening to the sound of a bacterium. Nature Nanotechnology, 2020, 15, 420-421.	31.5	3
30	Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Research, 2020, 8, 497.	7.0	34
31	Opto-plasmonic microfluidic sensor for molecular detection. , 2020, , .		0
32	Single nanoparticle detection with CMOS-compatible heterodyne interferometry. , 2020, , .		0
33	Layered localization in a chaotic optical cavity. Physical Review E, 2020, 102, 062208.	2.1	3
34	Chaos-assisted two-octave-spanning microcombs. , 2020, , .		3
35	Ultra-high- <i>Q</i> Asymmetric Microcavity., 2020,, 359-399.		0
36	Highâ€ <i>Q</i> Polymer Microcavities Integrated on a Multicore Fiber Facet for Vapor Sensing. Advanced Optical Materials, 2019, 7, 1900602.	7.3	44

#	Article	IF	CITATIONS
37	Microcavity Nonlinear Optics with an Organically Functionalized Surface. Physical Review Letters, 2019, 123, 173902.	7.8	57
38	Regular-Orbit-Engineered Chaotic Photon Transport in Mixed Phase Space. Physical Review Letters, 2019, 123, 173903.	7.8	13
39	Microcavity-Enhanced Surface Nonlinear Optics. , 2019, , .		0
40	Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photonics, 2019, 13, 21-24.	31.4	173
41	Onâ€Chipâ€Integrated Methylammonium Halide Perovskite Optical Sensors. Advanced Optical Materials, 2019, 7, 1801308.	7.3	15
42	Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Advanced Photonics, 2019, 1 , 1 .	11.8	11
43	Noise suppression of mechanical oscillations in a microcavity for ultrasensitive detection. Optics Letters, 2019, 44, 2426.	3.3	6
44	Chaos-assisted cross-band microcombs. , 2019, , .		0
45	Manifold-enhanced photon transportation in a chaotic microresonator. , 2019, , .		0
46	Regular-orbit engineered momentum transformation in the mixed phase space of an asymmetric microcavity. , 2019 , , .		0
47	Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects. Advanced Materials, 2018, 30, e1800262.	21.0	49
48	Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr ₃ Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics, 2018, 5, 2051-2059.	6.6	145
49	A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer. Advanced Materials, 2018, 30, e1804556.	21.0	44
50	Wave-scattering method for waveguide–microcavity coupling. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 811.	2.1	3
51	Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Physical Review A, 2018, 98, .	2.5	71
52	Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light: Science and Applications, 2018, 7, 18003-18003.	16.6	67
53	Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica, 2018, 5, 674.	9.3	67
54	Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities. Photonics Research, 2018, 6, 99.	7.0	34

#	Article	IF	CITATIONS
55	High-Q chaotic lithium niobate microdisk cavity. Optics Letters, 2018, 43, 2917.	3.3	46
56	Sensors: Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects (Adv.) Tj ETQ	q0 <u>0</u> 0 rgB	iT <u>(</u> Overlock
57	Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Science Bulletin, 2018, 63, 1096-1100.	9.0	22
58	Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Physical Review A, 2018, 97, .	2.5	16
59	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	25.5	105
60	Sizing particulates with nanofiber sensors. , 2018, , .		0
61	Ultrasensitive colocalization detection based on plasmonic nanolithography with molecular-overlapped optical near-fields. , 2018, , .		0
62	Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher's note. Advances in Optics and Photonics, 2018, 10, 939.	25.5	1
63	Single Nanoparticle Detection Using Optical Microcavities. Advanced Materials, 2017, 29, 1604920.	21.0	257
64	Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator. Physical Review Letters, 2017, 118, 033901.	7.8	149
65	Chipâ€Scale Mass Manufacturable Highâ€ <i>Q</i> Silicon Microdisks. Advanced Materials Technologies, 2017, 2, 1600299.	5.8	11
66	Molecular overlap with optical near-fields based on plasmonic nanolithography for ultrasensitive label-free detection by light-matter colocalization. Biosensors and Bioelectronics, 2017, 96, 89-98.	10.1	20
67	Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6, 789-811.	6.0	162
68	Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358, 344-347.	12.6	239
69	Rayleigh scattering in an emitter-nanofiber-coupling system. Physical Review A, 2017, 95, .	2.5	1
70	Counting statistics of chaotic resonances at optical frequencies: Theory and experiments. Physical Review E, 2017, 96, 012217.	2.1	3
71	Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances. Physical Review Letters, 2017, 119, 233901.	7.8	112
72	Far-field single nanoparticle detection and sizing. Optica, 2017, 4, 1151.	9.3	55

