List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2531876/publications.pdf Version: 2024-02-01

Πιμιτριί Βλι γλημ

#	Article	IF	CITATIONS
1	Dynamics of COVIDâ€19 via singular and nonâ€singular fractional operators under real statistical observations. Mathematical Methods in the Applied Sciences, 2024, 47, 3079-3100.	2.3	6
2	Numerical solutions of fractional parabolic equations with generalized <scp>Mittag–Leffler</scp> kernels. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	4
3	Numerical simulations for the predator–prey model as a prototype of an excitable system. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	3
4	New approach for propagated light with optical solitons by optical fiber in pseudohyperbolic space â"02. Mathematical Methods in the Applied Sciences, 2023, 46, 8263-8274.	2.3	0
5	Research on a collocation approach and three metaheuristic techniques based on MVO, MFO, and WOA for optimal control of fractional differential equation. JVC/Journal of Vibration and Control, 2023, 29, 661-674.	2.6	5
6	Fractionalâ€order dynamical model for electricity markets. Mathematical Methods in the Applied Sciences, 2023, 46, 8349-8361.	2.3	6
7	Dynamics of three-point boundary value problems with Gudermannian neural networks. Evolutionary Intelligence, 2023, 16, 697-709.	3.6	3
8	A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models. International Journal of Computer Mathematics, 2023, 100, 105-132.	1.8	11
9	Analysis and numerical effects of time-delayed rabies epidemic model with diffusion. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24, 2179-2194.	1.0	2
10	Investigations of non-linear induction motor model using the Gudermannian neural networks. Thermal Science, 2022, 26, 3399-3412.	1.1	8
11	Numerical approximation of inhomogeneous time fractional Burgers–Huxley equation with B-spline functions and Caputo derivative. Engineering With Computers, 2022, 38, 885-900.	6.1	11
12	An inverse source problem for pseudo-parabolic equation with Caputo derivative. Journal of Applied Mathematics and Computing, 2022, 68, 739-765.	2.5	8
13	A numerical approach for solving fractional optimal control problems with mittag-leffler kernel. JVC/Journal of Vibration and Control, 2022, 28, 2596-2606.	2.6	34
14	On a problem for the nonlinear diffusion equation with conformable time derivative. Applicable Analysis, 2022, 101, 6255-6279.	1.3	4
15	Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23, 1157-1172.	1.0	5
16	An efficient hybrid computational technique for the time dependent Lane-Emden equation of arbitrary order. Journal of Ocean Engineering and Science, 2022, 7, 131-142.	4.3	8
17	On beta-time fractional biological population model with abundant solitary wave structures. AEJ - Alexandria Engineering Journal, 2022, 61, 1996-2008.	6.4	44
18	Advanced Analysis of Local Fractional Calculus Applied to the Rice Theory in Fractal Fracture Mechanics. Studies in Systems, Decision and Control, 2022, , 105-133.	1.0	3

#	Article	IF	CITATIONS
19	A robust study on the listeriosis disease by adopting fractal-fractional operators. AEJ - Alexandria Engineering Journal, 2022, 61, 2016-2028.	6.4	25
20	Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients. Studies in Systems, Decision and Control, 2022, , 207-227.	1.0	4
21	THEORETICAL STUDY OF MHD MAXWELL FLUID WITH COMBINED EFFECT OF HEAT AND MASS TRANSFER VIA LOCAL AND NONLOCAL TIME DERIVATIVES. Fractals, 2022, 30, .	3.7	2
22	A General Fractional Pollution Model for Lakes. Communications on Applied Mathematics and Computation, 2022, 4, 1105-1130.	1.7	21
23	Dynamical analysis and triple compound combination anti-synchronization of novel fractional chaotic system. JVC/Journal of Vibration and Control, 2022, 28, 1057-1073.	2.6	8
24	On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations and Control Theory, 2022, 11, 225.	1.3	12
25	A general fractional formulation and tracking control for immunogenic tumor dynamics. Mathematical Methods in the Applied Sciences, 2022, 45, 667-680.	2.3	113
