Ravi Naidu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253330/publications.pdf

Version: 2024-02-01

478 papers

29,383 citations

4658 85 h-index 9861

g-index

482 all docs

482 docs citations

times ranked

482

27764 citing authors

#	Article	IF	Citations
1	Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterialâ€'Microalgal Consortia. Microbial Ecology, 2022, 83, 596-607.	2.8	19
2	Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. Journal of Hazardous Materials, 2022, 421, 126757.	12.4	12
3	Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging. Chemosphere, 2022, 286, 131736.	8.2	46
4	Mechanistic insights of hexavalent chromium remediation by halloysite-supported copper nanoclusters. Journal of Hazardous Materials, 2022, 421, 126812.	12.4	17
5	Applying Raman imaging to capture and identify microplastics and nanoplastics in the garden. Journal of Hazardous Materials, 2022, 426, 127788.	12.4	11
6	Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China. Chemosphere, 2022, 289, 133207.	8.2	21
7	Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Science of the Total Environment, 2022, 810, 152296.	8.0	28
8	Dual-Principal Component Analysis of the Raman Spectrum Matrix to Automatically Identify and Visualize Microplastics and Nanoplastics. Analytical Chemistry, 2022, 94, 3150-3157.	6.5	32
9	Global Exposure to Per- and Polyfluoroalkyl Substances and Associated Burden of Low Birthweight. Environmental Science & Envir	10.0	20
10	Magnetite Nanoparticles Loaded into Halloysite Nanotubes for Arsenic(V) Removal from Water. ACS Applied Nano Materials, 2022, 5, 12063-12076.	5.0	14
11	Magnetic responsive mesoporous alginate \hat{l}^2 -cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. International Journal of Biological Macromolecules, 2022, 207, 826-840.	7.5	44
12	Capability of Organically Modified Montmorillonite Nanoclay as a Carrier for Imidacloprid Delivery. ACS Agricultural Science and Technology, 2022, 2, 57-68.	2.3	9
13	Role of beryllium in the environment: Insights from specific sorption and precipitation studies under different conditions. Science of the Total Environment, 2022, 838, 155698.	8.0	4
14	Magnetic biochar for removal of perfluorooctane sulphonate (PFOS): Interfacial interaction and adsorption mechanism. Environmental Technology and Innovation, 2022, 28, 102593.	6.1	16
15	Effects of Phosphate, Red Mud, and Biochar on As, Cd, and Cu Immobilization and Enzymatic Activity in a Co-Contaminated Soil. Processes, 2022, 10, 1127.	2.8	2
16	Smectite-supported chain of iron nanoparticle beads for efficient clean-up of arsenate contaminated water. Journal of Hazardous Materials, 2021, 407, 124396.	12.4	11
17	The influence of long-term ageing on arsenic ecotoxicity in soil. Journal of Hazardous Materials, 2021, 407, 124819.	12.4	15
18	The influence of soil properties on sorption-desorption of beryllium at a low level radioactive legacy waste site. Chemosphere, 2021, 268, 129338.	8.2	11

#	Article	IF	Citations
19	Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses. Environmental Science & Environmental Science & 2021, 55, 1779-1789.	10.0	36
20	Identification and visualisation of microplastics / nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images. Water Research, 2021, 194, 116913.	11.3	56
21	Synthesis of environmentally benign ultra-small copper nanoclusters-halloysite composites and their catalytic performance on contrasting azo dyes. Applied Surface Science, 2021, 546, 149122.	6.1	27
22	Mesoporous Biopolymer Architecture Enhanced the Adsorption and Selectivity of Aqueous Heavy-Metal lons. ACS Omega, 2021, 6, 15316-15331.	3.5	19
23	Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere, 2021, 271, 129566.	8.2	32
24	Chronic and Transgenerational Effects of Polystyrene Microplastics at Environmentally Relevant Concentrations in Earthworms (<i>Eisenia fetida</i>). Environmental Toxicology and Chemistry, 2021, 40, 2240-2246.	4.3	46
25	Preface â€" Recent advances in cleanup of contaminated sites. Journal of Soils and Sediments, 2021, 21, 2731-2731.	3.0	0
26	Minimizing hazardous impact of food waste in a circular economy – Advances in resource recovery through green strategies. Journal of Hazardous Materials, 2021, 416, 126154.	12.4	50
27	Electrokinetic remediation of petroleum hydrocarbon contaminated soil (I). Environmental Technology and Innovation, 2021, 23, 101585.	6.1	15
28	Response of Iron and Cadmium on Yield and Yield Components of Rice and Translocation in Grain: Health Risk Estimation. Frontiers in Environmental Science, 2021, 9, .	3.3	9
29	Impact of Nitrate and Ammonium Concentrations on Co-Culturing of Tetradesmus obliquus IS2 with Variovorax paradoxus IS1 as Revealed by Phenotypic Responses. Microbial Ecology, 2021, , 1.	2.8	4
30	Influence of Iron Plaque on Accumulation and Translocation of Cadmium by Rice Seedlings. Sustainability, 2021, 13, 10307.	3.2	5
31	Medium composition affects the heavy metal tolerance of microalgae: a comparison. Journal of Applied Phycology, 2021, 33, 3683-3695.	2.8	4
32	Varietal variation and formation of iron plaques on cadmium accumulation in rice seedling. Environmental Advances, 2021, 5, 100075.	4.8	16
33	Magnetically separable mesoporous alginate polymer beads assist adequate removal of aqueous methylene blue over broad solution pH. Journal of Cleaner Production, 2021, 319, 128694.	9.3	20
34	Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 2021, 156, 106616.	10.0	193
35	Single and Binary Adsorption Behaviour and Mechanisms of Cd2+, Cu2+ and Ni2+ onto Modified Biochar in Aqueous Solutions. Processes, 2021, 9, 1829.	2.8	12
36	Response of phosphorus sensitive plants to arsenate. Environmental Technology and Innovation, 2021, 24, 102008.	6.1	4

#	Article	IF	CITATIONS
37	Highly Stable and Nontoxic Lanthanum-Treated Activated Palygorskite for the Removal of Lake Water Phosphorus. Processes, 2021, 9, 1960.	2.8	1
38	Desorption and Migration Behavior of Beryllium from Contaminated Soils: Insights for Risk-Based Management. ACS Omega, 2021, 6, 30686-30697.	3.5	6
39	Bioaccumulation and Tolerance Indices of Cadmium in Wheat Plants Grown in Cadmium-Spiked Soil: Health Risk Assessment. Frontiers in Environmental Science, 2021, 9, .	3.3	0
40	Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Critical Reviews in Environmental Science and Technology, 2020, 50, 135-215.	12.8	36
41	Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Science of the Total Environment, 2020, 702, 134893.	8.0	122
42	Hollow Porous Silica Nanosphere with Single Large Pore Opening for Pesticide Loading and Delivery. ACS Applied Nano Materials, 2020, 3, 105-113.	5.0	33
43	Modified clays alter diversity and respiration profile of microorganisms in longâ€term hydrocarbon and metal coâ€contaminated soil. Microbial Biotechnology, 2020, 13, 522-534.	4.2	11
44	Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 2020, 744, 140714.	8.0	313
45	Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 13497-13529.	5.2	31
46	Bioavailability and Bioaccessibility of Hydrophobic Organic Contaminants in Soil and Associated Desorption-Based Measurements. Handbook of Environmental Chemistry, 2020, , 293-350.	0.4	5
47	Identification and visualisation of microplastics/ nanoplastics by Raman imaging (ii): Smaller than the diffraction limit of laser?. Water Research, 2020, 183, 116046.	11.3	78
48	Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100Ânm. Water Research, 2020, 174, 115658.	11.3	169
49	Adsorption of Perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar. Environmental Technology and Innovation, 2020, 19, 100816.	6.1	51
50	Bioaccumulation of benzo[a]pyrene nonextractable residues in soil by Eisenia fetida and associated background-level sublethal genotoxicity (DNA single-strand breaks). Science of the Total Environment, 2019, 691, 605-610.	8.0	12
51	In vitro gastrointestinal mobilization and oral bioaccessibility of PAHs in contrasting soils and associated cancer risks: Focus on PAH nonextractable residues. Environment International, 2019, 133, 105186.	10.0	18
52	Biocompatible functionalisation of nanoclays for improved environmental remediation. Chemical Society Reviews, 2019, 48, 3740-3770.	38.1	104
53	Identification and visualisation of microplastics by Raman mapping. Analytica Chimica Acta, 2019, 1077, 191-199.	5.4	145
54	Nanobiopesticides: Composition and preparation methods. , 2019, , 69-131.		16