#	Article	IF	CITATIONS
73	Whispering gallery mode structure in polymer-coated lasing microspheres. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2140.	2.1	10
74	Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities., 2017,, 147-176.		0
75	Size spectrometry of environmental particulate matter using a nanofiber array. , 2017, , .		3
76	Free-space coupling efficiency in a high-Q deformed optical microcavity. Optics Letters, 2016, 41, 4437.	3.3	16
77	A Microfluidic-Based Fabry-Pérot Gas Sensor. Micromachines, 2016, 7, 36.	2.9	9
78	Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Letters, 2016, 16, 5235-5240.	9.1	435
79	Wideâ€Field Optical Microscopy of Microwave Fields Using Nitrogenâ€Vacancy Centers in Diamonds. Advanced Optical Materials, 2016, 4, 1075-1080.	7.3	34
80	Optical microcavity sensing: From reactive to dissipative interactions. , 2016, , .		0
81	Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Optics Express, 2016, 24, 16309.	3.4	80
82	Superâ€resolution deep imaging with hollow Bessel beam STED microscopy . Laser and Photonics Reviews, 2016, 10, 147-152.	8.7	151
83	Whisperingâ€gallery microcavities with unidirectional laser emission. Laser and Photonics Reviews, 2016, 10, 40-61.	8.7	190
84	Light confinement in a low-refraction-index microcavity bonded on a silicon substrate. Optica, 2016, 3, 937.	9.3	10
85	Experimental realization of optomechanically induced non-reciprocity. Nature Photonics, 2016, 10, 657-661.	31.4	414
86	Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a three-mode optomechanical system. Physical Review A, 2016, 93, .	2.5	3
87	Detection of Single Nanoparticles Using the Dissipative Interaction in a High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> Microcavity. Physical Review Applied, 2016, 5, .	3.8	77
88	Statistics of chaotic resonances in an optical microcavity. Physical Review E, 2016, 93, 040201.	2.1	21
89	Optical microcavity sensing: From dispersive to dissipative interactions. , 2016, , .		0
90	Measuring the Charge of a Single Dielectric Nanoparticle Using a High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> Optical Microresonator. Physical Review Applied, 2016, 6, .	3.8	27

#	Article	IF	Citations
91	Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Optics Letters, 2016, 41, 1249.	3.3	31
92	Optical microcavity: from fundamental physics to functional photonics devices. Science Bulletin, 2016, 61, 185-186.	9.0	58
93	Microcavity Raman lasing and sensing application. , 2016, , .		0
94	Measurement of free-space coupling efficiency in a deformed microcavity using stimulated Raman scattering. , 2016, , .		0
95	Whispering-gallery-type Sensor for Single Nanoparticle Detection Using the Dissipative Interaction. , 2016, , .		0
96	Hybrid Quantum Device Based on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities. Physical Review Applied, 2015, 4, .	3.8	71
97	Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Physical Review A, 2015, 92, .	2.5	78
98	Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface. Applied Physics Letters, 2015, 107, 111105.	3.3	21
99	Ultrahigh-Q asymmetric microcavity photonics on a silicon chip. , 2015, , .		0
100	Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	5.1	20
101	Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .	2.5	24
102	Raman-lasing dynamics in split-mode microresonators. Physical Review A, 2015, 91, .	2.5	8
103	Controlling Young's modulus of polymerized structures fabricated by direct laser writing. Applied Physics A: Materials Science and Processing, 2015, 118, 437-441.	2.3	8
104	Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Physical Review A, 2015, 91, .	2.5	91
105	Enhanced Raman scattering of single nanoparticles in a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> whispering-gallery microresonator. Physical Review A, 2015, 91, .	2.5	17
106	Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Letters, 2015, 15, 7581-7586.	9.1	61
107	Macroscopic mechanical systems are entering the quantum world. National Science Review, 2015, 2, 9-10.	9.5	5
108	Variable Optical Delay Line Using Discrete Harmonic Oscillation in Waveguide Lattices. Journal of Lightwave Technology, 2015, 33, 5095-5102.	4.6	1

