List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2536568/publications.pdf Version: 2024-02-01



YUN-FENC XIAO

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator.<br>Nature Photonics, 2010, 4, 46-49.                                                                                                  | 31.4 | 987       |
| 2  | Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Letters, 2016, 16, 5235-5240.                                                                                               | 9.1  | 435       |
| 3  | Experimental realization of optomechanically induced non-reciprocity. Nature Photonics, 2016, 10, 657-661.                                                                                                                                 | 31.4 | 414       |
| 4  | Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening.<br>Advanced Materials, 2013, 25, 5616-5620.                                                                                                     | 21.0 | 266       |
| 5  | Single Nanoparticle Detection Using Optical Microcavities. Advanced Materials, 2017, 29, 1604920.                                                                                                                                          | 21.0 | 257       |
| 6  | Single nanoparticle detection using split-mode microcavity Raman lasers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14657-14662.                                                          | 7.1  | 243       |
| 7  | Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Applied Physics<br>Letters, 2009, 94, .                                                                                                               | 3.3  | 242       |
| 8  | Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358, 344-347.                                                                                                                                  | 12.6 | 239       |
| 9  | Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics. Physical<br>Review Letters, 2013, 110, 153606.                                                                                                     | 7.8  | 203       |
| 10 | Whisperingâ€gallery microcavities with unidirectional laser emission. Laser and Photonics Reviews, 2016, 10, 40-61.                                                                                                                        | 8.7  | 190       |
| 11 | Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photonics, 2019, 13, 21-24.                                                                                                                                    | 31.4 | 173       |
| 12 | Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nature Physics, 2020, 16, 148-153.                                                                                                                            | 16.7 | 163       |
| 13 | Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6, 789-811.                                                                                                                                        | 6.0  | 162       |
| 14 | High- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>Q</mml:mi></mml:math> Exterior Whispering-Gallery Modes in a<br>Metal-Coated Microresonator. Physical Review Letters, 2010, 105, 153902. | 7.8  | 161       |
| 15 | <b>Superâ€resolution deep imaging with hollow Bessel beam STED microscopy</b> . Laser and Photonics<br>Reviews, 2016, 10, 147-152.                                                                                                         | 8.7  | 151       |
| 16 | Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator. Physical<br>Review Letters, 2017, 118, 033901.                                                                                                          | 7.8  | 149       |
| 17 | Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Physical Review A, 2012, 85, .                                                                                                                        | 2.5  | 145       |
| 18 | Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr <sub>3</sub><br>Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics, 2018, 5, 2051-2059.                                                                           | 6.6  | 145       |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Realizing quantum controlled phase flip through cavity QED. Physical Review A, 2004, 70, .                                                                                                                                                                                        | 2.5  | 122       |
| 20 | Asymmetric Fano resonance analysis in indirectly coupled microresonators. Physical Review A, 2010, 82, .                                                                                                                                                                          | 2.5  | 122       |
| 21 | On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Applied Physics Letters, 2010, 96, .                                                                                                                                         | 3.3  | 120       |
| 22 | Experimental observation of Fano resonance in a single whispering-gallery microresonator. Applied Physics Letters, 2011, 98, .                                                                                                                                                    | 3.3  | 115       |
| 23 | Highly Unidirectional Emission and Ultralowâ€Threshold Lasing from Onâ€Chip Ultrahighâ€Q<br>Microcavities. Advanced Materials, 2012, 24, OP260-4, OP185.                                                                                                                          | 21.0 | 112       |
| 24 | Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Applied Physics Letters, 2012, 100, .                                                                                                                                        | 3.3  | 112       |
| 25 | Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances. Physical Review Letters, 2017, 119, 233901.                                                                                                                                     | 7.8  | 112       |
| 26 | Optical Forces: From Fundamental to Biological Applications. Advanced Materials, 2020, 32, e2001994.                                                                                                                                                                              | 21.0 | 107       |