#	Article	IF	CITATIONS
55	Using 2003–2014 U.S. NHANES data to determine the associations between per- and polyfluoroalkyl substances and cholesterol: Trend and implications. Ecotoxicology and Environmental Safety, 2019, 173, 461-468.	6.0	54
56	The potential of mercury resistant purple nonsulfur bacteria as effective biosorbents to remove mercury from contaminated areas. Biocatalysis and Agricultural Biotechnology, 2019, 17, 93-103.	3.1	22
57	Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment. Journal of Hazardous Materials, 2019, 368, 72-80.	12.4	10
58	Bioavailability and risk estimation of heavy metal(loid)s in chromated copper arsenate treated timber after remediation for utilisation as garden materials. Chemosphere, 2019, 216, 757-765.	8.2	7
59	The source of lead determines the relationship between soil properties and lead bioaccessibility. Environmental Pollution, 2019, 246, 53-59.	7.5	32
60	Removal of PFAS from aqueous solution using PbO2 from lead-acid battery. Chemosphere, 2019, 219, 36-44.	8.2	32
61	Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. Science of the Total Environment, 2019, 651, 813-821.	8.0	81
62	Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 183-188.	3.9	7
63	Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. Chemosphere, 2019, 214, 771-780.	8.2	27
64	Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Chemosphere, 2019, 214, 606-613.	8.2	33
65	Environmental applications of thermally modified and acid activated clay minerals: Current status of the art. Environmental Technology and Innovation, 2019, 13, 383-397.	6.1	65
66	Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 2018, 628-629, 1582-1599.	8.0	144
67	Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotoxicology and Environmental Safety, 2018, 156, 434-442.	6.0	37
68	Contamination, Fate and Management of Metals in Shooting Range Soils—a Review. Current Pollution Reports, 2018, 4, 175-187.	6.6	33
69	Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Bioresource Technology, 2018, 256, 254-258.	9.6	60
70	The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 2018, 199, 737-746.	8.2	119
71	Effect of surface-tailored biocompatible organoclay on the bioavailability and mineralization of polycyclic aromatic hydrocarbons in long-term contaminated soil. Environmental Technology and Innovation, 2018, 10, 152-161.	6.1	7
72	Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology and Innovation, 2018, 10, 175-193.	6.1	138

#	Article	IF	CITATIONS
73	Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Scientific Reports, 2018, 8, 2100.	3.3	37
74	Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone. Environmental Geochemistry and Health, 2018, 40, 887-902.	3.4	12
75	Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 2018, 625, 320-335.	8.0	374
76	Rhodococcus wratislaviensis strain 9: An efficient p -nitrophenol degrader with a great potential for bioremediation. Journal of Hazardous Materials, 2018, 347, 176-183.	12.4	56
77	As(V) removal from aqueous solution using a low-cost adsorbent coir pith ash: Equilibrium and kinetic study. Environmental Technology and Innovation, 2018, 9, 198-209.	6.1	16
78	Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Science of the Total Environment, 2018, 636, 968-974.	8.0	120
79	Chronic and reproductive toxicity of cadmium, zinc, and lead in binary and tertiary mixtures to the earthworm (Eisenia fetida). Journal of Soils and Sediments, 2018, 18, 1602-1609.	3.0	8
80	Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environmental Science and Pollution Research, 2018, 25, 20430-20438.	5.3	96
81	Comparative values of various wastewater streams as a soil nutrient source. Chemosphere, 2018, 192, 272-281.	8.2	24
82	Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Science of the Total Environment, 2018, 613-614, 1140-1153.	8.0	66
83	Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA. Chemosphere, 2018, 191, 381-388.	8.2	59
84	Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environmental Technology and Innovation, 2018, 9, 303-322.	6.1	82
85	Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity. Ecotoxicology and Environmental Safety, 2018, 147, 266-274.	6.0	39
86	Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 2018, 610-611, 1457-1466.	8.0	74
87	In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Chemosphere, 2018, 193, 618-624.	8.2	34
88	Copper interactions on arsenic bioavailability and phytotoxicity in soil. Ecotoxicology and Environmental Safety, 2018, 148, 738-746.	6.0	16
89	Facile Oneâ€Pot Synthesis of Activated Porous Biocarbons with a High Nitrogen Content for CO ₂ Capture. ChemNanoMat, 2018, 4, 281-290.	2.8	40
90	Waste mineral powder supplies plant available potassium: Evaluation of chemical and biological interventions. Journal of Geochemical Exploration, 2018, 186, 114-120.	3.2	16

#	Article	IF	Citations
91	Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. Chemosphere, 2018, 193, 625-634.	8.2	50
92	Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of the Total Environment, 2018, 618, 199-209.	8.0	41
93	Enhanced Recovery of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils Using Exhaustive Methanolic and Nonmethanolic Alkaline Treatments. Analytical Chemistry, 2018, 90, 13104-13111.	6.5	8
94	Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environmental Technology and Innovation, 2018, 12, 243-260.	6.1	19
95	Core–Shell Interface-Oriented Synthesis of Bowl-Structured Hollow Silica Nanospheres Using Self-Assembled ABC Triblock Copolymeric Micelles. Langmuir, 2018, 34, 13584-13596.	3.5	9
96	Time-Dependent Remobilization of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils: Effects of Aging, Spiked Concentration, and Soil Properties. Environmental Science & Environmental Scien	10.0	26
97	Use of Routine Soil Tests to Estimate Pb Bioaccessibility. Environmental Science & Estimate Pb Bioacce	10.0	7
98	Reduction in arsenic toxicity and uptake in rice (Oryza sativa L.) by As-resistant purple nonsulfur bacteria. Environmental Science and Pollution Research, 2018, 25, 36530-36544.	5.3	42
99	The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm—A Review. Soil Systems, 2018, 2, 51.	2.6	82
100	Draft Genome Sequence of Microbacterium esteraromaticum MM1, a Bacterium That Hydrolyzes the Organophosphorus Pesticide Fenamiphos, Isolated from Golf Course Soil. Microbiology Resource Announcements, 2018, 7, .	0.6	12
101	Using Qmsax* to evaluate the reasonable As(V) adsorption on soils with different pH. Ecotoxicology and Environmental Safety, 2018, 160, 308-315.	6.0	7
102	Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environmental Science and Pollution Research, 2018, 25, 25896-25905.	5.3	40
103	Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil. Environmental Science and Pollution Research, 2018, 25, 26351-26360.	5.3	5
104	A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution, 2018, 242, 307-319.	7.5	175
105	Electrochemical Proof of Fluorophilic Interaction among Fluoro arbon Chains. Electroanalysis, 2018, 30, 2349-2355.	2.9	10
106	A Pooled Data Analysis to Determine the Relationship between Selected Metals and Arsenic Bioavailability in Soil. International Journal of Environmental Research and Public Health, 2018, 15, 888.	2.6	8
107	Arsenic and Other Elemental Concentrations in Mushrooms from Bangladesh: Health Risks. International Journal of Environmental Research and Public Health, 2018, 15, 919.	2.6	29
108	Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology, 2018, 102, 7351-7363.	3.6	60