#	Article	IF	Citations
109	Spin separations in the spin Hall effect of light. Physical Review A, 2015, 92, .	2.5	21
110	Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale, 2015, 7, 577-582.	5.6	37
111	Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Physical Review A, 2014, 90, .	2.5	55
112	MHz-level self-sustained pulsation in polymer microspheres on a chip. AIP Advances, 2014, 4, .	1.3	12
113	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .	2.5	38
114	Coherent Polariton Dynamics in Coupled Highly Dissipative Cavities. Physical Review Letters, 2014, 112, .	7.8	70
115	Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment. Advanced Materials, 2014, 26, 7462-7467.	21.0	69
116	Single nanoparticle detection using split-mode microcavity Raman lasers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14657-14662.	7.1	243
117	Measuring spin Hall effect of light by cross-polarization intensity ratio. Optics Letters, 2014, 39, 3425.	3.3	11
118	Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Applied Physics Letters, 2014, 105, .	3.3	45
119	Ultrahigh-Q microcavities with highly directional emission. , 2014, , .		0
120	Vacuum Rabi oscillation in coupled highly-dissipative cavity quantum electrodynamics. , 2014, , .		1
121	Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities. , 2014, , 1-26.		0
122	Optimal laser cooling limits in the strong coupled cavity optomechanics., 2014,,.		0
123	Dissipative optomechanical coupling between a single-wall carbon nanotube and a high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> microcavity. Physical Review A, 2013, 88, .	2.5	20
124	Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster's angle. Applied Physics Letters, 2013, 103, .	3.3	30
125	Dynamical tunneling-assisted coupling of high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> deformed microcavities using a free-space beam. Physical Review A. 2013. 88	2.5	30
126	Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening. Advanced Materials, 2013, 25, 5616-5620.	21.0	266

#	Article	IF	Citations
127	Parametric Down-Conversion and Polariton Pair Generation in Optomechanical Systems. Physical Review Letters, 2013, 111, 083601.	7.8	69
128	Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity. Applied Physics Letters, 2013, 103, .	3.3	40
129	Optomechanical sensing with on-chip microcavities. Frontiers of Physics, 2013, 8, 475-490.	5.0	68
130	On-chip ultrahigh-Q microcavities for highly unidirectional emission. , 2013, , .		0
131	Spin separations of light at the air–glass interface for femtosecond laser pulses. Journal of Optics (United Kingdom), 2013, 15, 014006.	2.2	0
132	Photon-photon interactions in a largely detuned optomechanical cavity. Physical Review A, 2013, 88, .	2.5	38
133	Ultrahigh-Q, largely deformed microcavities coupled by a free-space laser beam. Applied Physics Letters, 2013, 103, .	3.3	17
134	Chaos-assisted unidirectional lasing emission from an ultrahigh-Q whispering gallery microcavity. , 2013, , .		0
135	A hybrid photonic-plasmonic cavity design for optical force enhancement. , 2013, , .		0
136	Hybrid photonic–plasmonic mode for refractometer and nanoparticle trapping. Optics Communications, 2013, 291, 380-385.	2.1	26
137	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, .	2.5	32
138	Tunnelingâ€induced transparency in a chaotic microcavity. Laser and Photonics Reviews, 2013, 7, L51.	8.7	46
139	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	1.4	104
140	Controlling deformation in a high quality factor silica microsphere toward single directional emission. Applied Optics, 2013, 52, 298.	1.8	9
141	Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity. Optics Letters, 2013, 38, 1802.	3.3	38
142	Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity. Applied Optics, 2013, 52, 155.	1.8	13
143	Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics. Physical Review Letters, 2013, 110, 153606.	7.8	203
144	Spin displacements of a Gaussian beam at an air–multilayer-film interface. Physical Review A, 2013, 88, .	2.5	24

