Roser Pinyol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2532752/publications.pdf

Version: 2024-02-01

		236925	395702
31	5,001	25	33
papers	citations	h-index	g-index
2.4	2.4	2.4	70.45
34	34	34	7345
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nature Genetics, 2015, 47, 505-511.	21.4	1,372
2	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
3	DNA methylationâ€based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 2015, 61, 1945-1956.	7. 3	367
4	Platelet GPlbÎ \pm is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
5	Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nature Communications, 2015, 6, 6087.	12.8	240
6	Cordon-Bleu Is an Actin Nucleation Factor and Controls Neuronal Morphology. Cell, 2007, 131, 337-350.	28.9	227
7	Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut, 2019, 68, 1065-1075.	12.1	195
8	Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. Journal of Hepatology, 2020, 73, 315-327.	3.7	164
9	Immune Exclusion-Wnt/CTNNB1 Class Predicts Resistance to Immunotherapies in HCC. Clinical Cancer Research, 2019, 25, 2021-2023.	7.0	152
10	EHD Proteins Associate with Syndapin I and II and Such Interactions Play a Crucial Role in Endosomal Recycling. Molecular Biology of the Cell, 2005, 16, 3642-3658.	2.1	143
11	Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nature Cancer, 2022, 3, 386-401.	13.2	126
12	Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2021, 75, 865-878.	3.7	111
13	F-BAR Proteins of the Syndapin Family Shape the Plasma Membrane and Are Crucial for Neuromorphogenesis. Journal of Neuroscience, 2009, 29, 13315-13327.	3.6	103
14	IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models. Gastroenterology, 2016, 151, 1192-1205.	1.3	103
15	Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut, 2023, 72, 129-140.	12.1	90
16	Regulation of N-WASP and the Arp2/3 Complex by Abp1 Controls Neuronal Morphology. PLoS ONE, 2007, 2, e400.	2.5	85
17	Nek9 Phosphorylation of NEDD1/GCP-WD Contributes to Plk1 Control of Î ³ -Tubulin Recruitment to the Mitotic Centrosome. Current Biology, 2012, 22, 1516-1523.	3.9	67
18	CXCR2 inhibition enables NASH-HCC immunotherapy. Gut, 2022, 71, 2093-2106.	12.1	66

#	Article	IF	CITATION
19	Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. British Journal of Cancer, 2019, 121, 340-343.	6.4	62
20	An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents. Gastroenterology, 2019, 157, 1383-1397.e11.	1.3	62
21	Liver Injury Increases the Incidence of HCC following AAV Gene Therapy in Mice. Molecular Therapy, 2021, 29, 680-690.	8.2	61
22	The Role of NEDD1 Phosphorylation by Aurora A in Chromosomal Microtubule Nucleation and Spindle Function. Current Biology, 2013, 23, 143-149.	3.9	53
23	Molecular Profiling of Liver Tumors: Classification and Clinical Translation for Decision Making. Seminars in Liver Disease, 2014, 34, 363-375.	3.6	47
24	TERT promoter mutations: Gatekeeper and driver of hepatocellular carcinoma. Journal of Hepatology, 2014, 61, 685-687.	3.7	40
25	Cabozantinib Enhances Anti-PD1 Activity and Elicits a Neutrophil-Based Immune Response in Hepatocellular Carcinoma. Clinical Cancer Research, 2022, 28, 2449-2460.	7.0	39
26	Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clinical Cancer Research, 2020, 26, 6350-6361.	7.0	35
27	Genome-scale metabolic models for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 336-337.	17.8	19
28	Integration of genomic information in the clinical management of HCC. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 831-842.	2.4	19
29	Râ€spondin 2 Drives Liver Tumor Development in a Yesâ€Associated Proteinâ€Dependent Manner. Hepatology Communications, 2019, 3, 1496-1509.	4.3	15
30	Capillary electrophoresis method for the enzymatic assay of galactosyltransferases with postreaction derivatization. Analytical Biochemistry, 2005, 346, 115-123.	2.4	11
31	Cabozantinib enhances the efficacy and immune modulatory activity of anti-PD1 therapy in a syngeneic mouse model of hepatocellular carcinoma. Journal of Hepatology, 2020, 73, S40.	3.7	7