#	Article	IF	CITATIONS
109	Comparison of Single- and Sequential-Solvent Extractions of Total Extractable Benzo[<i>a</i>)pyrene Fractions in Contrasting Soils. Analytical Chemistry, 2018, 90, 11703-11709.	6.5	14
110	Bio-Waste Management in Subtropical Soils of India. Advances in Agronomy, 2018, , 87-148.	5.2	29
111	Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere, 2018, 212, 755-767.	8.2	139
112	Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma, 2018, 330, 117-124.	5.1	82
113	Case study of testing heavyâ€particle concentratorâ€aided remediation of leadâ€contaminated rifle shooting range soil. Remediation, 2018, 28, 67-74.	2.4	5
114	Green mango peel-nanozerovalent iron activated persulfate oxidation of petroleum hydrocarbons in oil sludge contaminated soil. Environmental Technology and Innovation, 2018, 11, 142-152.	6.1	38
115	Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Management, 2017, 186, 277-284.	7.8	124
116	Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecological Engineering, 2017, 101, 3-8.	3.6	54
117	Electrochemical switch on-off response of a self-assembled monolayer (SAM) upon exposure to perfluorooctanoic acid (PFOA). Journal of Electroanalytical Chemistry, 2017, 785, 249-254.	3.8	10
118	Bioremediation of mercury: not properly exploited in contaminated soils!. Applied Microbiology and Biotechnology, 2017, 101, 963-976.	3.6	54
119	Electrochemical Detection of Thioetherâ€Based Fluorosurfactants in Aqueous Filmâ€Forming Foam (AFFF). Electroanalysis, 2017, 29, 1095-1102.	2.9	5
120	Pyrogenic carbon in Australian soils. Science of the Total Environment, 2017, 586, 849-857.	8.0	13
121	Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil. Chemosphere, 2017, 175, 294-299.	8.2	26
122	Nitrification potential in the rhizosphere of Australian native vegetation. Soil Research, 2017, 55, 58.	1.1	12
123	Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon, 2017, 116, 448-455.	10.3	262
124	Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: Possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Research, 2017, 23, 223-232.	4.6	46
125	Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study. Environmental Pollution, 2017, 223, 255-265.	7.5	28
126	Application of a biodegradable chelate to enhance subsequent chemical stabilisation of Pb in shooting range soils. Journal of Soils and Sediments, 2017, 17, 1696-1705.	3.0	8

#	Article	IF	Citations
127	Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 2017, 180, 564-573.	8.2	60
128	Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ecotoxicology and Environmental Safety, 2017, 142, 538-543.	6.0	34
129	Variation in arsenic bioavailability in rice genotypes using swine model: An animal study. Science of the Total Environment, 2017, 599-600, 324-331.	8.0	31
130	Toxicity of Inorganic Mercury to Native Australian Grass Grown in Three Different Soils. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 850-855.	2.7	11
131	Interactive effects of PAHs and heavy metal mixtures on oxidative stress in Chlorella sp. MM3 as determined by artificial neural network and genetic algorithm. Algal Research, 2017, 21, 203-212.	4.6	31
132	Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control, 2017, 82, 196-202.	5.5	66
133	Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environment International, 2017, 105, 86-94.	10.0	38
134	Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 2017, 47, 795-876.	12.8	72
135	Measurement of soil lead bioavailability and influence of soil types and properties: A review. Chemosphere, 2017, 184, 27-42.	8.2	55
136	Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Science of the Total Environment, 2017, 601-602, 122-131.	8.0	48
137	Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts. Environmental Science and Pollution Research, 2017, 24, 17056-17067.	5.3	8
138	Ecotoxicity of measured concentrations of soil-applied diesel: Effects on earthworm survival, dehydrogenase, urease and nitrification activities. Applied Soil Ecology, 2017, 119, 1-7.	4.3	26
139	Development of a whole cell biosensor for the detection of inorganic mercury. Environmental Technology and Innovation, 2017, 8, 64-70.	6.1	27
140	Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environmental Technology and Innovation, 2017, 8, 113-125.	6.1	49
141	Evaluation of relative bioaccessibility leaching procedure for an assessment of lead bioavailability in mixed metal contaminated soils. Environmental Technology and Innovation, 2017, 7, 229-238.	6.1	6
142	Bioaccumulation and toxicity of lead, influenced by edaphic factors: using earthworms to study the effect of Pb on ecological health. Journal of Soils and Sediments, 2017, 17, 1064-1072.	3.0	21
143	Polycyclic aromatic hydrocarbons (PAHs) degradation potential, surfactant production, metal resistance and enzymatic activity of two novel cellulose-degrading bacteria isolated from koala faeces. Environmental Earth Sciences, 2017, 76, 1.	2.7	14
144	Transcriptome analysis of Eisenia fetida chronically exposed to benzo(a)pyrene. Environmental Technology and Innovation, 2017, 7, 54-62.	6.1	5

#	Article	IF	Citations
145	Mercury toxicity to terrestrial biota. Ecological Indicators, 2017, 74, 451-462.	6.3	88
146	Zinc-arsenic interactions in soil: Solubility, toxicity and uptake. Chemosphere, 2017, 187, 357-367.	8.2	22
147	Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environment International, 2017, 108, 103-118.	10.0	78
148	Nutrient Budgeting as an Approach to Assess and Manage the Impacts of Long-Term Irrigation Using Abattoir Wastewater. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	2
149	Soil and brownfield bioremediation. Microbial Biotechnology, 2017, 10, 1244-1249.	4.2	82
150	Synthesis of porous bentonite organoclay granule and its adsorption of tributyltin. Applied Clay Science, 2017, 148, 131-137.	5.2	9
151	Heteroatom functionalized activated porous biocarbons and their excellent performance forÂCO ₂ capture at high pressure. Journal of Materials Chemistry A, 2017, 5, 21196-21204.	10.3	91
152	Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria: Health risk assessment. Environmental Technology and Innovation, 2017, 8, 164-171.	6.1	5
153	Effect of irrigation and genotypes towards reduction in arsenic load in rice. Science of the Total Environment, 2017, 609, 311-318.	8.0	41
154	Electrochemical Studies on Selfâ€assembled Monolayer (SAM) Upon Exposure to Anionic Surfactants: PFOA, PFOS, SDS and SDBS. Electroanalysis, 2017, 29, 2155-2160.	2.9	7
155	Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: Material characterization and regeneration studies. Chemosphere, 2017, 186, 1006-1015.	8.2	28
156	Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO ₂ Adsorption. ACS Applied Materials & Diterfaces, 2017, 9, 29782-29793.	8.0	125
157	Enhanced removal of nitrate in an integrated electrochemical-adsorption system. Separation and Purification Technology, 2017, 189, 260-266.	7.9	42
158	Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a Tropical Open Lagoon, Southwest Nigeria. Environmental Technology and Innovation, 2017, 8, 126-131.	6.1	19
159	Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. Environmental Pollution, 2017, 230, 495-505.	7.5	87
160	Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresource Technology, 2017, 246, 48-56.	9.6	69
161	Modified osmium tracer technique enables precise microscopic delineation of hydrocarbon-degrading bacteria in clay aggregates. Environmental Technology and Innovation, 2017, 7, 12-20.	6.1	5
162	Bacterial mineralization of phenanthrene on thermally activated palygorskite: A 14C radiotracer study. Science of the Total Environment, 2017, 579, 709-717.	8.0	10

