Flavia Maria Netto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2533228/publications.pdf

Version: 2024-02-01

36 1,449 22 36 papers citations h-index g-index

36 36 36 36 1950

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Recovery of Components from Shrimp (<i>Xiphopenaeus kroyeri</i>) Processing Waste by Enzymatic Hydrolysis. Journal of Food Science, 2006, 71, C298.	3.1	145
2	Effect of Encapsulating Materials on Water Sorption, Glass Transition and Stability of Juice From Immature Acerola. International Journal of Food Properties, 2005, 8, 337-346.	3.0	135
3	Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 2007, 17, 632-640.	3.0	106
4	Assessing the potential of whey protein fibril as emulsifier. Journal of Food Engineering, 2018, 223, 99-108.	5.2	80
5	Stability and in vitro digestibility of emulsions containing lecithin and whey proteins. Food and Function, 2013, 4, 1322.	4.6	69
6	Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT - Food Science and Technology, 2017, 76, 140-146.	5.2	65
7	Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Critical Reviews in Food Science and Nutrition, 2021, 61, 1470-1489.	10.3	52
8	Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. Journal of Food Composition and Analysis, 2018, 68, 95-100.	3.9	50
9	Iron-binding peptides from whey protein hydrolysates: Evaluation, isolation and sequencing by LC–MS/MS. Food Research International, 2015, 71, 132-139.	6.2	49
10	Influence of Protein–Phenolic Complex on the Antioxidant Capacity of Flaxseed (<i>Linum) Tj ETQq0 0 0 rgBT</i>	/Overlock 5.2	10 ₄₈ 50 382
11	Acceptability and preference drivers of red wines produced from Vitis labrusca and hybrid grapes. Food Research International, 2014, 62, 456-466.	6.2	46
12	Physicochemical and functional properties of soy protein isolate as a function of water activity and storage. Food Research International, 2006, 39, 145-153.	6.2	42
13	The effect of transglutaminase-induced polymerization in the presence of cysteine on \hat{l}^2 -lactoglobulin antigenicity. International Dairy Journal, 2010, 20, 386-392.	3.0	41
14	Vitamin C stability in encapsulated green West Indian cherry juice and in encapsulated synthetic ascorbic acid. Journal of the Science of Food and Agriculture, 2006, 86, 1202-1208.	3.5	40
15	Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Separation Science and Technology, 2020, 55, 300-312.	2.5	40
16	Synthesis of whey peptide-iron complexes: Influence of using different iron precursor compounds. Food Research International, 2017, 101, 73-81.	6.2	35
17	Effect of combined treatment of hydrolysis and polymerization with transglutaminase on \hat{l}^2 -lactoglobulin antigenicity. European Food Research and Technology, 2012, 235, 801-809.	3.3	31
18	Assessing the potential of flaxseed protein as an emulsifier combined with whey protein isolate. Food Research International, 2014, 58, 89-97.	6.2	31

#	Article	IF	CITATIONS
19	Effect of polymerization with transglutaminase on in \hat{A} vitro digestion and antigenicity of \hat{I}^2 -lactoglobulin. International Dairy Journal, 2012, 25, 123-131.	3.0	29
20	Influence of protein–pectin electrostatic interaction on the foam stability mechanism. Carbohydrate Polymers, 2014, 103, 55-61.	10.2	27
21	Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Science and Technology, 2013, 33, 485-493.	1.7	25
22	Elaboration of sausage using minced fish of Nile tilapia filleting waste. Brazilian Archives of Biology and Technology, 2010, 53, 1383-1391.	0.5	24
23	Epitopes resistance to the simulated gastrointestinal digestion of \hat{l}^2 -lactoglobulin submitted to two-step enzymatic modification. Food Research International, 2015, 72, 191-197.	6.2	24
24	Examining the role of regional culture and geographical distances on the representation of unfamiliar foods in a continental-size country. Food Quality and Preference, 2020, 79, 103779.	4.6	23
25	Production of whey protein isolate – gellan microbeads for encapsulation and release of flaxseed bioactive compounds. Journal of Food Engineering, 2019, 247, 104-114.	5.2	22
26	Structural and rheological properties of amaranth protein concentrate gels obtained by different processes. Food Hydrocolloids, 2010, 24, 602-610.	10.7	21
27	Whey Peptide–Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts. Journal of Agricultural and Food Chemistry, 2018, 66, 1981-1989.	5.2	21
28	Chemical and structural characteristics of proteins of non-vital and vital wheat glutens. Food Hydrocolloids, 2022, 125, 107383.	10.7	21
29	Physicochemical characteristics and antigenicity of whey protein hydrolysates obtained with and without pH control. International Dairy Journal, 2017, 71, 24-34.	3.0	20
30	Evaluation of the Hypotensive Potential of Bovine and Porcine Collagen Hydrolysates. Journal of Medicinal Food, $2008,11,560$ - $567.$	1.5	16
31	Physicochemical changes and bitterness of whey protein hydrolysates after transglutaminase cross-linking. LWT - Food Science and Technology, 2019, 113, 108291.	5.2	16
32	Effect of alternative processes on the yield and physicochemical characterization of protein concentrates from Amaranthus cruentus. LWT - Food Science and Technology, 2010, 43, 736-743.	5.2	15
33	In search of a tolerance-induction strategy for cow's milk allergies: significant reduction of beta-lactoglobulin allergenicity via transglutaminase/cysteine polymerization. Clinics, 2012, 67, 1171-1179.	1.5	13
34	Chemical Composition and Bile Acid Binding Activity of Products Obtained from Amaranth (Amaranthus cruentus) Seeds. Plant Foods for Human Nutrition, 2011, 66, 370-375.	3.2	11
35	Allergenicity of Bos d 5 in Children with Cow's Milk Allergy is Reduced by Transglutaminase Polymerization. Pediatric, Allergy, Immunology, and Pulmonology, 2012, 25, 30-33.	0.8	9
36	Efeito da concentração de enzima e de substrato no grau de hidrólise e nas propriedades funcionais de hidrolisados proteicos de corvina (Micropogonias furnieri). Quimica Nova, 2009, 32, 1792-1798.	0.3	7