26	Two-wave, breather wave solutions and stability analysis to the (2Â+Â1)-dimensional Ito equation. Journal of Ocean Engineering and Science, 2022, 7, 467-474.	4.3	5
27	On the analysis of an analytical approach for fractional Caudrey-Dodd-Gibbon equations. AEJ - Alexandria Engineering Journal, 2022, 61, 5073-5082.	6.4	21
28	Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative. Chinese Journal of Physics, 2022, 77, 1003-1014.	3.9	18
29	Convection heat transfer under the effect of uniform and periodic magnetic fields with uniform internal heat generation: a new comprehensive work to develop the ability of the multi relaxation time lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7883-7897.	3.6	5
30	FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems. Neural Computing and Applications, 2022, 34, 4193-4206.	5.6	28
31	Water molecules adsorption by a porous carbon matrix in the presence of NaCl impurities using molecular dynamic simulation. Journal of Molecular Liquids, 2022, 347, 117998.	4.9	3
32	The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: A comprehensive experimental study. Journal of Molecular Liquids, 2022, 345, 117891.	4.9	10
33	Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses. AIMS Mathematics, 2022, 7, 2348-2369.	1.6	5
34	Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8397-8409.	3.6	4
35	Rouge Wave, W-Shaped, Bright, and Dark Soliton Solutions for a Generalized Quasi-1D Bose–Einstein Condensate System with Local M-Derivative. Brazilian Journal of Physics, 2022, 52, 1.	1.4	3
36	Studying heat conduction in a sphere considering hybrid fractional derivative operator. Thermal Science, 2022, 26, 1675-1683.	1.1	1

#	Article	IF	CITATIONS
37	Effect of laser welding parameters on the temperature distribution, microstructure and mechanical properties of dissimilar weld joint of Inconel 625 and stainless steel 304. International Communications in Heat and Mass Transfer, 2022, 131, 105859.	5.6	10
38	The investigation of Fe3O4 atomic aggregation in a nanochannel in the presence of magnetic field: Effects of nanoparticles distance center of mass, temperature and total energy via molecular dynamics approach. Journal of Molecular Liquids, 2022, 348, 118400.	4.9	6
39	ON AN EXTENSION OF THE OPERATOR WITH MITTAG-LEFFLER KERNEL. Fractals, 2022, 30, .	3.7	23
40	Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation. AIMS Mathematics, 2022, 7, 6489-6515.	1.6	15
41	Fractional Modeling of Viscous Fluid over a Moveable Inclined Plate Subject to Exponential Heating with Singular and Non-Singular Kernels. Mathematical and Computational Applications, 2022, 27, 8.	1.3	7
42	A delayed plant disease model with Caputo fractional derivatives. , 2022, 2022, 11.		24
43	Boger nanofluid: significance of Coriolis and Lorentz forces on dynamics of rotating fluid subject to suction/injection via finite element simulation. Scientific Reports, 2022, 12, 1612.	3.3	5
44	Phase change material dependency on solar power plant building through examination of energy-saving. Journal of Energy Storage, 2022, 45, 103718.	8.1	10
45	On Transformation Involving Basic Analogue to the Aleph-Function of Two Variables. Fractal and Fractional, 2022, 6, 71.	3.3	1
46	Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. International Journal of Computational Intelligence Systems, 2022, 15, 1.	2.7	26
47	Fractional-order dynamics of human papillomavirus. Results in Physics, 2022, 34, 105281.	4.1	10
48	The Sharma–Tasso–Olver–Burgers equation: its conservation laws and kink solitons. Communications in Theoretical Physics, 2022, 74, 025001.	2.5	23
49	Projectile motion using three parameter Mittag-Leffler function calculus. Mathematics and Computers in Simulation, 2022, 195, 22-30.	4.4	4
50	Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic. AEJ - Alexandria Engineering Journal, 2022, 61, 7007-7027.	6.4	25
51	A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. AEJ - Alexandria Engineering Journal, 2022, 61, 5753-5769.	6.4	35
