
Youngho Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2532406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature, 2013, 502, 393-396.	27.8	265
2	BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature, 2017, 550, 360-365.	27.8	262
3	DNA Sequence Alignment by Microhomology Sampling during Homologous Recombination. Cell, 2015, 160, 856-869.	28.9	182
4	Concentration-Dependent Exchange of Replication Protein A on Single-Stranded DNA Revealed by Single-Molecule Imaging. PLoS ONE, 2014, 9, e87922.	2.5	176
5	Base triplet stepping by the Rad51/RecA family of recombinases. Science, 2015, 349, 977-981.	12.6	145
6	Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Molecular Cell, 2015, 59, 176-187.	9.7	141
7	Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Research, 2017, 45, 749-761.	14.5	120
8	The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annual Review of Biochemistry, 2019, 88, 221-245.	11.1	104
9	Plasticity of the Mre11–Rad50–Xrs2–Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes and Development, 2017, 31, 2331-2336.	5.9	96
10	Regulation of DNA Pairing in Homologous Recombination. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017954-a017954.	5.5	82
11	Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nature Structural and Molecular Biology, 2014, 21, 893-900.	8.2	81
12	Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell, 2020, 181, 1380-1394.e18.	28.9	77
13	Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genetics, 2016, 12, e1006226.	3.5	76
14	Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Reports, 2017, 21, 1707-1714.	6.4	62
15	Restriction of Replication Fork Regression Activities by a Conserved SMC Complex. Molecular Cell, 2014, 56, 436-445.	9.7	60
16	Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. Journal of Biological Chemistry, 2017, 292, 11702-11713.	3.4	47
17	The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Molecular Cell, 2021, 81, 1043-1057.e8.	9.7	45
18	Dissociation of Rad51 Presynaptic Complexes and Heteroduplex DNA Joints by Tandem Assemblies of Srs2. Cell Reports, 2017, 21, 3166-3177.	6.4	43

YOUNGHO KWON

#	Article	IF	CITATIONS
19	Investigations of homologous recombination pathways and their regulation. Yale Journal of Biology and Medicine, 2013, 86, 453-61.	0.2	40
20	Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Research, 2016, 44, 2742-2753.	14.5	39
21	Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes and Development, 2019, 33, 1191-1207.	5.9	38
22	ATP-dependent Chromatin Remodeling by the Saccharomyces cerevisiae Homologous Recombination Factor Rdh54. Journal of Biological Chemistry, 2008, 283, 10445-10452.	3.4	36
23	Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation. Cell Reports, 2017, 21, 570-577.	6.4	36
24	Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6091-6100.	7.1	35
25	Regulation of Hed1 and Rad54 binding during maturation of the meiosisâ€specific presynaptic complex. EMBO Journal, 2018, 37, .	7.8	33
26	Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Research, 2019, 47, 11225-11237.	14.5	32
27	Rad52, Maestro of Inverse Strand Exchange. Molecular Cell, 2017, 67, 1-3.	9.7	30
28	Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10041-E10048.	7.1	29
29	Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. Journal of Biological Chemistry, 2017, 292, 11125-11135.	3.4	26
30	The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Research, 2019, 47, 4694-4706.	14.5	26
31	Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments. Journal of Biological Chemistry, 2018, 293, 4191-4200.	3.4	24
32	Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling. DNA Repair, 2007, 6, 1496-1506.	2.8	23
33	A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1–Dna2 in long-range DNA end resection. Journal of Biological Chemistry, 2018, 293, 17061-17069.	3.4	19
34	Dynamic interactions of the homologous pairing 2 (Hop2)–meiotic nuclear divisions 1 (Mnd1) protein complex with meiotic presynaptic filaments in budding yeast. Journal of Biological Chemistry, 2019, 294, 490-501.	3.4	19
35	The Fanconi Anemia Proteins FANCD2 and FANCJ Interact and Regulate Each Other's Chromatin Localization. Journal of Biological Chemistry, 2014, 289, 25774-25782.	3.4	17
36	Rad54 and Rdh54 occupy spatially and functionally distinct sites within the Rad51â€ss <scp>DNA</scp> presynaptic complex. EMBO Journal, 2020, 39, e105705.	7.8	17

YOUNGHO KWON

#	Article	IF	CITATIONS
37	Single-molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Research, 2021, 49, 285-305.	14.5	15
38	Rad54 and Rdh54 prevent Srs2-mediated disruption of Rad51 presynaptic filaments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
39	Bloom helicase mediates formation of large single–stranded DNA loops during DNA end processing. Nature Communications, 2022, 13, 2248.	12.8	11
40	Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes. Microbial Cell, 2019, 6, 65-101.	3.2	10
41	The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Reports, 2020, 32, 107849.	6.4	9
42	Reconstituted System for the Examination of Repair DNA Synthesis in Homologous Recombination. Methods in Enzymology, 2017, 591, 307-325.	1.0	8
43	Biochemical Studies on Human Rad51-Mediated Homologous Recombination. Methods in Molecular Biology, 2011, 745, 421-435.	0.9	6
44	Biochemical Analysis of D-Loop Extension and DNA Strand Displacement Synthesis. Methods in Molecular Biology, 2021, 2153, 87-99.	0.9	3
45	Single-molecule studies of yeast Rad51 paralogs. Methods in Enzymology, 2021, 661, 343-362.	1.0	Ο