Guangming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253440/publications.pdf

Version: 2024-02-01

184 papers 7,991 citations

50276 46 h-index 80 g-index

184 all docs

184 docs citations

times ranked

184

6406 citing authors

#	Article	IF	CITATIONS
1	Current state of sludge production, management, treatment and disposal in China. Water Research, 2015, 78, 60-73.	11.3	849
2	Current state of sewage treatment in China. Water Research, 2014, 66, 85-98.	11.3	383
3	Historical development and prospects of photocatalysts for pollutant removal in water. Journal of Hazardous Materials, 2020, 395, 122599.	12.4	245
4	Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technology, 2007, 98, 207-210.	9.6	244
5	Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technology, 2009, 100, 1505-1509.	9.6	179
6	Tetracycline degradation by persulfate activated with magnetic \hat{I}^3 -Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway. Separation and Purification Technology, 2021, 259, 118156.	7.9	157
7	Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresource Technology, 2013, 146, 758-761.	9.6	149
8	Degradation properties of protein and carbohydrate during sludge anaerobic digestion. Bioresource Technology, 2015, 192, 126-130.	9.6	149
9	Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 2006, 14, 75-79.	9.3	127
10	Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization. Bioresource Technology, 2014, 168, 167-172.	9.6	125
11	Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry, 2006, 13, 446-450.	8.2	118
12	Disintegration of excess activated sludge with potassium permanganate: Feasibility, mechanisms and parameter optimization. Chemical Engineering Journal, 2014, 240, 420-425.	12.7	102
13	Ultrasonic reduction of excess sludge from the activated sludge system. Journal of Hazardous Materials, 2007, 145, 515-519.	12.4	101
14	Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity. Bioresource Technology, 2018, 247, 131-137.	9.6	101
15	Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI). Journal of Hazardous Materials, 2021, 407, 124394.	12.4	100
16	MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. Ultrasonics Sonochemistry, 2014, 21, 991-996.	8.2	99
17	Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresource Technology, 2014, 171, 330-335.	9.6	99
18	Enhancement of anaerobic sludge digestion by high-pressure homogenization. Bioresource Technology, 2012, 118, 496-501.	9.6	98

#	Article	IF	Citations
19	Diclofenac degradation in water by FeCeO x catalyzed H 2 O 2 : Influencing factors, mechanism and pathways. Journal of Hazardous Materials, 2017, 334, 150-159.	12.4	98
20	Heterogeneous activation of persulfate by Co3O4-CeO2 catalyst for diclofenac removal. Journal of Environmental Management, 2019, 234, 265-272.	7.8	88
21	Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere, 2021, 262, 127895.	8.2	86
22	Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: Different metabolic pathways. Bioresource Technology, 2011, 102, 9503-9508.	9.6	81
23	New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World Journal of Microbiology and Biotechnology, 2020, 36, 144.	3.6	78
24	Energy-efficient sludge sonication: Power and sludge characteristics. Bioresource Technology, 2008, 99, 9029-9031.	9.6	75
25	Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics Sonochemistry, 2009, 16, 334-338.	8.2	74
26	Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review. Bioresource Technology, 2019, 278, 383-399.	9.6	74
27	Emerging contaminants in surface waters in China—a short review. Environmental Research Letters, 2014, 9, 074018.	5.2	72
28	Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation. International Biodeterioration and Biodegradation, 2015, 102, 137-142.	3.9	72
29	Cavitation Chemistry of Polychlorinated Biphenyls:Â Decomposition Mechanisms and Rates. Environmental Science & Environmental	10.0	70
30	Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresource Technology, 2016, 221, 26-30.	9.6	67
31	Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 2020, 134, 110335.	16.4	66
32	Microbial production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 2014, 98, 7349-7357.	3.6	63
33	Vertical microplastic distribution in sediments of Fuhe River estuary to Baiyangdian Wetland in Northern China. Chemosphere, 2021, 280, 130800.	8.2	63
34	Ultrasonic damages on cyanobacterial photosynthesis. Ultrasonics Sonochemistry, 2006, 13, 501-505.	8.2	62
35	Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources. Bioresource Technology, 2015, 179, 505-509.	9.6	61
36	Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. Bioresource Technology, 2020, 299, 122648.	9.6	61