#	Article	IF	Citations
163	Residual hydrophobic organic contaminants in soil: Are they a barrier to risk-based approaches for managing contaminated land? Environment International, 2017, 98, 18-34.	10.0	35
164	Mercury toxicity to Eisenia fetida in three different soils. Environmental Science and Pollution Research, 2017, 24, 1261-1269.	5.3	15
165	Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil. Science of the Total Environment, 2017, 576, 303-309.	8.0	43
166	Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 2017, 168, 944-968.	8.2	544
167	Gold nanoparticle-based optical sensors for selected anionic contaminants. TrAC - Trends in Analytical Chemistry, 2017, 86, 143-154.	11.4	69
168	Structural changes in smectite due to interaction with a biosurfactant-producing bacterium Pseudoxanthomonas kaohsiungensis. Applied Clay Science, 2017, 136, 51-57.	5.2	27
169	Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Applied Microbiology and Biotechnology, 2017, 101, 2163-2175.	3.6	38
170	Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. Journal of Environmental Sciences, 2017, 51, 128-137.	6.1	33
171	Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture, 2016, 96, 4840-4849.	3.5	128
172	Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnology Progress, 2016, 32, 638-648.	2.6	61
173	Bioâ€banking gut microbiome samples. EMBO Reports, 2016, 17, 929-930.	4.5	9
174	Toxicity and bioaccumulation of iron in soil microalgae. Journal of Applied Phycology, 2016, 28, 2767-2776.	2.8	32
175	Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive. Waste Management and Research, 2016, 34, 518-526.	3.9	9
176	Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 2016, 289, 463-470.	12.7	79
177	Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. International Journal of Phytoremediation, 2016, 18, 399-405.	3.1	30
178	Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. Journal of Hazardous Materials, 2016, 317, 169-179.	12.4	118
179	Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Chemosphere, 2016, 154, 343-349.	8.2	7
180	Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite. Microporous and Mesoporous Materials, 2016, 225, 450-455.	4.4	15

#	Article	IF	CITATIONS
181	Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Ecotoxicology and Environmental Safety, 2016, 129, 264-272.	6.0	7
182	Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 2016, 154, 350-357.	8.2	191
183	Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource Technology, 2016, 211, 698-703.	9.6	61
184	Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environmental Technology and Innovation, 2016, 6, 204-219.	6.1	29
185	Predicting copper phytotoxicity based on pore-water pCu. Ecotoxicology, 2016, 25, 481-490.	2.4	11
186	Using publicly available data, a physiologically-based pharmacokinetic model and Bayesian simulation to improve arsenic non-cancer dose-response. Environment International, 2016, 92-93, 239-246.	10.0	16
187	Emerging contaminant uncertainties and policy: The chicken or the egg conundrum. Chemosphere, 2016, 154, 385-390.	8.2	36
188	A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability. Environment International, 2016, 92-93, 139-145.	10.0	20
189	Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions. Environmental Science and Pollution Research, 2016, 23, 15460-15470.	5. 3	11
190	Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. Science of the Total Environment, 2016, 562, 526-532.	8.0	36
191	Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Science of the Total Environment, 2016, 573, 1103-1114.	8.0	54
192	Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A comparative study with and without calcination. Applied Clay Science, 2016, 134, 136-144.	5.2	25
193	Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401.	12.8	86
194	Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants. Archives of Environmental Contamination and Toxicology, 2016, 71, 561-571.	4.1	15
195	Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environment International, 2016, 96, 139-155.	10.0	101
196	Influence of thermally modified palygorskite on the viability of polycyclic aromatic hydrocarbon-degrading bacteria. Applied Clay Science, 2016, 134, 153-160.	5. 2	22
197	Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environmental Technology and Innovation, 2016, 6, 94-104.	6.1	41
198	Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere, 2016, 162, 31-39.	8.2	47

#	Article	IF	Citations
199	Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination. Water Research, 2016, 104, 119-127.	11.3	20
200	Assessment of nitrogen losses through nitrous oxide from abattoir wastewater-irrigated soils. Environmental Science and Pollution Research, 2016, 23, 22633-22646.	5.3	7
201	Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development. Water, Air, and Soil Pollution, 2016, 227, 253.	2.4	25
202	Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Applied Clay Science, 2016, 134, 95-102.	5.2	68
203	Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecological Engineering, 2016, 97, 32-39.	3.6	95
204	Predicting plant uptake of cadmium: validated with long-term contaminated soils. Ecotoxicology, 2016, 25, 1563-1574.	2.4	23
205	Genotoxicity assessment of acute exposure of 2, 4-dinitroanisole, its metabolites and 2, 4, 6-trinitrotoluene to Daphnia carinata. Ecotoxicology, 2016, 25, 1873-1879.	2.4	14
206	Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil. Environmental Monitoring and Assessment, 2016, 188, 424.	2.7	30
207	Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution. Applied Clay Science, 2016, 134, 89-94.	5.2	31
208	Evaluation of cyto- and genotoxic effects of Class B firefighting foam products: Tridol-S 3% AFFF and Tridol-S 6% AFFF to Allium cepa. Environmental Technology and Innovation, 2016, 6, 185-194.	6.1	9
209	Bioaccessibility of barium from barite contaminated soils based on gastric phase inÂvitro data and plant uptake. Chemosphere, 2016, 144, 1421-1427.	8.2	19
210	Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil. Environmental Science &	10.0	15
211	Biologicalâ€"waste as resource, with a focus on food waste. Environmental Science and Pollution Research, 2016, 23, 7071-7073.	5.3	5
212	Comparison of oral bioavailability of benzo[a]pyrene in soils using rat and swine and the implications for human health risk assessment. Environment International, 2016, 94, 95-102.	10.0	22
213	Phycoremediation of dairy and winery wastewater using Diplosphaera sp. MM1. Journal of Applied Phycology, 2016, 28, 3331-3341.	2.8	31
214	Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 71-77.	2.7	14
215	Metal bioavailability to Eisenia fetida through copper mine dwelling animal and plant litter, a new challenge on contaminated environment remediation. International Biodeterioration and Biodegradation, 2016, 113, 208-216.	3.9	20
216	Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Reviews in Environmental Science and Biotechnology, 2016, 15, 327-354.	8.1	94

#	Article	IF	CITATIONS
217	The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. Journal of Environmental Management, 2016, 170, 123-130.	7.8	25
218	Assessment of antioxidant activity, minerals, phenols and flavonoid contents of common plant/tree waste extracts. Industrial Crops and Products, 2016, 83, 630-634.	5.2	23
219	Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environmental Technology and Innovation, 2016, 5, 136-147.	6.1	46
220	Bioaugmentation with Novel Microbial Formula vs. Natural Attenuation of a Long-Term Mixed Contaminated Soilâ€"Treatability Studies in Solid- and Slurry-Phase Microcosms. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	32
221	Influence of soil properties on vapor-phase sorption of trichloroethylene. Journal of Hazardous Materials, 2016, 306, 34-40.	12.4	13
222	Lead concentration in the blood of the general population living near a lead–zinc mine site, Nigeria: Exposure pathways. Science of the Total Environment, 2016, 542, 908-914.	8.0	46
223	Potential of Melaleuca diosmifolia as a novel, non-conventional and low-cost coagulating adsorbent for removing both cationic and anionic dyes. Journal of Industrial and Engineering Chemistry, 2016, 37, 198-207.	5.8	27
224	The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil. Current Microbiology, 2016, 72, 663-670.	2.2	56
225	Competitive sorption of cadmium and zinc in contrasting soils. Geoderma, 2016, 268, 60-68.	5.1	47
226	Potential of Melaleuca diosmifolia leaf as a low-cost adsorbent for hexavalent chromium removal from contaminated water bodies. Chemical Engineering Research and Design, 2016, 100, 173-182.	5.6	73
227	Sorption parameters as a predictor of arsenic phytotoxicity in Australian soils. Geoderma, 2016, 265, 103-110.	5.1	34
228	Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Environmental Science and Pollution Research, 2016, 23, 9822-9831.	5.3	26
229	Bioaccessibility of arsenic and cadmium assessed for inÂvitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere, 2016, 147, 444-450.	8.2	38
230	Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination. Science of the Total Environment, 2016, 550, 611-618.	8.0	29
231	Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	31
232	Identification of a new operon involved in desulfurization of dibenzothiophenes using a metagenomic study and cloning and functional analysis of the genes. Enzyme and Microbial Technology, 2016, 87-88, 24-28.	3.2	14
233	Gene expression profile changes in Eisenia fetida chronically exposed to PFOA. Ecotoxicology, 2016, 25, 759-769.	2.4	18
234	Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 76-82.	2.7	26