52	A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems. International Journal of Computer Mathematics, 2022, 99, 2091-2104.	1.8	17
53	Design, Analysis and Comparison of a Nonstandard Computational Method for the Solution of a General Stochastic Fractional Epidemic Model. Axioms, 2022, 11, 10.	1.9	8
54	On soliton solutions of fractional-order nonlinear model appears in physical sciences. AIMS Mathematics, 2022, 7, 7421-7440.	1.6	17

#	Article	IF	CITATIONS
55	Nonlinear higher order fractional terminal value problems. AIMS Mathematics, 2022, 7, 7489-7506.	1.6	22
56	A novel high accurate numerical approach for the time-delay optimal control problems with delay on both state and control variables. AIMS Mathematics, 2022, 7, 9789-9808.	1.6	1
57	Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness. AIMS Mathematics, 2022, 7, 10387-10399.	1.6	1
58	Further studies on ordinary differential equations involving the \$ M \$-fractional derivative. AIMS Mathematics, 2022, 7, 10977-10993.	1.6	1
59	Mellin transform for fractional integrals with general analytic kernel. AIMS Mathematics, 2022, 7, 9443-9462.	1.6	0
60	Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7, 9353-9372.	1.6	5
61	New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2022, 19, 4062-4074.	1.9	7
62	New approach on controllability of Hilfer fractional derivatives with nondense domain. AIMS Mathematics, 2022, 7, 10079-10095.	1.6	17
63	On a novel fuzzy fractional retarded delay epidemic model. AIMS Mathematics, 2022, 7, 10122-10142.	1.6	4
64	Design of neuro-swarming computational solver for the fractional Bagley–Torvik mathematical model. European Physical Journal Plus, 2022, 137, 245.	2.6	17
65	Optical solitons of a high-order nonlinear SchrĶdinger equation involving nonlinear dispersions and Kerr effect. Optical and Quantum Electronics, 2022, 54, 1.	3.3	36
66	EDITORIAL - SPECIAL ISSUE SECTION ON FRACTAL AI-BASED ANALYSES AND APPLICATIONS TO COMPLEX SYSTEMS: PART II. Fractals, 2022, 30, .	3.7	2
67	Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations. Symmetry, 2022, 14, 597.	2.2	55
68	Propagation of traveling wave solutions to the Vakhnenko-Parkes dynamical equation via modified mathematical methods. Applied Mathematics, 2022, 37, 21-34.	1.0	5
69	Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10569-10594.	3.6	4
70	From Eikonal to Antieikonal Approximations: Competition of Scales in the Framework of SchrĶdinger and Classical Wave Equation. Journal of Computational and Nonlinear Dynamics, 2022, 17, .	1.2	0
71	The Caputo–Fabrizio time-fractional Sharma–Tasso–Olver–Burgers equation and its valid approximations. Communications in Theoretical Physics, 2022, 74, 075003.	2.5	4
72	Hidden Markov Model and multifractal method-based predictive quantization complexity models vis-Ãj-vis the differential prognosis and differentiation of Multiple Sclerosis' subgroups. Knowledge-Based Systems, 2022, 246, 108694.	7.1	5

#	Article	IF	CITATIONS
73	The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations. Applied Numerical Mathematics, 2022, 178, 25-40.	2.1	11
74	On a new and generalized fractional model for a real cholera outbreak. AEJ - Alexandria Engineering Journal, 2022, 61, 9175-9186.	6.4	104
75	Lucas Wavelet Scheme for Fractional Bagley–Torvik Equations: Gauss–Jacobi Approach. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	6
76	Designing a Matrix Collocation Method for Fractional Delay Integro-Differential Equations with Weakly Singular Kernels Based on Vieta–Fibonacci Polynomials. Fractal and Fractional, 2022, 6, 2.	3.3	9
77	A variety of dynamic \$ alpha \$-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7, 11382-11398.	1.6	8
78	Global stability of local fractional Hénon-Lozi map using fixed point theory. AIMS Mathematics, 2022, 7, 11399-11416.	1.6	6
79	Two-Dimensional Nanofluid Due to an Accelerated Plate with Viscosity Ratio. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	1
