Boon Chong Goh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2534396/publications.pdf

Version: 2024-02-01

623734 677142 28 907 14 22 citations g-index h-index papers 30 30 30 1716 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular dynamics simulations of large macromolecular complexes. Current Opinion in Structural Biology, 2015, 31, 64-74.	5.7	347
2	Structural determinants for peptide-bond formation by asparaginyl ligases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11737-11746.	7.1	81
3	All-Atom Molecular Dynamics of Virus Capsids as Drug Targets. Journal of Physical Chemistry Letters, 2016, 7, 1836-1844.	4.6	73
4	Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Annual Review of Biophysics, 2016, 45, 253-278.	10.0	67
5	Allosteric pyruvate kinase-based "logic gate―synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nature Communications, 2017, 8, 1986.	12.8	49
6	Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing. Parallel Computing, 2016, 55, 17-27.	2.1	37
7	Atomic Modeling of an Immature Retroviral Lattice Using Molecular Dynamics and Mutagenesis. Structure, 2015, 23, 1414-1425.	3.3	35
8	Molecular Mechanisms of Inhibition of Influenza by Surfactant Protein D Revealed by Large-Scale Molecular Dynamics Simulation. Biochemistry, 2013, 52, 8527-8538.	2.5	30
9	Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catalysis, 2020, 10, 8825-8834.	11.2	29
10	Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry, 2016, 55, 3692-3701.	2.5	25
11	Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnology and Bioengineering, 2017, 114, 1331-1342.	3.3	25
12	Length of encapsidated cargo impacts stability and structure of <i>in vitro </i> assembled alphavirus core-like particles. Journal of Physics Condensed Matter, 2017, 29, 484003.	1.8	19
13	Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Frontiers in Microbiology, 2020, 11, 574739.	3.5	18
14	All-Atom MD Simulations of the HBV Capsid Complexed with AT130 Reveal Secondary and Tertiary Structural Changes and Mechanisms of Allostery. Viruses, 2021, 13, 564.	3.3	15
15	Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly. Journal of Virology, 2016, 90, 5700-5714.	3.4	12
16	Novel Phage Lysin Abp013 against Acinetobacter baumannii. Antibiotics, 2022, 11, 169.	3.7	11
17	Crystal structure of the periplasmic sensor domain of histidine kinase VbrK suggests indirect sensing of β-lactam antibiotics. Journal of Structural Biology, 2020, 212, 107610.	2.8	7
18	The mechanism of antiparallel \hat{l}^2 -sheet formation based on conditioned self-avoiding walk. European Physical Journal E, 2012, 35, 9704.	1.6	6

#	Article	IF	CITATIONS
19	Structural Mimicry of the Dengue Virus Envelope Glycoprotein Revealed by the Crystallographic Study of an Idiotype–Anti-idiotype Fab Complex. Journal of Virology, 2017, 91, .	3.4	6
20	Cutibacterium acnes: Much ado about maybe nothing much. Experimental Dermatology, 2021, 30, 1471-1476.	2.9	6
21	The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLoS ONE, 2020, 15, e0241019.	2.5	6
22	Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA-binding site. Journal of Biological Chemistry, 2022, 298, 101571.	3 . 4	2
23	Mechanism of Interaction Between Lung Surfactant Protein-D and Influenza A Virus Hemagglutinin. Biophysical Journal, 2012, 102, 63a.	0.5	O
24	Effect of Two Point Mutations in Lung Surfactant Protein-D on Enhancing its Inhibition Activity Against Influenza a Virus. Biophysical Journal, 2013, 104, 556a.	0.5	0
25	Unraveling the Dual Role of Surfactant Protein a at Atomistic Detail. Biophysical Journal, 2015, 108, 255a-256a.	0.5	О
26	de novo Design and in silico Optimization of Antibody-Like Binders Targeting Ebola Viral Antigen. Biophysical Journal, 2016, 110, 537a.	0.5	0
27	Elucidating the Structure, Dynamics and Functions of an Immature Retrovirus in Atomistic Detail. Biophysical Journal, 2016, 110, 383a.	0.5	0
28	inPhocus: Current State and Challenges of Phage Research in Singapore. Phage, 2022, 3, 6-11.	1.7	0