| 27 | Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.                                                                                                                                                        | 25.5 | 105       |
| 28 | Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.                                                                                                                                                                                                     | 1.4  | 104       |
| 29 | Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating. Applied Physics Letters, 2008, 93, .                                                                                                                                 | 3.3  | 101       |
| 30 | Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid. Applied Physics Letters, 2009, 94, .                                                                                                                             | 3.3  | 95        |
| 31 | One-step implementation of a multiqubit controlled-phase-flip gate. Physical Review A, 2006, 73, .                                                                                                                                                                                | 2.5  | 93        |
| 32 | Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems.<br>Physical Review A, 2007, 75, .                                                                                                                                                 | 2.5  | 92        |
| 33 | Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Physical Review A, 2015, 91, .                                                                                                                                                             | 2.5  | 91        |
| 34 | Coupled optical microcavities: an enhanced refractometric sensing configuration. Optics Express, 2008, 16, 12538.                                                                                                                                                                 | 3.4  | 89        |
| 35 | Plasmon modes of silver nanowire on a silica substrate. Applied Physics Letters, 2010, 97, .                                                                                                                                                                                      | 3.3  | 85        |
| 36 | Multiple-Rayleigh-scatterer-induced mode splitting in a high- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mrow><mml:mi>Q</mml:mi></mml:mrow>whispering-gallery-mode<br/>microresonator. Physical Review A, 2011, 83, .</mml:math<br> | 2.5  | 83        |

| #  | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Universal Quantum Computation in Decoherence-Free Subspace with Neutral Atoms. Physical Review<br>Letters, 2006, 97, 140501.                                                                                                                                                                    | 7.8  | 81        |
| 38 | Observation of the in-plane spin separation of light. Optics Express, 2011, 19, 9636.                                                                                                                                                                                                           | 3.4  | 81        |
| 39 | Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q<br>microtoroid cavity. Optics Express, 2008, 16, 21462.                                                                                                                                           | 3.4  | 80        |
| 40 | Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Optics Express, 2016, 24, 16309.                                                                                                                                                                        | 3.4  | 80        |
| 41 | Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Physical Review A, 2015, 92, .                                                                                                                                                                              | 2.5  | 78        |
| 42 | Detection of Single Nanoparticles Using the Dissipative Interaction in a High- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>Q</mml:mi>Microcavity. Physical Review Applied, 2016, 5, .</mml:math<br>                                             | 3.8  | 77        |
| 43 | Synthesized soliton crystals. Nature Communications, 2021, 12, 3179.                                                                                                                                                                                                                            | 12.8 | 77        |
| 44 | Hybrid Quantum Device Based on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>N</mml:mi><mml:mi>V</mml:mi></mml:math> Centers in Diamond<br>Nanomechanical Resonators Plus Superconducting Waveguide Cavities. Physical Review Applied, 2015,<br>4 | 3.8  | 71        |
| 45 | Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Physical Review A, 2018, 98, .                                                                                                                                                                                   | 2.5  | 71        |
| 46 | Coherent Polariton Dynamics in Coupled Highly Dissipative Cavities. Physical Review Letters, 2014, 112, .                                                                                                                                                                                       | 7.8  | 70        |
| 47 | Parametric Down-Conversion and Polariton Pair Generation in Optomechanical Systems. Physical<br>Review Letters, 2013, 111, 083601.                                                                                                                                                              | 7.8  | 69        |
| 48 | Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment. Advanced<br>Materials, 2014, 26, 7462-7467.                                                                                                                                                          | 21.0 | 69        |
| 49 | Direct laser writing of whispering gallery microcavities by two-photon polymerization. Applied<br>Physics Letters, 2010, 97, .                                                                                                                                                                  | 3.3  | 68        |