#	Article	IF	Citations
235	Quantifying statistical relationships between commonly used in vitro models for estimating lead bioaccessibility. Environmental Science and Pollution Research, 2016, 23, 6873-6882.	5.3	16
236	Copper-complexed clay/poly-acrylic acid composites: Extremely efficient adsorbents of ammonia gas. Applied Clay Science, 2016, 121-122, 154-161.	5.2	19
237	Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings $\hat{a} \in \text{``Assessments in liquid-}$ and slurry-phase systems. International Biodeterioration and Biodegradation, 2016, 108, 149-157.	3.9	88
238	Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. Journal of Hazardous Materials, 2016, 307, 99-107.	12.4	36
239	Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 2016, 64, 1447-1483.	5.2	648
240	Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Applied Clay Science, 2016, 119, 417-423.	5.2	31
241	Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 2016, 87, 1-12.	10.0	277
242	Oxidation of arsenite to arsenate in growth medium and groundwater using a novel arsenite-oxidizing diazotrophic bacterium isolated from soil. International Biodeterioration and Biodegradation, 2016, 106, 178-182.	3.9	33
243	Environmental application and ecological significance of nano-zero valent iron. Journal of Environmental Sciences, 2016, 44, 88-98.	6.1	86
244	Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. Reviews of Environmental Contamination and Toxicology, 2016, 236, 117-192.	1.3	54
245	In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. Reviews of Environmental Contamination and Toxicology, 2016, 236, 1-115.	1.3	67
246	Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere, 2016, 144, 330-337.	8.2	71
247	A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Applied Biochemistry and Biotechnology, 2016, 178, 224-250.	2.9	68
248	Phytoextraction of heavy metal from tailing waste using Napier grass. Catena, 2016, 136, 74-83.	5.0	30
249	Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Science of the Total Environment, 2016, 539, 370-380.	8.0	34
250	Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: Health risk index. Science of the Total Environment, 2016, 539, 125-134.	8.0	163
251	Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. Science of the Total Environment, 2016, 539, 61-69.	8.0	62
252	Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp Environmental Science and Pollution Research, 2016, 23, 2663-2668.	5.3	39

#	Article	IF	Citations
253	Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 2016, 142, 120-127.	8.2	224
254	Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 2015, 12, 12371-12390.	2.6	157
255	Trace elements in road-deposited and waterbed sediments in Kogarah Bay, Sydney: enrichment, sources and fractionation. Soil Research, 2015, 53, 401.	1.1	3
256	Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil. Journal of Hazardous Materials, 2015, 298, 129-137.	12.4	67
257	Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere, 2015, 139, 54-64.	8.2	104
258	Chlorococcum sp. MM11â€"a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology, 2015, 27, 1861-1869.	2.8	111
259	Synthesis and characterisation of 3-dimensional hydroxyapatite nanostructures using a thermoplastic polyurethane nanofiber sacrificial template. RSC Advances, 2015, 5, 97773-97780.	3.6	11
260	Ecotoxicological Effects of an Arsenic Remediation Method on Three Freshwater Organismsâ€"Lemna disperma, Chlorella sp. CE-35 and Ceriodaphnia cf. dubia. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	1
261	Phosphorus Recovery and Reuse from Waste Streams. Advances in Agronomy, 2015, 131, 173-250.	5.2	89
262	Influence of ageing on lead bioavailability in soils: a swine study. Environmental Science and Pollution Research, 2015, 22, 8979-8988.	5.3	19
263	Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 2015, 270, 393-404.	12.7	222
264	Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation. Journal of Hazardous Materials, 2015, 299, 395-403.	12.4	55
265	Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads. Applied Surface Science, 2015, 353, 363-375.	6.1	85
266	Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. International Biodeterioration and Biodegradation, 2015, 101, 56-65.	3.9	103
267	Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology and Innovation, 2015, 4, 17-28.	6.1	66
268	Identification of the source of PFOS and PFOA contamination at a military air base site. Environmental Monitoring and Assessment, 2015, 187, 4111.	2.7	34
269	Distribution of Mercury in Shrimp Ponds and Volatilization of Hg by Isolated Resistant Purple Nonsulfur Bacteria. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	15
270	Composition, source identification and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments of the Subei Grand Canal, China. Environmental Earth Sciences, 2015, 74, 2669-2677.	2.7	13

#	Article	IF	Citations
271	The integration of sequencing and bioinformatics in metagenomics. Reviews in Environmental Science and Biotechnology, 2015, 14, 357-383.	8.1	13
272	A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Applied Biochemistry and Biotechnology, 2015, 176, 670-699.	2.9	311
273	A pyrosequencing-based analysis of microbial diversity governed by ecological conditions in the Winogradsky column. World Journal of Microbiology and Biotechnology, 2015, 31, 1115-1126.	3.6	14
274	Effect of ageing on benzo[a]pyrene extractability in contrasting soils. Journal of Hazardous Materials, 2015, 296, 175-184.	12.4	37
275	Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction. Journal of Hazardous Materials, 2015, 295, 145-152.	12.4	61
276	Ecological implications of motor oil pollution: Earthworm survival and soil health. Soil Biology and Biochemistry, 2015, 85, 72-81.	8.8	90
277	Uncertainties in human health risk assessment of environmental contaminants: A review and perspective. Environment International, 2015, 85, 120-132.	10.0	101
278	Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environment International, 2015, 85, 168-181.	10.0	116
279	Risk based land management requires focus beyond the target contaminantsâ€"A case study involving weathered hydrocarbon contaminated soils. Environmental Technology and Innovation, 2015, 4, 98-109.	6.1	25
280	Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environmental Technology and Innovation, 2015, 4, 168-181.	6.1	169
281	From Bioavailability Science to Regulation of Organic Chemicals. Environmental Science & Emp; Technology, 2015, 49, 10255-10264.	10.0	171
282	Reactivity of iron-based nanoparticles by green synthesis under various atmospheres and their removal mechanism of methylene blue. RSC Advances, 2015, 5, 70874-70882.	3.6	23
283	Biomass derived palygorskite–carbon nanocomposites: Synthesis, characterisation and affinity to dye compounds. Applied Clay Science, 2015, 114, 617-626.	5.2	37
284	Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicology and Environmental Safety, 2015, 122, 252-259.	6.0	27
285	Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 2015, 5, 100790-100798.	3.6	41
286	Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere, 2015, 138, 422-428.	8.2	27
287	Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation. Environmental Science and Pollution Research, 2015, 22, 8957-8968.	5.3	30
288	Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environmental Science and Pollution Research, 2015, 22, 8942-8956.	5.3	44

#	Article	IF	CITATIONS
289	Assessing the bioavailability and bioaccessibility of metals and metalloids. Environmental Science and Pollution Research, 2015, 22, 8802-8825.	5.3	104
290	Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp Environmental Science and Pollution Research, 2015, 22, 8826-8832.	5. 3	16
291	Perfluorooctane sulfonate release pattern from soils of fire training areas in Australia and its bioaccumulation potential in the earthworm Eisenia fetida. Environmental Science and Pollution Research, 2015, 22, 8902-8910.	5. 3	25
292	Interaction effects of polycyclic aromatic hydrocarbons and heavy metals on a soil microalga, Chlorococcum sp. MM11. Environmental Science and Pollution Research, 2015, 22, 8876-8889.	5. 3	37
293	Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental Science and Pollution Research, 2015, 22, 8779-8785.	5.3	26
294	Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environmental Science and Pollution Research, 2015, 22, 8927-8941.	5. 3	96
295	Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 2015, 22, 8890-8901.	5.3	29
296	Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environmental Science and Pollution Research, 2015, 22, 8843-8854.	5. 3	34
297	Adsorption and desorption characteristics of methamphetamine, 3,4-methylenedioxymethamphetamine, and pseudoephedrine in soils. Environmental Science and Pollution Research, 2015, 22, 8855-8865.	5. 3	7
298	Speciation mapping of environmental samples using XANES imaging. Environmental Chemistry, 2014, 11, 341.	1.5	55
299	Self-assembling of nanocubes and nanoparticles. , 2014, , .		0
300	Arsenic in Rice., 2014,, 365-375.		4
301	Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicology and Environmental Safety, 2014, 100, 201-208.	6.0	54
302	Effect of Coal Combustion Products in Reducing Soluble Phosphorus in Soil II: Leaching Study. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	5
303	A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant and Soil, 2014, 375, 35-46.	3.7	30
304	Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion. Atmospheric Environment, 2014, 88, 14-22.	4.1	17
305	Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles. Electrochimica Acta, 2014, 132, 223-229.	5.2	74
306	Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicology and Environmental Safety, 2014, 104, 339-348.	6.0	119