#	Article	IF	Citations
37	Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces, 2005, 41, 197-201.	5.0	60
38	Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition. Separation and Purification Technology, 2012, 84, 46-51.	7.9	60
39	Preparation of FeCeO by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrasonics Sonochemistry, 2016, 32, 231-240.	8.2	58
40	Brewery wastewater treatment and resource recovery through long term continuous-mode operation in pilot photosynthetic bacteria-membrane bioreactor. Science of the Total Environment, 2019, 646, 196-205.	8.0	57
41	Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment. Journal of Hazardous Materials, 2009, 164, 1105-1109.	12.4	53
42	Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod. Bioresource Technology, 2015, 190, 196-200.	9.6	53
43	Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production. Bioresource Technology, 2017, 241, 993-997.	9.6	53
44	Using acoustic cavitation to improve the bio-activity of activated sludge. Bioresource Technology, 2008, 99, 1497-1502.	9.6	52
45	Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresource Technology, 2012, 119, 55-59.	9.6	52
46	BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical. Chinese Journal of Catalysis, 2020, 41, 464-473.	14.0	51
47	Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth. Journal of Hazardous Materials, 2022, 424, 127554.	12.4	49
48	A novel wastewater treatment and biomass cultivation system combining photosynthetic bacteria and membrane bioreactor technology. Desalination, 2013, 322, 176-181.	8.2	48
49	Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. Journal of Environmental Sciences, 2020, 96, 109-116.	6.1	47
50	Rapid degradation of dyes in water by magnetic Fe 0 /Fe 3 O 4 /graphene composites. Journal of Environmental Sciences, 2016, 44, 148-157.	6.1	45
51	Rumen fluid fermentation for enhancement of hydrolysis and acidification of grass clipping. Journal of Environmental Management, 2018, 220, 142-148.	7.8	45
52	Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). Bioresource Technology, 2016, 200, 245-252.	9.6	44
53	Sonocatalytic degradation of diclofenac with FeCeOx particles in water. Ultrasonics Sonochemistry, 2017, 34, 418-425.	8.2	43
54	One-step treatment and resource recovery of high-concentration non-toxic organic wastewater by photosynthetic bacteria. Bioresource Technology, 2018, 251, 121-127.	9.6	43

#	Article	IF	CITATIONS
55	Fe0-H2O2 for advanced treatment of citric acid wastewater: Detailed study of catalyst after several times use. Chemical Engineering Journal, 2018, 336, 233-240.	12.7	43
56	Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst. Journal of Environmental Management, 2016, 182, 367-373.	7.8	42
57	Enhancement of corn stover hydrolysis with rumen fluid pretreatment at different solid contents: Effect, structural changes and enzymes participation. International Biodeterioration and Biodegradation, 2017, 119, 405-412.	3.9	42
58	Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresource Technology, 2012, 123, 514-519.	9.6	41
59	Ultrasonic impregnation of MnO 2 /CeO 2 and its application in catalytic sono-degradation of methyl orange. Journal of Environmental Management, 2018, 205, 134-141.	7.8	41
60	Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment. Bioresource Technology, 2019, 274, 97-104.	9.6	41
61	Ultrasonic reduction of excess sludge from activated sludge system: Energy efficiency improvement via operation optimization. Ultrasonics Sonochemistry, 2011, 18, 99-103.	8.2	40
62	Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresource Technology, 2019, 274, 496-501.	9.6	40
63	Photosynthetic bacteria treatment of synthetic soybean wastewater: Direct degradation of macromolecules. Bioresource Technology, 2010, 101, 7672-7674.	9.6	38
64	Enhancement of carotenoid and bacteriochlorophyll by high salinity stress in photosynthetic bacteria. International Biodeterioration and Biodegradation, 2017, 121, 91-96.	3.9	38
65	Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment. Bioresource Technology, 2017, 245, 1277-1281.	9.6	38
66	Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production. Bioresource Technology, 2019, 286, 121378.	9.6	38
67	Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum: Hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure. Waste Management, 2021, 124, 235-243.	7.4	38
68	High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility. Bioresource Technology, 2015, 181, 270-274.	9.6	37
69	An efficient CuO-γFe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism. Chemosphere, 2020, 242, 125191.	8.2	36
70	Supercritical Water Oxidation of Nitrobenzene. Industrial & Engineering Chemistry Research, 2003, 42, 285-289.	3.7	35
71	Treatment of soybean wastewater by a wild strain Rhodobacter sphaeroides and to produce protein under natural conditions. Frontiers of Environmental Science and Engineering in China, 2010, 4, 334-339.	0.8	34
72	A High-Efficiency CuO/CeO2 Catalyst for Diclofenac Degradation in Fenton-Like System. Frontiers in Chemistry, 2019, 7, 796.	3.6	33