| 50 | Optomechanical sensing with on-chip microcavities. Frontiers of Physics, 2013, 8, 475-490.                                                                                                                                                                                                      | 5.0  | 68        |
| 51 | Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light: Science and Applications, 2018, 7, 18003-18003.                                                                                                                                | 16.6 | 67        |
| 52 | Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica, 2018, 5, 674.                                                                                                                                                                                | 9.3  | 67        |
| 53 | Chaos-assisted two-octave-spanning microcombs. Nature Communications, 2020, 11, 2336.                                                                                                                                                                                                           | 12.8 | 67        |
| 54 | Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. Optics Express, 2009, 17, 9571.                                                                                                                                                                             | 3.4  | 66        |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Spin Hall effect of reflected light at the air-uniaxial crystal interface. Optics Express, 2010, 18, 16832.                                                                       | 3.4  | 65        |
| 56 | Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Letters, 2015, 15, 7581-7586.                                                                | 9.1  | 61        |
| 57 | Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Physical Review A, 2007, 75, .                                       | 2.5  | 59        |
| 58 | Optical microcavity: from fundamental physics to functional photonics devices. Science Bulletin, 2016, 61, 185-186.                                                               | 9.0  | 58        |
| 59 | Modified transmission spectrum induced by two-mode interference in a single silica microsphere.<br>Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 215401. | 1.5  | 57        |
| 60 | Microcavity Nonlinear Optics with an Organically Functionalized Surface. Physical Review Letters, 2019, 123, 173902.                                                              | 7.8  | 57        |
| 61 | Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Physical<br>Review A, 2014, 90, .                                                          | 2.5  | 55        |
| 62 | Far-field single nanoparticle detection and sizing. Optica, 2017, 4, 1151.                                                                                                        | 9.3  | 55        |
| 63 | High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 035402.       | 1.5  | 54        |
| 64 | Single-molecule optofluidic microsensor with interface whispering gallery modes. Proceedings of the United States of America, 2022, 119, .                                        | 7.1  | 51        |
| 65 | Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects. Advanced<br>Materials, 2018, 30, e1800262.                                                | 21.0 | 49        |
| 66 | Quantum phase gate through a dispersive atom-field interaction. Physical Review A, 2007, 75, .                                                                                    | 2.5  | 48        |
| 67 | Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering. Physical Review A, 2011, 84, .               | 2.5  | 48        |
| 68 | Low-threshold microlaser in a high-Q asymmetrical microcavity. Optics Letters, 2009, 34, 509.                                                                                     | 3.3  | 47        |
| 69 | Tunnelingâ€induced transparency in a chaotic microcavity. Laser and Photonics Reviews, 2013, 7, L51.                                                                              | 8.7  | 46        |
| 70 | High-Q chaotic lithium niobate microdisk cavity. Optics Letters, 2018, 43, 2917.                                                                                                  | 3.3  | 46        |
| 71 | Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Applied Physics Letters, 2014, 105, .                                       | 3.3  | 45        |
| 72 | One-step implementation of anN-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Physical Review A, 2007, 75, .                                        | 2.5  | 44        |

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Tunable Optofluidic Microlaser in a Photostable Conjugated Polymer. Advanced Materials, 2018, 30,<br>e1804556.                                            | 21.0 | 44        |
| 74 | Highâ€ <i>Q</i> Polymer Microcavities Integrated on a Multicore Fiber Facet for Vapor Sensing.<br>Advanced Optical Materials, 2019, 7, 1900602.             | 7.3  | 44        |
| 75 | Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity. Applied Physics<br>Letters, 2013, 103, .                                     | 3.3  | 40        |
| 76 | Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities.<br>Light: Science and Applications, 2021, 10, 128.           | 16.6 | 40        |
| 77 | Low-Threshold Microlaser in Er : Yb Phosphate Glass Coated Microsphere. IEEE Photonics Technology<br>Letters, 2008, 20, 342-344.                            | 2.5  | 39        |
| 78 | Taper-microsphere coupling with numerical calculation of coupled-mode theory. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1895. | 2.1  | 39        |
| 79 | Nonreciprocal phonon laser in a spinning microwave magnomechanical system. Physical Review A, 2021, 103, .                                                  | 2.5  | 39        |
| 80 | Photon-photon interactions in a largely detuned optomechanical cavity. Physical Review A, 2013, 88, .                                                       | 2.5  | 38        |
| 81 | Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity. Optics Letters, 2013, 38, 1802.                                              | 3.3  | 38        |
| 82 | Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .                                               | 2.5  | 38        |
| 83 | Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale, 2015,<br>7, 577-582.                                             | 5.6  | 37        |