#	Article	IF	Citations
307	Application of neural networks with novel independent component analysis methodologies for the simultaneous determination of cadmium, copper, and lead using an ISE array. Journal of Chemometrics, 2014, 28, 491-498.	1.3	8
308	Environmental remediation techniques of tributyltin contamination in soil and water: A review. Chemical Engineering Journal, 2014, 235, 141-150.	12.7	42
309	Hidden values in bauxite residue (red mud): Recovery of metals. Waste Management, 2014, 34, 2662-2673.	7.4	303
310	Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. Ecotoxicology and Environmental Safety, 2014, 110, 288-297.	6.0	10
311	Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga. Environmental Science & Environmental Science & Environment	10.0	35
312	Arsenic Speciation in Australian-Grown and Imported Rice on Sale in Australia: Implications for Human Health Risk. Journal of Agricultural and Food Chemistry, 2014, 62, 6016-6024.	5.2	78
313	Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate. Waste Management, 2014, 34, 2292-2304.	7.4	42
314	Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites. Critical Reviews in Environmental Science and Technology, 2014, 44, 561-637.	12.8	50
315	Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Advances, 2014, 4, 52156-52169.	3.6	79
316	Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Mikrochimica Acta, 2014, 181, 1199-1206.	5.0	57
317	Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp Chemosphere, 2014, 108, 426-432.	8.2	58
318	Determination of Trace Lead and Cadmium in Water Samples by Anodic Stripping Voltammetry with a Nafionâ€ionic Liquidâ€Coated Bismuth Film Electrode. Electroanalysis, 2014, 26, 639-647.	2.9	14
319	Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environment International, 2014, 70, 192-202.	10.0	67
320	Effect of industrial waste products on phosphorus mobilisation and biomass production in abattoir wastewater irrigated soil. Environmental Science and Pollution Research, 2014, 21, 10013-10021.	5.3	3
321	Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 2014, 106, 126-135.	6.0	64
322	Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicology and Environmental Safety, 2014, 100, 53-60.	6.0	195
323	Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. Journal of Applied Phycology, 2013, 25, 913-917.	2.8	52
324	Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays. Environmental Science and Pollution Research, 2013, 20, 3639-3648.	5.3	43

#	Article	IF	Citations
325	Clean Coal Technology Combustion Products. Advances in Agronomy, 2013, , 309-370.	5.2	10
326	Recycled water sources influence the bioavailability of copper to earthworms. Journal of Hazardous Materials, 2013, 261, 784-792.	12.4	18
327	Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. Journal of Hazardous Materials, 2013, 262, 997-1003.	12.4	41
328	Effects of Chemical Amendments on the Lability and Speciation of Metals in Anaerobically Digested Biosolids. Environmental Science & Environmental Sci	10.0	20
329	Contaminated land, ecological assessment, and remediation conference series (CLEAR 2012): environmental pollution and risk assessments. Environmental Science and Pollution Research, 2013, 20, 8313-8315.	5.3	1
330	Bioremediation of Arsenic-Contaminated Water: Recent Advances and Future Prospects. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	62
331	Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills. Journal of Hazardous Materials, 2013, 252-253, 243-249.	12.4	60
332	A Comparative Study of Trichloroethylene (TCE) Degradation in Contaminated Groundwater (GW) and TCE-Spiked Deionised Water Using Zero Valent Iron (ZVI) Under Various Mass Transport Conditions. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	3
333	Not All Phosphate Fertilizers Immobilize Lead in Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	15
334	Effect of Seaweeds on Degradation of DDT in Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	9
335	Evaluation of Surfactant-Enhanced In Situ Chemical Oxidation (S-ISCO) in Contaminated Soil. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	42
336	Remediation of Perfluorooctane Sulfonate in Contaminated Soils by Modified Clay Adsorbent—a Risk-Based Approach. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	54
337	Recent Advances in Contaminated Site Remediation. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	24
338	Electroremediation of Lead-Contaminated Kaolinite using Cation Selective Membrane and Different Electrolyte Solutions. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	5
339	Effect of Ionic Strength and Index Cation on the Sorption of Phenanthrene. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	27
340	Simultaneous Adsorption of Tri- and Hexavalent Chromium by Organoclay Mixtures. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	22
341	Remediation of Site Contamination. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	0
342	Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 2013, 176, 193-197.	7.5	184

#	Article	IF	Citations
343	Manganese(II)-Catalyzed and Clay-Minerals-Mediated Reduction of Chromium(VI) by Citrate. Environmental Science & Environmental	10.0	74
344	Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials, 2013, 248-249, 1-19.	12.4	263
345	Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity?. Chemosphere, 2013, 90, 1195-1200.	8.2	110
346	Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 2013, 51, 59-72.	10.0	286
347	Illicit drugs and the environment — A review. Science of the Total Environment, 2013, 463-464, 1079-1092.	8.0	202
348	Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of Applied Phycology, 2013, 25, 177-182.	2.8	151
349	Bioavailability as a tool in site management. Journal of Hazardous Materials, 2013, 261, 840-846.	12.4	43
350	Toxicity of organoclays to microbial processes and earthworm survival in soils. Journal of Hazardous Materials, 2013, 261, 793-800.	12.4	45
351	Carbon storage and soil CO2 efflux rates at varying degrees of damage from pine wilt disease in red pine stands. Science of the Total Environment, 2013, 465, 273-278.	8.0	19
352	Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Science of the Total Environment, 2013, 463-464, 1133-1137.	8.0	68
353	Arsenic ecotoxicology: The interface between geosphere, hydrosphere and biosphere. Journal of Hazardous Materials, 2013, 262, 883-886.	12.4	18
354	Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils. Journal of Hazardous Materials, 2013, 261, 725-732.	12.4	56
355	Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Materials, 2013, 262, 1056-1063.	12.4	182
356	Cadmium Contamination and Its Risk Management in Rice Ecosystems. Advances in Agronomy, 2013, , 183-273.	5.2	115
357	Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 2013, 465, 72-96.	8.0	375
358	Electronic waste management approaches: An overview. Waste Management, 2013, 33, 1237-1250.	7.4	590
359	Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources. Journal of Hazardous Materials, 2013, 261, 817-825.	12.4	9
360	Bioavailability of Barium to Plants and Invertebrates in Soils Contaminated by Barite. Environmental Science & Environmental S	10.0	66