#	Article	IF	Citations
73	Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria. Journal of Environmental Sciences, 2015, 28, 43-46.	6.1	32
74	Enhanced Molecular Oxygen Activation on (001) Facets of Znâ€Doped BiOCl Nanosheets for Ciprofloxacin Degradation. Advanced Materials Interfaces, 2020, 7, 2000548.	3.7	32
75	Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance. Journal of Environmental Sciences, 2015, 28, 22-28.	6.1	31
76	Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust. Bioresource Technology, 2016, 205, 34-39.	9.6	31
77	Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Journal of Environmental Sciences, 2015, 33, 21-28.	6.1	30
78	Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria. Bioresource Technology, 2017, 232, 408-411.	9.6	30
79	MnCeO /diatomite catalyst for persulfate activation to degrade organic pollutants. Journal of Environmental Sciences, 2020, 89, 206-217.	6.1	30
80	Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production. Bioresource Technology, 2021, 342, 126004.	9.6	30
81	Enhancement of cell production in photosynthetic bacteria wastewater treatment by low-strength ultrasound. Bioresource Technology, 2014, 161, 451-454.	9.6	29
82	Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for HgO oxidation in the presence of NH3. Catalysis Communications, 2017, 100, 210-213.	3.3	29
83	Rice husk-based solid acid for efficient hydrolysis and saccharification of corncob. Bioresource Technology, 2019, 292, 121915.	9.6	29
84	Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification. Science of the Total Environment, 2020, 705, 135985.	8.0	29
85	MnO2/CeO2 for catalytic ultrasonic decolorization of methyl orange: Process parameters and mechanisms. Ultrasonics Sonochemistry, 2015, 27, 474-479.	8.2	28
86	Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). Bioresource Technology, 2016, 210, 146-152.	9.6	28
87	Removal of Algae by Sonication-Coagulation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1379-1390.	1.7	27
88	Effects and mechanism of diclofenac degradation in aqueous solution by US/ZnO. Ultrasonics Sonochemistry, 2017, 37, 676-685.	8.2	27
89	Advanced phosphate removal by La–Zr–Zn ternary oxide: Performance and mechanism. Journal of Alloys and Compounds, 2020, 817, 152745.	5.5	26
90	MnCeOX with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin. Ecotoxicology and Environmental Safety, 2020, 191, 110228.	6.0	26

#	Article	IF	Citations
91	NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 2017, 192, 150-155.	7.8	25
92	Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseudomonas palustris in a photobioreactor system. Bioresource Technology, 2019, 294, 122172.	9.6	24
93	Simultaneous in-situ remediation and fertilization of Cd-contaminated weak-alkaline farmland for wheat production. Journal of Environmental Management, 2019, 250, 109528.	7.8	24
94	Exogenous N-acyl-homoserine lactones promote the degradation of refractory organics in oligotrophic anaerobic granular sludge. Science of the Total Environment, 2021, 761, 143289.	8.0	24
95	Comparative study of high-pressure homogenization and alkaline-heat pretreatments for enhancing enzymatic hydrolysis and biogas production of grass clipping. International Biodeterioration and Biodegradation, 2015, 104, 477-481.	3.9	23
96	Carbide slag pretreatment enhances volatile fatty acid production in anaerobic fermentation of four grass biomasses. Energy Conversion and Management, 2019, 199, 112009.	9.2	23
97	Revealing the changes of bacterial community from water source to consumers tap: A full-scale investigation in eastern city of China. Journal of Environmental Sciences, 2020, 87, 331-340.	6.1	23
98	Zero excess sludge wastewater treatment with value-added substances recovery using photosynthetic bacteria. Journal of Cleaner Production, 2020, 250, 119581.	9.3	23
99	Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production. Bioresource Technology, 2022, 358, 127447.	9.6	23
100	Synthetic white spirit wastewater treatment and biomass recovery by photosynthetic bacteria: Feasibility and process influence factors. International Biodeterioration and Biodegradation, 2016, 113, 134-138.	3.9	22
101	Transformations, Inhibition and Inhibition Control Methods of Sulfur in Sludge Anaerobic Digestion: A Review. Current Organic Chemistry, 2016, 20, 2780-2789.	1.6	22
102	Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater nitrogen removal at low temperatures. Frontiers of Environmental Science and Engineering, 2014, 8, 967-972.	6.0	21
103	Benchmark study of photosynthetic bacteria bio-conversion of wastewater: Carbon source range, fundamental kinetics of substrate degradation and cell proliferation. Bioresource Technology Reports, 2018, 1, 31-38.	2.7	21
104	Biological treatment of high NH4+-N wastewater using an ammonia-tolerant photosynthetic bacteria strain (ISASWR2014). Chinese Journal of Chemical Engineering, 2015, 23, 1712-1715.	3.5	20
105	Microbiology community changes during the start-up and operation of a photosynthetic bacteria-membrane bioreactor for wastewater treatment. Bioresource Technology Reports, 2018, 1, 1-8.	2.7	20
106	Nitrogen metabolism in photosynthetic bacteria wastewater treatment: A novel nitrogen transformation pathway. Bioresource Technology, 2019, 294, 122162.	9.6	20
107	Thermo-carbide slag pretreatment of turfgrass pruning: Physical-chemical structure changes, reducing sugar production, and enzymatic hydrolysis kinetics. Energy Conversion and Management, 2018, 155, 169-174.	9.2	19
108	Green fabrication, characterization and water-oil separation properties of superhydrophilic/oleophobic grapefruit peel-derived aerogel. Applied Surface Science, 2021, 566, 150721.	6.1	19