| 84 | Laser particles with omnidirectional emission for cell tracking. Light: Science and Applications, 2021, 10, 23.                                             | 16.6 | 37        |
| 85 | Spin Hall effect of light reflected from a magnetic thin film. Applied Physics Letters, 2012, 101, .                                                        | 3.3  | 36        |
| 86 | Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 2020, 11, 1136.                                                     | 12.8 | 35        |
| 87 | Wideâ€Field Optical Microscopy of Microwave Fields Using Nitrogenâ€Vacancy Centers in Diamonds.<br>Advanced Optical Materials, 2016, 4, 1075-1080.          | 7.3  | 34        |
| 88 | Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities. Photonics Research, 2018, 6, 99.                                               | 7.0  | 34        |
| 89 | Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator.<br>Photonics Research, 2020, 8, 497.                             | 7.0  | 34        |
| 90 | 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nature Communications, 2021, 12, 1973.                                         | 12.8 | 33        |

| #   | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Gain-Induced Evolution of Mode Splitting Spectra in a High-\$Q\$ Active Microresonator. IEEE Journal of Quantum Electronics, 2010, 46, 1626-1633.                                                                                                                              | 1.9 | 32        |
| 92  | Single-photon transport and mechanical NOON-state generation in microcavity optomechanics.<br>Physical Review A, 2013, 87, .                                                                                                                                                   | 2.5 | 32        |
| 93  | Implementing a conditionalN-qubit phase gate in a largely detuned optical cavity. Physical Review A, 2007, 75, .                                                                                                                                                               | 2.5 | 31        |
| 94  | Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Optics Letters, 2016, 41, 1249.                                                                                                                                   | 3.3 | 31        |
| 95  | Quantum computation without strict strong coupling on a silicon chip. Physical Review A, 2006, 73, .                                                                                                                                                                           | 2.5 | 30        |
| 96  | Quantum phase gate in an optical cavity with atomic cloud. Physical Review A, 2006, 74, .                                                                                                                                                                                      | 2.5 | 30        |
| 97  | Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations. New Journal of Physics, 2008, 10, 123013.                                                                                                                               | 2.9 | 30        |
| 98  | Cavity-QED treatment of scattering-induced free-space excitation and collection in high- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>Q</mml:mi>whispering-gallery microcavities. Physical Review A,<br/>2012. 85</mml:math<br> | 2.5 | 30        |
| 99  | Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling.<br>Physical Review A, 2012, 85, .                                                                                                                                                 | 2.5 | 30        |
| 100 | Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster's angle. Applied Physics Letters, 2013, 103, .                                                                                                                                          | 3.3 | 30        |
| 101 | Dynamical tunneling-assisted coupling of high- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>Q</mml:mi>deformed microcavities using a free-space beam.<br/>Physical Review A, 2013, 88, .</mml:math<br>                          | 2.5 | 30        |
| 102 | High- <i>Q</i> asymmetric polymer microcavities directly fabricated by two-photon polymerization.<br>Applied Physics Letters, 2013, 102, 221108.                                                                                                                               | 3.3 | 29        |
| 103 | Controllable coupling of superconducting transmission-line resonators. Physical Review A, 2007, 75, .                                                                                                                                                                          | 2.5 | 28        |
| 104 | Directional escape from a high-Q deformed microsphere induced by short CO_2 laser pulses. Optics Letters, 2007, 32, 644.                                                                                                                                                       | 3.3 | 28        |
| 105 | Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting. Nano Letters, 2021, 21, 1566-1575.                                                                                                                         | 9.1 | 28        |
| 106 | Measuring the Charge of a Single Dielectric Nanoparticle Using a High- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>Q</mml:mi>Optical Microresonator. Physical Review Applied,<br/>2016, 6, .</mml:math<br>                     | 3.8 | 27        |
| 107 | Asymmetric resonant cavities and their applications in optics and photonics: a review. Frontiers of Optoelectronics in China, 2010, 3, 109-124.                                                                                                                                | 0.2 | 26        |
| 108 | Hybrid photonic–plasmonic mode for refractometer and nanoparticle trapping. Optics<br>Communications, 2013, 291, 380-385.                                                                                                                                                      | 2.1 | 26        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Quantum phase gate of photonic qubits in a cavity QED system. Physical Review A, 2007, 75, .                                                                                                                                                              | 2.5  | 25        |
| 110 | Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator. Applied Physics Letters, 2010, 97, .                                                                                        | 3.3  | 25        |