#	Article	IF	CITATIONS
361	Investigation of Copper(II) Interference on the Anodic Stripping Voltammetry of Lead(II) and Cadmium(II) at Bismuth Film Electrode. Electroanalysis, 2013, 25, 2637-2644.	2.9	39
362	Vapor Intrusion Models for Petroleum and Chlorinated Volatile Organic Compounds: Opportunities for Future Improvements. Vadose Zone Journal, 2013, 12, 1-13.	2.2	19
363	Influence of nutrient mixtures onp-nitrophenol degradation byStenotrophomonassp. isolated from groundwater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 108-119.	1.7	5
364	Predicting lead relative bioavailability in peri-urban contaminated soils using <i>in vitro </i> bioaccessibility assays. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 604-611.	1.7	33
365	A radio-isotopic dilution technique for functional characterisation of the associations between inorganic contaminants and water-dispersible naturally occurring soil colloids. Environmental Chemistry, 2013, 10, 341.	1.5	9
366	Spatial variation of polycyclic aromatic hydrocarbons and equivalent toxicity in Sydney Harbour, Australia. Journal of Water and Climate Change, 2013, 4, 364-372.	2.9	1
367	Removal of heavy metals in stormwater by hydrous ferric oxide. Water Management, 2012, 165, 171-178.	1.2	2
368	Optimal Identification of Groundwater Pollution Sources Using Feedback Monitoring Information: A Case Study. Environmental Forensics, 2012, 13, 140-153.	2.6	19
369	Persistent toxic substances: sources, fates and effects. Reviews on Environmental Health, 2012, 27, 207-13.	2.4	38
370	The Influence of Wastewater Irrigation on the Transformation and Bioavailability of Heavy Metal(Loid)s in Soil. Advances in Agronomy, 2012, 115, 215-297.	5. 2	67
371	Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation, 2012, 23, 803-812.	3.0	103
372	Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 2012, 23, 823-835.	3.0	90
373	DDT remediation in contaminated soils: a review of recent studies. Biodegradation, 2012, 23, 851-863.	3.0	68
374	Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study. Biodegradation, 2012, 23, 881-895.	3.0	32
375	Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil. Biodegradation, 2012, 23, 907-916.	3.0	22
376	Cleaning contaminated environment: a growing challenge. Biodegradation, 2012, 23, 785-786.	3.0	13
377	Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Science of the Total Environment, 2012, 438, 452-462.	8.0	87
378	Assessment of DDT Relative Bioavailability and Bioaccessibility in Historically Contaminated Soils Using an in Vivo Mouse Model and Fed and Unfed Batch in Vitro Assays. Environmental Science & Environmental Science & Technology, 2012, 46, 2928-2934.	10.0	39

#	Article	IF	Citations
379	Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon. Journal of Hazardous Materials, 2012, 229-230, 419-425.	12.4	73
380	Bioavailability of lead in contaminated soil depends on the nature of bioreceptor. Ecotoxicology and Environmental Safety, 2012, 78, 344-350.	6.0	25
381	Degradation in soil of precursors and by-products associated with the illicit manufacture of methylamphetamine: Implications for clandestine drug laboratory investigation. Forensic Science International, 2012, 220, 245-250.	2.2	6
382	Biodegradation of crystal violet using Burkholderia vietnamiensis CO9V immobilized on PVA–sodium alginate–kaolin gel beads. Ecotoxicology and Environmental Safety, 2012, 83, 108-114.	6.0	76
383	Critical Review on Chemical Stabilization of Metal Contaminants in Shooting Range Soils. Journal of Hazardous, Toxic, and Radioactive Waste, 2012, 16, 258-272.	2.0	23
384	Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge. Environmental Science & Environmental Science & 2012, 46, 9089-9096.	10.0	193
385	Cadmium Sorption and Desorption in Soils: A Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 489-533.	12.8	247
386	Copper phytotoxicity in native and agronomical plant species. Ecotoxicology and Environmental Safety, 2012, 85, 23-29.	6.0	41
387	<i>p</i> â€nitrophenol toxicity to and its removal by three select soil isolates of microalgae: The role of antioxidants. Environmental Toxicology and Chemistry, 2012, 31, 1980-1988.	4.3	40
388	Use of Biosolids for Phytocapping of Landfill Soil. Water, Air, and Soil Pollution, 2012, 223, 2695-2705.	2.4	27
389	Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils. Environmental Monitoring and Assessment, 2012, 184, 3875-3885.	2.7	74
390	Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 2012, 12, 704-712.	3.0	34
391	Surface charge characteristics of organo-palygorskites and adsorption of p-nitrophenol in flow-through reactor system. Chemical Engineering Journal, 2012, 185-186, 35-43.	12.7	63
392	Degradation of p-nitrophenol by immobilized cells of Bacillus spp. isolated from soil. International Biodeterioration and Biodegradation, 2012, 68, 24-27.	3.9	15
393	Fate of 1- $(1\hat{a}\in^2,4\hat{a}\in^2$ -cyclohexadienyl)-2-methylaminopropane (CMP) in soil: Route-specific by-product in the clandestine manufacture of methamphetamine. Science of the Total Environment, 2012, 416, 394-399.	8.0	7
394	Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 2012, 99, 10-17.	7.8	145
395	Relative Value of Phosphate Compounds in Reducing the Bioavailability and Toxicity of Lead in Contaminated Soils. Water, Air, and Soil Pollution, 2012, 223, 599-608.	2.4	13
396	Short-term effects of fertilizer application on soil respiration in red pine stands. Journal of Ecology and Environment, 2012, 35, 307-311.	1.6	3

#	Article	IF	Citations
397	Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. Journal of Environmental Monitoring, 2011, 13, 2234.	2.1	41
398	In Vivo–in Vitro and XANES Spectroscopy Assessments of Lead Bioavailability in Contaminated Periurban Soils. Environmental Science & Environmental	10.0	104
399	Phytostabilization. Advances in Agronomy, 2011, , 145-204.	5.2	217
400	X-ray Absorption and Micro X-ray Fluorescence Spectroscopy Investigation of Copper and Zinc Speciation in Biosolids. Environmental Science & Environme	10.0	75
401	Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide — An isothermal and kinetic study. Applied Clay Science, 2011, 51, 370-374.	5. 2	79
402	Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 2011, 163, 1-12.	5.1	165
403	Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation. Environment International, 2011, 37, 184-189.	10.0	78
404	Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 2011, 37, 1362-1375.	10.0	772
405	Structural characterisation of ArquadÂ $^{\odot}$ 2HT-75 organobentonites: Surface charge characteristics and environmental application. Journal of Hazardous Materials, 2011, 195, 155-161.	12.4	52
406	Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Science of the Total Environment, 2011, 409, 853-860.	8.0	109
407	Polybrominated diphenyl ethers (PBDEs) in marine foodstuffs in Australia: Residue levels and contamination status of PBDEs. Marine Pollution Bulletin, 2011, 63, 154-159.	5.0	37
408	Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 2011, 29, 896-907.	11.7	383
409	Biotic and abiotic degradation of illicit drugs, their precursor, and by-products in soil. Chemosphere, 2011, 85, 1002-1009.	8.2	20
410	Toxicity and transformation of insecticide fenamiphos to the earthworm Eisenia fetida. Ecotoxicology, 2011, 20, 20-28.	2.4	21
411	Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site. Environmental Monitoring and Assessment, 2011, 173, 929-940.	2.7	28
412	Phytoavailability of copper in the presence of recycled water sources. Plant and Soil, 2011, 348, 425-438.	3.7	10
413	Ultrasonic Enhanced Desorption of DDT from Contaminated Soils. Water, Air, and Soil Pollution, 2011, 217, 115-125.	2.4	22
414	Effects of Carbaryl and 1-Naphthol on Soil Population of Cyanobacteria and Microalgae and Select Cultures of Diazotrophic Cyanobacteria. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 324-329.	2.7	7