#	Article	IF	Citations
109	Quantitative study of PNSB energy metabolism in degrading pollutants under weak light-micro oxygen condition. Bioresource Technology, 2011, 102, 4968-4973.	9.6	18
110	Feasibility study and process optimization of citric acid wastewater treatment and biomass production by photosynthetic bacteria. Desalination and Water Treatment, 2016, 57, 6261-6267.	1.0	18
111	Membrane concentrate treatment by photosynthetic bacteria: Feasibility and tolerance mechanism analysis. Bioresource Technology, 2018, 253, 378-381.	9.6	18
112	Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process. Environmental Technology (United Kingdom), 2018, 39, 74-82.	2,2	18
113	Thermo-carbide slag pretreatment of energy plants for enhancing enzymatic hydrolysis. Industrial Crops and Products, 2018, 120, 77-83.	5.2	18
114	Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater. Process Biochemistry, 2018, 72, 137-142.	3.7	18
115	Effects of dissolved oxygen on key enzyme activities during photosynthetic bacteria wastewater treatment. Process Biochemistry, 2019, 76, 165-170.	3.7	18
116	Functions of constructed wetland animals in water environment protection – A critical review. Science of the Total Environment, 2021, 760, 144038.	8.0	18
117	Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World Journal of Microbiology and Biotechnology, 2021, 37, 161.	3.6	18
118	Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment. Journal of Microbiology and Biotechnology, 2015, 25, 1920-1927.	2.1	18
119	Pre-magnetization by weak magnetic field enhancing FeO-Fenton process for wastewater treatment. Chemical Engineering Journal, 2018, 346, 120-126.	12.7	16
120	Iron Based Catalysts Used in Water Treatment Assisted by Ultrasound: A Mini Review. Frontiers in Chemistry, 2018, 6, 12.	3.6	16
121	Effect of low-intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties of extracellular polymeric substances. Ultrasonics Sonochemistry, 2021, 73, 105527.	8.2	16
122	Citric acid modulated preparation of CdS photocatalyst for efficient removal of Cr(VI) and methyl orange. Optical Materials, 2021, 121, 111604.	3.6	16
123	Fe–N complex biochar as a superior partner of sodium sulfide for methyl orange decolorization by combination of adsorption and reduction. Journal of Environmental Management, 2022, 316, 115213.	7.8	16
124	Tuning of BixOyCl formation with sonication time during ultrasound-hydrothermal preparation. Journal of Industrial and Engineering Chemistry, 2020, 84, 322-331.	5.8	15
125	Production of coenzyme Q10 by purple non-sulfur bacteria: Current development and future prospect. Journal of Cleaner Production, 2021, 307, 127326.	9.3	15
126	Ultrasonic degradation of trichloroacetonitrile, chloropicrin and bromobenzene: design factors and matrix effects. Journal of Environmental Management, 2000, 4, 219-224.	1.7	14