| 111 | Spin displacements of a Gaussian beam at an air–multilayer-film interface. Physical Review A, 2013, 88, .                                                                                                                                                 | 2.5  | 24        |
| 112 | Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .                                                                                                                                           | 2.5  | 24        |
| 113 | Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 2022, 9, 561.                                                                                                                                                    | 9.3  | 24        |
| 114 | Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film. IEEE Photonics Technology<br>Letters, 2012, 24, 434-436.                                                                                                                               | 2.5  | 23        |
| 115 | Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems.<br>Science Bulletin, 2018, 63, 1096-1100.                                                                                                               | 9.0  | 22        |
| 116 | Generation of multi-atom Dicke states through the detection of cavity decay. Journal of Physics B:<br>Atomic, Molecular and Optical Physics, 2006, 39, 485-491.                                                                                           | 1.5  | 21        |
| 117 | Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface. Applied Physics Letters, 2015, 107, 111105.                                                                                                | 3.3  | 21        |
| 118 | Spin separations in the spin Hall effect of light. Physical Review A, 2015, 92, .                                                                                                                                                                         | 2.5  | 21        |
| 119 | Statistics of chaotic resonances in an optical microcavity. Physical Review E, 2016, 93, 040201.                                                                                                                                                          | 2.1  | 21        |
| 120 | Single-mode characteristic of a supermode microcavity Raman laser. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                                                                                       | 7.1  | 21        |
| 121 | Dissipative optomechanical coupling between a single-wall carbon nanotube and a high- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;&lt;<mml:mi>Q</mml:mi>microcavity. Physical Review A, 2013, 88, .</mml:math<br> | 2.5  | 20        |
| 122 | Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.                                                                               | 5.1  | 20        |
| 123 | Molecular overlap with optical near-fields based on plasmonic nanolithography for ultrasensitive<br>label-free detection by light-matter colocalization. Biosensors and Bioelectronics, 2017, 96, 89-98.                                                  | 10.1 | 20        |
| 124 | Diabolical points in coupled active cavities with quantum emitters. Light: Science and Applications, 2020, 9, 6.                                                                                                                                          | 16.6 | 20        |
| 125 | High-Q nanoring surface plasmon microresonator. Journal of the Optical Society of America B:<br>Optical Physics, 2010, 27, 2495.                                                                                                                          | 2.1  | 19        |
| 126 | Coupling of diamond nanocrystals to a high-Qwhispering-gallery microresonator. Physical Review A, 2012, 86, .                                                                                                                                             | 2.5  | 19        |

YUN-FENG XIAO

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Coupling Whispering-Gallery-Mode Microcavities With Modal Coupling Mechanism. IEEE Journal of Quantum Electronics, 2008, 44, 1065-1070.                                                                                           | 1.9 | 18        |
| 128 | Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2050.                                                | 2.1 | 18        |
| 129 | Quantum CPF gates between rare earth ions through measurement. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 2004, 330, 137-141.                                                                        | 2.1 | 17        |
| 130 | Ultrahigh-Q, largely deformed microcavities coupled by a free-space laser beam. Applied Physics<br>Letters, 2013, 103, .                                                                                                          | 3.3 | 17        |
| 131 | Enhanced Raman scattering of single nanoparticles in a high- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>Q</mml:mi>whispering-gallery<br/>microresonator. Physical Review A, 2015, 91, .</mml:math<br> | 2.5 | 17        |
| 132 | Free-space coupling efficiency in a high-Q deformed optical microcavity. Optics Letters, 2016, 41, 4437.                                                                                                                          | 3.3 | 16        |
| 133 | Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity.<br>Physical Review A, 2018, 97, .                                                                                         | 2.5 | 16        |
| 134 | Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.                                                                                                                            | 9.1 | 16        |
| 135 | Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing. Applied Physics Letters, 2007, 91, 151105.                                                         | 3.3 | 15        |
| 136 | Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer.<br>Physical Review A, 2010, 81, .                                                                                                    | 2.5 | 15        |
| 137 | Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity. Journal of Applied Physics, 2012, 111, 114702.                                                                                      | 2.5 | 15        |