#	Article	IF	Citations
145	High- $\langle i \rangle Q \langle i \rangle$ asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102, 221108.	3.3	29
146	Nanoparticles: Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening (Adv. Mater. 39/2013). Advanced Materials, 2013, 25, 5615-5615.	21.0	3
147	Direct Writing of Photonic Structures by Two-Photon Polymerization. MATEC Web of Conferences, 2013, 8, 06002.	0.2	0
148	Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime. , 2013, , .		2
149	Chaos-assisted whispering-gallery-mode excitation using a sub-wavelength optical fiber. , 2013, , .		0
150	Ultralow-threshold cavity Raman laser via free-space excitation. , 2013, , .		0
151	Label-free Detection of Single Nanoparticles and Lentiviruses Using an Optical Microcavity. , 2013, , .		0
152	Detection of mode splitting with microcavity Raman laser. , 2013, , .		0
153	Fano resonance in whispering gallery photonic microcavities. Proceedings of SPIE, 2012, , .	0.8	3
154	Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity. Journal of Applied Physics, 2012, 111, 114702.	2.5	15
155	Spin Hall effect of light reflected from a magnetic thin film. Applied Physics Letters, 2012, 101, .	3.3	36
156	Coupling of diamond nanocrystals to a high-Qwhispering-gallery microresonator. Physical Review A, 2012, 86, .	2.5	19
157	Cavity-QED treatment of scattering-induced free-space excitation and collection in high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> whispering-gallery microcavities. Physical Review A, 2012. 85	2.5	30
158	Highly Unidirectional Emission and Ultralowâ€Threshold Lasing from Onâ€Chip Ultrahighâ€Q Microcavities. Advanced Materials, 2012, 24, OP260-4, OP185.	21.0	112
159	Microcavities: Highly Unidirectional Emission and Ultralowâ€Threshold Lasing from Onâ€Chip Ultrahighâ€Q Microcavities (Adv. Mater. 35/2012). Advanced Materials, 2012, 24, OP185.	21.0	1
160	Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film. IEEE Photonics Technology Letters, 2012, 24, 434-436.	2.5	23
161	Sensitivity enhancement and detection-limit improvement in whispering-gallery-mode-based biosensing. , 2012, , .		0
162	Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Physical Review A, 2012, 85, .	2.5	145