80	Estimates for Coefficients of Bi-Univalent Functions Associated with a Fractional q-Difference Operator. Symmetry, 2022, 14, 879.	2.2	14
81	An asymptotic state estimator design and synchronization criteria for fractional order timeâ€delayed genetic regulatory networks. Asian Journal of Control, 2022, 24, 3163-3174.	3.0	5
82	Convoluted fractional differentials of various forms utilizing the generalized Raina's function description with applications. Journal of Taibah University for Science, 2022, 16, 432-441.	2.5	4
83	On the breather waves, lump solutions, two-wave solutions of (3+1) dimensional Martnez Alonso Shabat equation. Journal of Ocean Engineering and Science, 2022, , .	4.3	1
84	Analytical results for positivity of discrete fractional operators with approximation of the domain of solutions. Mathematical Biosciences and Engineering, 2022, 19, 7272-7283.	1.9	0
85	Numerical and experimental analysis of temperature distribution and melt flow in fiber laser welding of Inconel 625. International Journal of Advanced Manufacturing Technology, 2022, 121, 765-784.	3.0	17
86	Finite Time Stability of Fractional Order Systems of Neutral Type. Fractal and Fractional, 2022, 6, 289.	3.3	10
87	Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7, 14099-14116.	1.6	0
88	The dynamical behavior for a famous class of evolution equationsÂwith double exponential nonlinearities. Journal of Ocean Engineering and Science, 2022, , .	4.3	10
89	Analysis and some applications of a regularized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1472" altimg="si349.svg"> <mml:mi>i`</mml:mi> â€"Hilfer fractional derivative. Journal of Computational and Applied Mathematics, 2022, 415, 114476</mml:math 	2.0	72
90	The Korteweg-de Vries–Caudrey–Dodd–Gibbon dynamical model: Its conservation laws, solitons, and complexiton. Journal of Ocean Engineering and Science, 2022, , .	4.3	5

#	Article	IF	CITATIONS
91	Optical solitons with nonlinear dispersion in parabolic law medium and three-component coupled nonlinear SchrĶdinger equation. Optical and Quantum Electronics, 2022, 54, .	3.3	17
92	Inelastic soliton wave solutions with different geometrical structures to fractional order nonlinear evolution equations. Results in Physics, 2022, 38, 105661.	4.1	19
93	Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types. Electronic Research Archive, 2022, 30, 3058-3070.	0.9	5
94	Computational fractional-order calculus and classical calculus AI for comparative differentiability prediction analyses of complex-systems-grounded paradigm. , 2022, , 149-168.		6
95	Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7, 14394-14418.	1.6	17
96	A hybrid computing approach to design the novel second order singular perturbed delay differential Lane-Emden model. Physica Scripta, 2022, 97, 085002.	2.5	5
97	Analysis of positivity results for discrete fractional operators by means of exponential kernels. AIMS Mathematics, 2022, 7, 15812-15823.	1.6	4
98	APPLICATION OF q-SHEHU TRANSFORM ON q-FRACTIONAL KINETIC EQUATION INVOLVING THE GENERALIZED HYPER-BESSEL FUNCTION. Fractals, 2022, 30, .	3.7	4
99	Monotonicity Results for Nabla Riemann–Liouville Fractional Differences. Mathematics, 2022, 10, 2433.	2.2	2
100	On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales. Symmetry, 2022, 14, 1421.	2.2	1
101	On Some Important Class of Dynamic Hilbert's-Type Inequalities on Time Scales. Symmetry, 2022, 14, 1395.	2.2	1
102	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. Symmetry, 2022, 14, 1419.	2.2	3
103	A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. Journal of Advanced Research, 2021, 32, 149-160.	9.5	29
104	Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness. Waves in Random and Complex Media, 2021, 31, 2135-2149.	2.7	48
105	Discrete fractional calculus for interval–valued systems. Fuzzy Sets and Systems, 2021, 404, 141-158.	2.7	51
106	Antiâ€synchronization of chaotic systems using a fractional conformable derivative with power law. Mathematical Methods in the Applied Sciences, 2021, 44, 8286-8301.	2.3	10