#	Article	IF	Citations
415	Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 2011, 185, 829-836.	12.4	190
416	Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). Journal of Environmental Management, 2011, 92, 1115-1120.	7.8	87
417	Assessment of lead bioaccessibility in peri-urban contaminated soils. Journal of Hazardous Materials, 2011, 186, 300-305.	12.4	49
418	Seasonal influence on urban dust PAH profile and toxicity in Sydney, Australia. Water Science and Technology, 2011, 63, 2238-2243.	2.5	14
419	Optimisation approach for pollution source identification in groundwater: an overview. International Journal of Environment and Waste Management, 2011, 8, 40.	0.3	26
420	A Critical Review on Biogenic Silver Nanoparticles and their Antimicrobial Activity. Current Nanoscience, 2011, 7, 531-544.	1.2	62
421	Mixtures of Environmental Pollutants: Effects on Microorganisms and Their Activities in Soils. Reviews of Environmental Contamination and Toxicology, 2011, 211, 63-120.	1.3	50
422	Phytotoxicity and Accumulation of Lead in Australian Native Vegetation. Archives of Environmental Contamination and Toxicology, 2010, 58, 613-621.	4.1	18
423	Relative Tolerance of a Range of Australian Native Plant Species and Lettuce to Copper, Zinc, Cadmium, and Lead. Archives of Environmental Contamination and Toxicology, 2010, 59, 424-432.	4.1	32
424	Urban stormwater quality and treatment. Korean Journal of Chemical Engineering, 2010, 27, 1343-1359.	2.7	97
425	Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biology and Biochemistry, 2010, 42, 1857-1863.	8.8	90
426	Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution: Isothermal studies. Journal of Colloid and Interface Science, 2010, 350, 295-304.	9.4	79
427	Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. Journal of Hazardous Materials, 2010, 183, 87-97.	12.4	135
428	Sorption of quaternary ammonium compounds in soils: Implications to the soil microbial activities. Journal of Hazardous Materials, 2010, 184, 448-456.	12.4	66
429	Fenamiphos and Related Organophosphorus Pesticides: Environmental Fate and Toxicology. Reviews of Environmental Contamination and Toxicology, 2010, 205, 117-162.	1.3	27
430	Sonochemical destruction of chloroform by using low frequency ultrasound in batch and flow cell. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 483-489.	1.7	3
431	The Impacts of Environmental Pollutants on Microalgae and Cyanobacteria. Critical Reviews in Environmental Science and Technology, 2010, 40, 699-821.	12.8	82
432	Determination of Cadmium Relative Bioavailability in Contaminated Soils and Its Prediction Using in Vitro Methodologies. Environmental Science & Envir	10.0	99

#	Article	IF	CITATIONS
433	Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils. Geoderma, 2010, 155, 86-92.	5.1	73
434	Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Soil Research, 2009, 47, 166.	1.1	74
435	Integration of traditional and innovative characterization techniques for flux-based assessment of Dense Non-aqueous Phase Liquid (DNAPL) sites. Journal of Contaminant Hydrology, 2009, 105, 161-172.	3.3	34
436	A comparative study of the extractability of arsenic species from silverbeet and amaranth vegetables. Environmental Geochemistry and Health, 2009, 31, 103-113.	3.4	31
437	Extraction of arsenic species in soils using microwave-assisted extraction detected by ion chromatography coupled to inductively coupled plasma mass spectrometry. Environmental Geochemistry and Health, 2009, 31, 93-102.	3.4	40
438	Sorption and bioavailability of arsenic in selected Bangladesh soils. Environmental Geochemistry and Health, 2009, 31, 61-68.	3.4	20
439	Groundwater chemistry and arsenic mobilization in the Holocene flood plains in south-central Bangladesh. Environmental Geochemistry and Health, 2009, 31, 23-43.	3.4	65
440	Arsenic testing field kits: some considerations and recommendations. Environmental Geochemistry and Health, 2009, 31, 45-48.	3.4	28
441	Implementation of food frequency questionnaire for the assessment of total dietary arsenic intake in Bangladesh: Part B, preliminary findings. Environmental Geochemistry and Health, 2009, 31, 221-238.	3.4	41
442	An effective dietary survey framework for the assessment of total dietary arsenic intake in Bangladesh: Part-Aâ€"FFQ design. Environmental Geochemistry and Health, 2009, 31, 207-220.	3.4	9
443	Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 2009, 31, 189-200.	3.4	336
444	Arsenic interactions with lipid particles containing iron. Environmental Geochemistry and Health, 2009, 31, 201-206.	3.4	13
445	Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environmental Geochemistry and Health, 2009, 31, 167-177.	3.4	45
446	Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladeshâ€"implications to groundwater irrigation. Environmental Geochemistry and Health, 2009, 31, 179-187.	3.4	112
447	Toxicity of tri- and penta-valent arsenic, alone and in combination, to the cladoceran Daphnia carinata: the influence of microbial transformation in natural waters. Environmental Geochemistry and Health, 2009, 31, 133-141.	3.4	32
448	Human arsenic exposure and risk assessment at the landscape level: a review. Environmental Geochemistry and Health, 2009, 31, 143-166.	3.4	59
449	The influence of arsenic speciation (AsIII & Description on the growth, uptake and translocation of arsenic in vegetable crops (silverbeet and amaranth): greenhouse study. Environmental Geochemistry and Health, 2009, 31, 115-124.	3.4	23
450	Arsenic in the environment—risks and management strategies. Environmental Geochemistry and Health, 2009, 31, 1-8.	3.4	35

#	Article	IF	Citations
451	Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water. Journal of Hazardous Materials, 2009, 168, 1380-1386.	12.4	35
452	Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater. Bioresource Technology, 2009, 100, 2732-2736.	9.6	42
453	Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresource Technology, 2009, 100, 3831-3836.	9.6	45
454	Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 2009, 359, 25-40.	4.3	932
455	Evaluation of SBRC-Gastric and SBRC-Intestinal Methods for the Prediction of In Vivo Relative Lead Bioavailability in Contaminated Soils. Environmental Science & Environmental Science & 2009, 43, 4503-4509.	10.0	113
456	Assessment of Four Commonly Employed in Vitro Arsenic Bioaccessibility Assays for Predicting in Vivo Relative Arsenic Bioavailability in Contaminated Soils. Environmental Science & Echnology, 2009, 43, 9487-9494.	10.0	157
457	Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 2009, 171, 1150-1158.	12.4	108
458	Disinfection Studies on TiO ₂ Thin Films Prepared by Sol–Gel Method. Journal of Biomedical Nanotechnology, 2009, 5, 121-129.	1.1	17
459	Biodegradation of the Pesticide Fenamiphos by Ten Different Species of Green Algae and Cyanobacteria. Current Microbiology, 2008, 57, 643-646.	2.2	103
460	Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp Science of the Total Environment, 2008, 398, 53-59.	8.0	58
461	The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environment International, 2008, 34, 265-276.	10.0	161
462	The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Chemosphere, 2008, 71, 773-780.	8.2	59
463	Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Chemosphere, 2008, 71, 1963-1969.	8.2	43
464	Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere, 2008, 71, 2180-2186.	8.2	59
465	Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 44, 13-17.	1.5	33
466	Degradation of fenamiphos in soils collected from different geographical regions: The influence of soil properties and climatic conditions. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 314-322.	1.5	16
467	Sorption of fenamiphos to different soils: The influence of soil properties. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 605-610.	1.5	5
468	Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: The influence of microbial degradation in natural water. Water Research, 2007, 41, 4497-4503.	11.3	101

#	Article	IF	CITATIONS
469	Toxicity of fenamiphos and its metabolites to the cladoceran Daphnia carinata: The influence of microbial degradation in natural waters. Chemosphere, 2007, 66, 1264-1269.	8.2	27
470	In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 2007, 69, 69-78.	8.2	117
471	Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 2007, 69, 961-966.	8.2	136
472	In VivoAssessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment. Environmental Health Perspectives, 2006, 114, 1826-1831.	6.0	226
473	Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure. Environmental Geochemistry and Health, 2006, 28, 73-78.	3.4	52
474	Speciation of arsenic in ground water samples: A comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 2005, 68, 406-415.	5.5	71
475	Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere, 2004, 56, 257-263.	8.2	80
476	Long-Term Changes in Cadmium Bioavailability in Soil. Environmental Science &	10.0	107
477	Influence of Particle Size and Temperature on Gasification Performance. Advanced Materials Research, 0, 281, 78-83.	0.3	4
478	Influence of Catalyst and Temperature on Gasification Performance. Advanced Materials Research, 0, 281, 90-95.	0.3	0