#	Article	IF	CITATIONS
163	Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Applied Physics Letters, 2012, 100, .	3.3	112
164	Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Physical Review A, 2012, 85, .	2.5	30
165	A composite cavity QED system deepening the strong coupling regime. , 2012, , .		O
166	Multiple-Rayleigh-scatterer-induced mode splitting in a high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Q</mml:mi></mml:mrow></mml:math> whispering-gallery-mode microresonator. Physical Review A, 2011, 83, .	2.5	83
167	Observation of the in-plane spin separation of light. Optics Express, 2011, 19, 9636.	3.4	81
168	Broadband Enhancement of Light Harvesting in a Luminescent Solar Concentrator. IEEE Journal of Quantum Electronics, 2011, 47, 1171-1176.	1.9	5
169	Dependence of femtosecond time-resolved magneto-optical Kerr rotation on the direction of polarization of the probe beam. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1411-1415.	5.1	0
170	High-sensitivity temperature sensing by employing an on-chip high-Q PDMS-coated toroidal microcavity. , $2011, , .$		0
171	Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering. Physical Review A, 2011, 84, .	2.5	48
172	Mechanism of directional emission from a peanut-shaped microcavity. Physical Review A, 2011, 83, .	2. 5	7
173	Publisher's Note: Asymmetric Fano resonance analysis in indirectly coupled microresonators [Phys. Rev. A82, 065804 (2010)]. Physical Review A, 2011, 83, .	2.5	4
174	Position-insensitive photon turnstiles in a diamond nanocrystal — Microcavity system. , 2011, , .		0
175	Experimental observation of Fano resonance in a single whispering-gallery microresonator. Applied Physics Letters, 2011, 98, .	3.3	115
176	Experimental observation of Fano resonance in a single whispering-gallery microresonator., 2011,,.		4
177	A high-Q exterior plasmonic whispering gallery mode in a metal-coated microresonator. , 2011, , .		0
178	An enhanced biosensing model in coupled optical microresonators. Proceedings of SPIE, 2010, , .	0.8	0
179	On-chip single nanoparticle detection using ultra-high-Q whispering gallery microresonator. , 2010, , .		0
180	Asymmetric Fano resonance analysis in indirectly coupled microresonators. Physical Review A, 2010, 82, .	2.5	122

#	Article	IF	Citations
181	Asymmetric resonant cavities and their applications in optics and photonics: a review. Frontiers of Optoelectronics in China, 2010, 3, 109-124.	0.2	26
182	Gain-Induced Evolution of Mode Splitting Spectra in a High-\$Q\$ Active Microresonator. IEEE Journal of Quantum Electronics, 2010, 46, 1626-1633.	1.9	32
183	On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 2010, 4, 46-49.	31.4	987
184	High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 035402.	1.5	54
185	On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Applied Physics Letters, 2010, 96, .	3.3	120
186	Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer. Physical Review A, 2010, 81, .	2.5	15
187	Direct laser writing of whispering gallery microcavities by two-photon polymerization. Applied Physics Letters, 2010, 97, .	3.3	68
188	Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator. Applied Physics Letters, 2010, 97, .	3.3	25
189	High- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator. Physical Review Letters, 2010, 105, 153902.	7.8	161
190	Plasmon modes of silver nanowire on a silica substrate. Applied Physics Letters, 2010, 97, .	3.3	85
191	Spin Hall effect of reflected light at the air-uniaxial crystal interface. Optics Express, 2010, 18, 16832.	3.4	65
192	High-Q nanoring surface plasmon microresonator. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2495.	2.1	19
193	Detection and sizing of single nanoparticles by mode splitting in an optical microresonator. , 2010, , .		0
194	Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Applied Physics Letters, 2009, 94, .	3.3	242
195	Observation of EIT-like effect in a single high-Q microcavity. , 2009, , .		0
196	Modified transmission spectrum induced by two-mode interference in a single silica microsphere. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 215401.	1.5	57
197	Low-threshold microlaser in a high-Q asymmetrical microcavity. Optics Letters, 2009, 34, 509.	3.3	47
198	Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2050.	2.1	18