| 138 | Onâ€Chipâ€Integrated Methylammonium Halide Perovskite Optical Sensors. Advanced Optical Materials,<br>2019, 7, 1801308.                                                                                                           | 7.3 | 15        |
| 139 | Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission. Chinese Optics Letters, 2008, 6, 300-302.                                                                             | 2.9 | 14        |
| 140 | Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity. Applied Optics, 2013, 52, 155.                                                                                    | 1.8 | 13        |
| 141 | Regular-Orbit-Engineered Chaotic Photon Transport in Mixed Phase Space. Physical Review Letters, 2019, 123, 173903.                                                                                                               | 7.8 | 13        |
| 142 | MHz-level self-sustained pulsation in polymer microspheres on a chip. AIP Advances, 2014, 4, .                                                                                                                                    | 1.3 | 12        |
| 143 | Ground-state cooling of multiple near-degenerate mechanical modes. Physical Review A, 2022, 105, .                                                                                                                                | 2.5 | 12        |
| 144 | Measuring spin Hall effect of light by cross-polarization intensity ratio. Optics Letters, 2014, 39, 3425.                                                                                                                        | 3.3 | 11        |

YUN-FENG XIAO

| #   | Article                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Chip‧cale Mass Manufacturable Highâ€ <i>Q</i> Silicon Microdisks. Advanced Materials Technologies,<br>2017, 2, 1600299.                                                          | 5.8  | 11        |
| 146 | On-chip lithium niobate microresonators for photonics applications. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.                                                | 5.1  | 11        |
| 147 | Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Advanced Photonics, 2019, 1, 1.                                        | 11.8 | 11        |
| 148 | Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space. Physical Review Letters, 2021, 127, 273902.                                                        | 7.8  | 11        |
| 149 | Light confinement in a low-refraction-index microcavity bonded on a silicon substrate. Optica, 2016, 3, 937.                                                                     | 9.3  | 10        |
| 150 | Whispering gallery mode structure in polymer-coated lasing microspheres. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2140.                           | 2.1  | 10        |
| 151 | Generating four-mode multiphoton entangled states in cavity QED. Physical Review A, 2006, 74, .                                                                                  | 2.5  | 9         |
| 152 | Controlling deformation in a high quality factor silica microsphere toward single directional emission. Applied Optics, 2013, 52, 298.                                           | 1.8  | 9         |
| 153 | A Microfluidic-Based Fabry-Pérot Gas Sensor. Micromachines, 2016, 7, 36.                                                                                                         | 2.9  | 9         |
| 154 | Raman-lasing dynamics in split-mode microresonators. Physical Review A, 2015, 91, .                                                                                              | 2.5  | 8         |
| 155 | Controlling Young's modulus of polymerized structures fabricated by direct laser writing. Applied Physics A: Materials Science and Processing, 2015, 118, 437-441.               | 2.3  | 8         |
| 156 | Chiral emission and Purcell enhancement in a hybrid plasmonic-photonic microresonator. Light:<br>Science and Applications, 2020, 9, 4.                                           | 16.6 | 8         |
| 157 | Vibrational Kerr Solitons in an Optomechanical Microresonator. Physical Review Letters, 2022, 128, 073901.                                                                       | 7.8  | 8         |
| 158 | Quantum teleportation of distant atomic states via the detection of strongly detuned cavity decay.<br>Physica A: Statistical Mechanics and Its Applications, 2005, 354, 227-234. | 2.6  | 7         |
| 159 | Mechanism of directional emission from a peanut-shaped microcavity. Physical Review A, 2011, 83, .                                                                               | 2.5  | 7         |
| 160 | Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity. Photonics<br>Research, 2021, 9, 364.                                                  | 7.0  | 6         |
| 161 | Noise suppression of mechanical oscillations in a microcavity for ultrasensitive detection. Optics<br>Letters, 2019, 44, 2426.                                                   | 3.3  | 6         |
| 162 | Implementing a high-efficiency quantum-controlled phase gate between long-distance atoms. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1547.          | 2.1  | 5         |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Broadband Enhancement of Light Harvesting in a Luminescent Solar Concentrator. IEEE Journal of<br>Quantum Electronics, 2011, 47, 1171-1176.                                                             | 1.9  | 5         |
| 164 | Macroscopic mechanical systems are entering the quantum world. National Science Review, 2015, 2, 9-10.                                                                                                  | 9.5  | 5         |
| 165 | Special Issue on the 60th anniversary of the first laser—Series I: Microcavity Photonics—from<br>fundamentals to applications. Light: Science and Applications, 2021, 10, 141.                          | 16.6 | 5         |
| 166 | Hybrid plasmonic-photonic microcavity for enhanced light-matter interaction. Science Bulletin, 2022, 67, 1205-1208.                                                                                     | 9.0  | 5         |
| 167 | Preparation of microwave single-photon states via a superconducting circuit. Physical Review A, 2006, 74, .                                                                                             | 2.5  | 4         |
| 168 | Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46, 7590.                                                                                       | 2.1  | 4         |
| 169 | Single-photon transport in a transmission line resonator interacting with two capacitively coupled<br>Cooper-pair boxes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 175503. | 1.5  | 4         |