#	Article	IF	CITATIONS
127	Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology. Applied Biochemistry and Biotechnology, 2016, 179, 444-458.	2.9	14
128	Synchronously enhancing biogas production, sludge reduction, biogas desulfurization, and digestate treatment in sludge anaerobic digestion by adding K2FeO4. Environmental Science and Pollution Research, 2018, 25, 35154-35163.	5.3	14
129	Bioconversion of wastewater by photosynthetic bacteria: Nitrogen source range, fundamental kinetics of nitrogen removal, and biomass accumulation. Bioresource Technology Reports, 2018, 4, 9-15.	2.7	14
130	Extracellular polymeric substances trigger an increase in redox mediators for enhanced sludge methanogenesis. Environmental Research, 2020, 191, 110197.	7.5	14
131	The recent development of the aerobic granular sludge for industrial wastewater treatment: a mini review. Environmental Technology Reviews, 2020, 9, 55-66.	4.3	14
132	Enhancement of ultrasonic disintegration of sewage sludge by aeration. Journal of Environmental Sciences, 2016, 42, 163-167.	6.1	13
133	Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology. Environmental Technology (United) Tj ETQq1	1 0.7843⁄ 1 ⁄ ± rgBT	 Os verlock 1
134	Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment. Environmental Technology (United Kingdom), 2019, 40, 2147-2156.	2.2	13
135	Optimization of photosynthetic bacteria wastewater treatment and study of microbial species diversity. Desalination and Water Treatment, 2014, 52, 5357-5365.	1.0	12
136	Additives for photosynthetic bacteria wastewater treatment: Latest developments and future prospects. Bioresource Technology Reports, 2019, 7, 100229.	2.7	12
137	Production of photosynthetic bacteria using organic wastewater in photobioreactors in lieu of a culture medium in fermenters: From lab to pilot scale. Journal of Cleaner Production, 2020, 259, 120871.	9.3	12
138	Exogenous N-acyl-homoserine lactones accelerate resuscitation of starved anaerobic granular sludge after long-term stagnation. Bioresource Technology, 2021, 337, 125362.	9.6	12
139	Fabrication of Bi-Bi3O4Cl plasmon photocatalysts for removal of aqueous emerging contaminants under visible light. Journal of Environmental Sciences, 2022, 118, 87-100.	6.1	12
140	Effect of magnesium ion on crt gene expression in improving carotenoid yield of Rhodobacter sphaeroides. Archives of Microbiology, 2015, 197, 1101-1108.	2.2	11
141	Comparing three methods for photosynthetic bacteria separation and recycling during wastewater treatment. Desalination and Water Treatment, 2016, 57, 12467-12477.	1.0	11
142	Preparation of a magnetic N-Fe/AC catalyst for aqueous pharmaceutical treatment in heterogeneous sonication system. Journal of Environmental Management, 2017, 187, 201-211.	7.8	11
143	Biofilm bacterial community transition under water supply quality changes in drinking water distribution systems. Environmental Science: Water Research and Technology, 2018, 4, 644-653.	2.4	11
144	Advanced phosphate and nitrogen removal in water by La–Mg composite. Environmental Research, 2021, 193, 110529.	7.5	11

#	Article	IF	CITATIONS
145	Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter. Journal of Environmental Management, 2022, 301, 113859.	7.8	11
146	Effects of C/N ratio on pollution removal efficiency and cell proliferation during the bioconversion of wastewater by photosynthetic bacteria., 0, 156, 68-77.		11
147	Impacts of Fe2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. Journal of Environmental Sciences, 2018, 70, 11-19.	6.1	10
148	Progress in ultrasound-assisted extraction of the value-added products from microorganisms. World Journal of Microbiology and Biotechnology, 2021, 37, 71.	3.6	10
149	Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Frontiers in Microbiology, 2022, 13, 860749.	3.5	10
150	The impact of particulates on the aqueous sonication of bromobenzene. Chemosphere, 2002, 46, 59-66.	8.2	9
151	Ultrasonic pre-treatment of biosolid. International Journal of Biotechnology, 2008, 10, 26.	1.2	8
152	Sludge Conditioning by Sonication and Sonication-Chemical Methods. Procedia Environmental Sciences, 2012, 16, 368-377.	1.4	8
153	Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment. Water Science and Technology, 2016, 73, 382-388.	2.5	8
154	A special light-aerobic condition for photosynthetic bacteria-membrane bioreactor technology. Bioresource Technology, 2018, 268, 820-823.	9.6	8
155	Bioeffect of static magnetic field on photosynthetic bacteria: Evaluation of bioresources production and wastewater treatment efficiency. Water Environment Research, 2020, 92, 1131-1141.	2.7	8
156	Photosynthetic bacterial protein production from wastewater: Effects of C/N and light‑oxygen condition. Journal of Water Process Engineering, 2021, 44, 102361.	5.6	8
157	Critical review on ultrasound lysis-cryptic growth for sludge reduction. Journal of Environmental Chemical Engineering, 2021, 9, 106263.	6.7	7
158	Exploration of flashing light interaction effect on improving biomass, protein, and pigments production in photosynthetic bacteria wastewater treatment. Journal of Cleaner Production, 2022, 348, 131304.	9.3	7
159	Study on Subchronic Toxicity of Chlorine Dioxide and By-Products in Water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1347-1353.	1.7	6
160	Heavy-Metal Accumulation in Low-Sludge Wastewater Treatment Technique: Sonication-Cryptic Growth. Journal of Environmental Engineering, ASCE, 2012, 138, 248-251.	1.4	6
161	Enhancement of photosynthetic bacteria biomass production and wastewater treatment efficiency by zero-valent iron nanoparticles. Journal of Bioscience and Bioengineering, 2020, 130, 306-310.	2.2	6
162	Periodic oxygen supplementation drives efficient metabolism for enhancing valuable bioresource production in photosynthetic bacteria wastewater treatment. Bioresource Technology, 2022, 347, 126678.	9.6	6