107	Design of stochastic numerical solver for the solution of singular three-point second-order boundary value problems. Neural Computing and Applications, 2021, 33, 2427-2443.	5.6	45
108	Optimal solutions for singular linear systems of Caputo fractional differential equations. Mathematical Methods in the Applied Sciences, 2021, 44, 7884-7896.	2.3	24

#	Article	IF	CITATIONS
109	An efficient computational approach for local fractional Poisson equation in fractal media. Numerical Methods for Partial Differential Equations, 2021, 37, 1439-1448.	3.6	52
110	A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. Applied Numerical Mathematics, 2021, 161, 137-146.	2.1	63
111	Fuzzy clustering to classify several time series models with fractional Brownian motion errors. AEJ - Alexandria Engineering Journal, 2021, 60, 1137-1145.	6.4	20
112	Analysis of timeâ€fractional dynamical model of romantic and interpersonal relationships with nonâ€singular kernels: A comparative study. Mathematical Methods in the Applied Sciences, 2021, 44, 2183-2199.	2.3	9
113	Analysis and Application Using Quad Compound Combination Anti-synchronization on Novel Fractional-Order Chaotic System. Arabian Journal for Science and Engineering, 2021, 46, 1729-1742.	3.0	14
114	Henry–Gronwall type q â€fractional integral inequalities. Mathematical Methods in the Applied Sciences, 2021, 44, 2033-2039.	2.3	10
115	Approximation of fixed point and its application to fractional differential equation. Journal of Applied Mathematics and Computing, 2021, 66, 507-525.	2.5	17
116	Computational study of fractional order smoking model. Chaos, Solitons and Fractals, 2021, 142, 110440.	5.1	29
117	A hybrid analytical algorithm for thin film flow problem occurring in non-Newtonian fluid mechanics. Ain Shams Engineering Journal, 2021, 12, 2297-2302.	6.1	18
118	Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks. Chaos, Solitons and Fractals, 2021, 142, 110416.	5.1	16
119	SIR epidemic model of childhood diseases through fractional operators with Mittag-Leffler and exponential kernels. Mathematics and Computers in Simulation, 2021, 182, 514-534.	4.4	28
120	Recovering the initial value for a system of nonlocal diffusion equations with random noise on the measurements. Mathematical Methods in the Applied Sciences, 2021, 44, 5188-5209.	2.3	7
121	Pattern formation in superdiffusion predator–preyâ€like problems with integer―and nonintegerâ€order derivatives. Mathematical Methods in the Applied Sciences, 2021, 44, 4018-4036.	2.3	19
122	An analysis for Klein–Gordon equation using fractional derivative having Mittag–Lefflerâ€ŧype kernel. Mathematical Methods in the Applied Sciences, 2021, 44, 5458-5474.	2.3	5
123	New applications related to Covid-19. Results in Physics, 2021, 20, 103663.	4.1	29
124	Analysis of fractional model of guava for biological pest control with memory effect. Journal of Advanced Research, 2021, 32, 99-108.	9.5	62
125	Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines. AEJ - Alexandria Engineering Journal, 2021, 60, 941-953.	6.4	21
126	Analysis of the fractional corona virus pandemic via deterministic modeling. Mathematical Methods in the Applied Sciences, 2021, 44, 1086-1102.	2.3	29

#	Article	IF	CITATIONS
127	On the fractional optimal control problems with a general derivative operator. Asian Journal of Control, 2021, 23, 1062-1071.	3.0	124
128	Some exact solutions of a variable coefficients fractional biological population model. Mathematical Methods in the Applied Sciences, 2021, 44, 4701-4714.	2.3	16
129	On a combination of fractional differential and integral operators associated with a class of normalized functions. AIMS Mathematics, 2021, 6, 4211-4226.	1.6	8
130	Simulating the joint impact of temporal and spatial memory indices via a novel analytical scheme. Nonlinear Dynamics, 2021, 103, 2509-2524.	5.2	14