| 170 | Publisher's Note: Asymmetric Fano resonance analysis in indirectly coupled microresonators [Phys.<br>Rev. A82, 065804 (2010)]. Physical Review A, 2011, 83, .                                           | 2.5  | 4         |
| 171 | Experimental observation of Fano resonance in a single whispering-gallery microresonator. , 2011, , .                                                                                                   |      | 4         |
| 172 | Fano resonance in whispering gallery photonic microcavities. Proceedings of SPIE, 2012, , .                                                                                                             | 0.8  | 3         |
| 173 | Nanoparticles: Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance<br>Broadening (Adv. Mater. 39/2013). Advanced Materials, 2013, 25, 5615-5615.                             | 21.0 | 3         |
| 174 | Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a three-mode optomechanical system. Physical Review A, 2016, 93, .                                      | 2.5  | 3         |
| 175 | Counting statistics of chaotic resonances at optical frequencies: Theory and experiments. Physical Review E, 2017, 96, 012217.                                                                          | 2.1  | 3         |
| 176 | Wave-scattering method for waveguide–microcavity coupling. Journal of the Optical Society of<br>America B: Optical Physics, 2018, 35, 811.                                                              | 2.1  | 3         |
| 177 | Listening to the sound of a bacterium. Nature Nanotechnology, 2020, 15, 420-421.                                                                                                                        | 31.5 | 3         |
| 178 | Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking. Physical Review Applied, 2021, 16, .                                                                                               | 3.8  | 3         |
| 179 | Size spectrometry of environmental particulate matter using a nanofiber array. , 2017, , .                                                                                                              |      | 3         |
| 180 | Layered localization in a chaotic optical cavity. Physical Review E, 2020, 102, 062208.                                                                                                                 | 2.1  | 3         |

| #   | Article                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Chaos-assisted two-octave-spanning microcombs. , 2020, , .                                                                                                                                      |      | 3         |
| 182 | Modulated Photon Emission of Eu 3+ in Microsphere Cavity. Chinese Physics Letters, 2006, 23, 2442-2445.                                                                                         | 3.3  | 2         |
| 183 | Low-threshold laser from erbium-gain lithium niobate microcavity. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.                                                                 | 5.1  | 2         |
| 184 | What limits limits?. National Science Review, 2021, 8, nwaa210.                                                                                                                                 | 9.5  | 2         |
| 185 | Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime. , 2013, , .                                                                    |      | 2         |
| 186 | Microcavities: Highly Unidirectional Emission and Ultralowâ€Threshold Lasing from Onâ€Chip<br>Ultrahighâ€Q Microcavities (Adv. Mater. 35/2012). Advanced Materials, 2012, 24, OP185.            | 21.0 | 1         |
| 187 | Variable Optical Delay Line Using Discrete Harmonic Oscillation in Waveguide Lattices. Journal of<br>Lightwave Technology, 2015, 33, 5095-5102.                                                 | 4.6  | 1         |
| 188 | Rayleigh scattering in an emitter-nanofiber-coupling system. Physical Review A, 2017, 95, .                                                                                                     | 2.5  | 1         |
| 189 | Vacuum Rabi oscillation in coupled highly-dissipative cavity quantum electrodynamics. , 2014, , .                                                                                               |      | 1         |
| 190 | Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher's note.<br>Advances in Optics and Photonics, 2018, 10, 939.                                                 | 25.5 | 1         |
| 191 | Inherently directional lasing from a thermal-induced-deformation high-Q microcavity. , 2008, , .                                                                                                |      | 0         |
| 192 | Mode coupling strength in a microsphere cavity coupled with fiber taper. , 2008, , .                                                                                                            |      | 0         |
| 193 | Observation of EIT-like effect in a single high-Q microcavity. , 2009, , .                                                                                                                      |      | Ο         |
| 194 | Accurately calculating high Q factor of whispering-gallery modes with boundary element method. , 2009, , .                                                                                      |      | 0         |
| 195 | An enhanced biosensing model in coupled optical microresonators. Proceedings of SPIE, 2010, , .                                                                                                 | 0.8  | 0         |
| 196 | On-chip single nanoparticle detection using ultra-high-Q whispering gallery microresonator. , 2010, , .                                                                                         |      | 0         |
| 197 | Dependence of femtosecond time-resolved magneto-optical Kerr rotation on the direction of polarization of the probe beam. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1411-1415. | 5.1  | 0         |
| 198 | High-sensitivity temperature sensing by employing an on-chip high-Q PDMS-coated toroidal microcavity. , 2011, , .                                                                               |      | 0         |