#	Article	IF	CITATIONS
163	Enhancement of sludge gravitational thickening with weak ultrasound. Frontiers of Environmental Science and Engineering, 2012, 6, 753-760.	6.0	5
164	Enhanced degradation of nitrobenzene by combined ultrasonic irradiation and a zero-valent zinc catalyst. Desalination and Water Treatment, 2016, 57, 23856-23863.	1.0	5
165	Macrophage polarization induced by quinolone antibiotics at environmental residue level. International Immunopharmacology, 2022, 106, 108596.	3.8	5
166	Impacts of Power Density on Heavy Metal Release During Ultrasonic Sludge Treatment Process. Chinese Journal of Chemical Engineering, 2014, 22, 469-473.	3.5	4
167	Ultrasound sludge lysis: heavy metals stability enhancement. Desalination and Water Treatment, 2015, 53, 367-372.	1.0	4
168	FeNiCeOx ternary catalyst prepared by ultrasonic impregnation method for diclofenac removal in Fenton-like system. Water Science and Technology, 2019, 79, 1675-1684.	2.5	4
169	Biokinetic and biotransformation of nitrogen during photosynthetic bacteria wastewater treatment. Environmental Technology (United Kingdom), 2020, 41, 1888-1895.	2.2	4
170	Lactic acid wastewater treatment by photosynthetic bacteria and simultaneous production of protein and pigments. Environmental Technology (United Kingdom), 2020, , 1-8.	2.2	4
171	Recent advances in constructed wetland for wastewater treatment. Bioresource Technology, 2021, 321, 124378.	9.6	3
172	A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system. Water Science and Technology, 2016, 74, 616-624.	2.5	2
173	Preparation of foaming agent from photosynthetic bacteria liquid by direct thermal alkaline treatment. Construction and Building Materials, 2020, 238, 117715.	7.2	2
174	Biological nutrients removal and recovery. Bioresource Technology, 2021, 320, 124377.	9.6	2
175	Purifying Heavily Polluted River Water Using Immobilized Native Photosynthetic Bacteria. Journal of Environmental Engineering, ASCE, 2021, 147, .	1.4	2
176	Distribution, ecological risk assessment and source identification of pollutants in soils of different land-use types in degraded wetlands. PeerJ, 2022, 10, e12885.	2.0	2
177	Sonolytic degradation of 2-chlorobiphenyl. Central South University, 2004, 11, 309-311.	0.5	1
178	Fate and chemical fraction distribution changes of arsenic and mercury during ultrasonic sludge treatment process. Desalination and Water Treatment, 2012, 48, 148-154.	1.0	1
179	Flashing light alleviates photoinhibition and promotes biomass concentration in purple non– sulfur bacteria wastewater treatment. Bioresource Technology, 2022, 343, 126107.	9.6	1
180	Optimization of low-intensity ultrasonic irradiation for low-strength sewage treatment in anaerobic baffled reactor. Journal of Environmental Chemical Engineering, 2022, , 108022.	6.7	1

#	Article	IF	CITATIONS
181	Ultrasonic removal of cyanobacteria. International Journal of Environmental Technology and Management, 2004, 4, 266.	0.2	O
182	A modified multivariate EWMA control chart for monitoring process small shifts. , 2011, , .		0
183	Pilot study of low-temperature low-turbidity reservoir water treatment using dual-media filtration with micro-flocculation. , $2011,\ldots$		0
184	BAF-SCAD for advanced wastewater nitrogen removal. , 2011, , .		0