#	Article	IF	Citations
199	Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. Optics Express, 2009, 17, 9571.	3.4	66
200	Accurately calculating high Q factor of whispering-gallery modes with boundary element method. , 2009, , .		0
201	Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid. Applied Physics Letters, 2009, 94, .	3.3	95
202	Single Nanoparticle Detection by Mode Splitting in Ultra-High-Q Microtoroid. , 2009, , .		0
203	Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Applied Physics Letters, 2008, 93, .	3.3	101
204	Low-Threshold Microlaser in Er : Yb Phosphate Glass Coated Microsphere. IEEE Photonics Technology Letters, 2008, 20, 342-344.	2.5	39
205	Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission. Chinese Optics Letters, 2008, 6, 300-302.	2.9	14
206	Taper-microsphere coupling with numerical calculation of coupled-mode theory. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1895.	2.1	39
207	Coupled optical microcavities: an enhanced refractometric sensing configuration. Optics Express, 2008, 16, 12538.	3.4	89
208	Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity. Optics Express, 2008, 16, 21462.	3.4	80
209	Coupling Whispering-Gallery-Mode Microcavities With Modal Coupling Mechanism. IEEE Journal of Quantum Electronics, 2008, 44, 1065-1070.	1.9	18
210	Inherently directional lasing from a thermal-induced-deformation high-Q microcavity. , 2008, , .		0
211	Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations. New Journal of Physics, 2008, 10, 123013.	2.9	30
212	Single-photon transport in a transmission line resonator interacting with two capacitively coupled Cooper-pair boxes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 175503.	1.5	4
213	Mode coupling strength in a microsphere cavity coupled with fiber taper. , 2008, , .		0
214	Inherently directional lasing from a thermal-induced-deformation high-Q microcavity. , 2008, , .		0
215	Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Physical Review A, 2007, 75, .	2.5	59
216	Implementing a conditionalN-qubit phase gate in a largely detuned optical cavity. Physical Review A, 2007, 75, .	2.5	31

#	Article	IF	CITATIONS
217	Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems. Physical Review A, 2007, 75, .	2.5	92
218	Quantum phase gate of photonic qubits in a cavity QED system. Physical Review A, 2007, 75, .	2.5	25
219	Quantum phase gate through a dispersive atom-field interaction. Physical Review A, 2007, 75, .	2.5	48
220	One-step implementation of anN-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Physical Review A, 2007, 75, .	2.5	44
221	Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing. Applied Physics Letters, 2007, 91, 151105.	3.3	15
222	Controllable coupling of superconducting transmission-line resonators. Physical Review A, 2007, 75, .	2.5	28
223	Directional escape from a high-Q deformed microsphere induced by short CO_2 laser pulses. Optics Letters, 2007, 32, 644.	3.3	28
224	Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46, 7590.	2.1	4
225	Modulated Photon Emission of Eu 3+ in Microsphere Cavity. Chinese Physics Letters, 2006, 23, 2442-2445.	3.3	2
226	Generation of multi-atom Dicke states through the detection of cavity decay. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 485-491.	1.5	21
227	Universal Quantum Computation in Decoherence-Free Subspace with Neutral Atoms. Physical Review Letters, 2006, 97, 140501.	7.8	81
228	Quantum computation without strict strong coupling on a silicon chip. Physical Review A, 2006, 73, .	2.5	30
229	Quantum phase gate in an optical cavity with atomic cloud. Physical Review A, 2006, 74, .	2.5	30
230	Generating four-mode multiphoton entangled states in cavity QED. Physical Review A, 2006, 74, .	2.5	9
231	Preparation of microwave single-photon states via a superconducting circuit. Physical Review A, 2006, 74, .	2.5	4
232	One-step implementation of a multiqubit controlled-phase-flip gate. Physical Review A, 2006, 73, .	2.5	93
233	Quantum teleportation of distant atomic states via the detection of strongly detuned cavity decay. Physica A: Statistical Mechanics and Its Applications, 2005, 354, 227-234.	2.6	7
234	Implementing a high-efficiency quantum-controlled phase gate between long-distance atoms. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1547.	2.1	5

#	Article	lF	CITATIONS
235	Realizing quantum controlled phase flip through cavity QED. Physical Review A, 2004, 70, .	2.5	122
236	Quantum CPF gates between rare earth ions through measurement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 330, 137-141.	2.1	17