| #   | Article                                                                                                                                     | IF         | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 199 | Position-insensitive photon turnstiles in a diamond nanocrystal — Microcavity system. , 2011, , .                                           |            | 0              |
| 200 | Sensitivity enhancement and detection-limit improvement in whispering-gallery-mode-based biosensing. , 2012, , .                            |            | 0              |
| 201 | On-chip ultrahigh-Q microcavities for highly unidirectional emission. , 2013, , .                                                           |            | 0              |
| 202 | Spin separations of light at the air–glass interface for femtosecond laser pulses. Journal of Optics<br>(United Kingdom), 2013, 15, 014006. | 2.2        | 0              |
| 203 | Chaos-assisted unidirectional lasing emission from an ultrahigh-Q whispering gallery microcavity. , 2013, , .                               |            | 0              |
| 204 | A hybrid photonic-plasmonic cavity design for optical force enhancement. , 2013, , .                                                        |            | 0              |
| 205 | Direct Writing of Photonic Structures by Two-Photon Polymerization. MATEC Web of Conferences, 2013, 8, 06002.                               | 0.2        | 0              |
| 206 | Ultrahigh-Q microcavities with highly directional emission. , 2014, , .                                                                     |            | 0              |
| 207 | Ultrahigh-Q asymmetric microcavity photonics on a silicon chip. , 2015, , .                                                                 |            | 0              |
| 208 | Optical microcavity sensing: From reactive to dissipative interactions. , 2016, , .                                                         |            | 0              |
| 209 | Optical microcavity sensing: From dispersive to dissipative interactions. , 2016, , .                                                       |            | 0              |
| 210 | Sensors: Onâ€Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects (Adv.) Tj ETQ                               | q0.0.0 rgE | BT /Overlock : |
| 211 | Microcavity-Enhanced Surface Nonlinear Optics. , 2019, , .                                                                                  |            | 0              |
| 212 | Microdrop Concentrates Light Modes. Physics Magazine, 2020, 13, .                                                                           | 0.1        | 0              |
| 213 | Inherently directional lasing from a thermal-induced-deformation high-Q microcavity. , 2008, , .                                            |            | 0              |
| 214 | Single Nanoparticle Detection by Mode Splitting in Ultra-High-Q Microtoroid. , 2009, , .                                                    |            | 0              |
| 215 | Detection and sizing of single nanoparticles by mode splitting in an optical microresonator. , 2010, , .                                    |            | 0              |
| 216 | A high-Q exterior plasmonic whispering gallery mode in a metal-coated microresonator. , 2011, , .                                           |            | 0              |

| #   | Article                                                                                                                               | IF | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 217 | A composite cavity QED system deepening the strong coupling regime. , 2012, , .                                                       |    | Ο         |
| 218 | Chaos-assisted whispering-gallery-mode excitation using a sub-wavelength optical fiber. , 2013, , .                                   |    | 0         |
| 219 | Ultralow-threshold cavity Raman laser via free-space excitation. , 2013, , .                                                          |    | 0         |
| 220 | Label-free Detection of Single Nanoparticles and Lentiviruses Using an Optical Microcavity. , 2013, , .                               |    | 0         |
| 221 | Detection of mode splitting with microcavity Raman laser. , 2013, , .                                                                 |    | 0         |
| 222 | Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities. , 2014, , 1-26.                                                |    | 0         |
| 223 | Optimal laser cooling limits in the strong coupled cavity optomechanics. , 2014, , .                                                  |    | 0         |
| 224 | Microcavity Raman lasing and sensing application. , 2016, , .                                                                         |    | 0         |
| 225 | Measurement of free-space coupling efficiency in a deformed microcavity using stimulated Raman scattering. , 2016, , .                |    | 0         |
| 226 | Whispering-gallery-type Sensor for Single Nanoparticle Detection Using the Dissipative Interaction. , 2016, , .                       |    | 0         |
| 227 | Highly Sensitive Sensing with High-Q Whispering Gallery Microcavities. , 2017, , 147-176.                                             |    | 0         |
| 228 | Sizing particulates with nanofiber sensors. , 2018, , .                                                                               |    | 0         |
| 229 | Ultrasensitive colocalization detection based on plasmonic nanolithography with molecular-overlapped optical near-fields. , 2018, , . |    | 0         |
| 230 | Chaos-assisted cross-band microcombs. , 2019, , .                                                                                     |    | 0         |
| 231 | Manifold-enhanced photon transportation in a chaotic microresonator. , 2019, , .                                                      |    | 0         |
| 232 | Regular-orbit engineered momentum transformation in the mixed phase space of an asymmetric microcavity. , 2019, , .                   |    | 0         |
| 233 | Opto-plasmonic microfluidic sensor for molecular detection. , 2020, , .                                                               |    | 0         |
| 234 | Single nanoparticle detection with CMOS-compatible heterodyne interferometry. , 2020, , .                                             |    | 0         |

| #   | Article                                                         | IF | CITATIONS |
|-----|-----------------------------------------------------------------|----|-----------|
| 235 | Microcavity-enhanced surface nonlinear optics. , 2021, , .      |    | 0         |
| 236 | Ultra-high- <i>Q</i> Asymmetric Microcavity. , 2020, , 359-399. |    | 0         |