131	Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative. Advances in Difference Equations, 2021, 2021, .	3.5	16
132	Construction and analysis of unified 4-point interpolating nonstationary subdivision surfaces. Advances in Difference Equations, 2021, 2021, .	3.5	1
133	Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution. AIMS Mathematics, 2021, 6, 8294-8314.	1.6	2
134	A new approach on the modelling, chaos control and synchronization of a fractional biological oscillator. Advances in Difference Equations, 2021, 2021, .	3.5	8
135	General Raina fractional integral inequalities on coordinates of convex functions. Advances in Difference Equations, 2021, 2021, .	3.5	14
136	On distinctive solitons type solutions for some important nonlinear SchrĶdinger equations. Optical and Quantum Electronics, 2021, 53, 1.	3.3	19
137	The analytical analysis of nonlinear fractional-order dynamical models. AIMS Mathematics, 2021, 6, 6201-6219.	1.6	11
138	Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2025.	1.1	5
139	On quantum hybrid fractional conformable differential and integral operators in a complex domain. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1.	1.2	18
140	Modeling of a MED-TVC desalination system by considering the effects of nanoparticles: energetic and exergetic analysis. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2675.	3.6	21
141	Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation. Open Physics, 2021, 19, 1-10.	1.7	108
142	Analysis of the Physical Behavior of the Periodic Mixed-Convection Flow around a Nonconducting Horizontal Circular Cylinder Embedded in a Porous Medium. Journal of Mathematics, 2021, 2021, 1-7.	1.0	9
143	Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator. Computers, Materials and Continua, 2021, 66, 1823-1848.	1.9	62
144	New aspects of fractional Bloch model associated with composite fractional derivative. Mathematical Modelling of Natural Phenomena, 2021, 16, 10.	2.4	12

#	Article	IF	CITATIONS
145	On CesÃro and Copson sequence spaces with weights. Journal of Inequalities and Applications, 2021, 2021, .	1.1	14
146	Exact Analysis of Second Grade Fluid with Generalized Boundary Conditions. Intelligent Automation and Soft Computing, 2021, 28, 547-559.	2.1	9
147	Epidemiological Analysis of the Coronavirus Disease Outbreak with Random Effects. Computers, Materials and Continua, 2021, 67, 3215-3227.	1.9	11
148	Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos, Solitons and Fractals, 2021, 143, 110578.	5.1	74
149	The (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. European Physical Journal Plus, 2021, 136, 1.	2.6	60
150	Mathematical modeling of pine wilt disease with Caputo fractional operator. Chaos, Solitons and Fractals, 2021, 143, 110569.	5.1	62
151	On the approximate solution of fractional-order Whitham–Broer–Kaup equations. Modern Physics Letters B, 2021, 35, 2150192.	1.9	4
152	Hydrodynamic analysis of a heat exchanger with crosscut twisted tapes and filled with thermal oil-based SWCNT nanofluid: applying ANN for prediction of objective parameters. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2163-2176.	3.6	4
153	A class of fractal Hilbertâ€type inequalities obtained via Cantorâ€type spherical coordinates. Mathematical Methods in the Applied Sciences, 2021, 44, 6195-6208.	2.3	2
154	The refinement-schemes-based unified algorithms for certain nth order linear and nonlinear differential equations with a set of constraints. Advances in Difference Equations, 2021, 2021, .	3.5	1
155	Corrigendum to "A New Approach to Increase the Flexibility of Curves and Regular Surfaces Produced by 4-Point Ternary Subdivision Scheme― Mathematical Problems in Engineering, 2021, 2021, 1-1.	1.1	0
156	Flat sheet direct contact membrane distillation desalination system using temperature-dependent correlations: thermal efficiency via a multi-parameter sensitivity analysis based on Monte Carlo method. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2641.	3.6	12
157	Quasi binormal Schrodinger evolution of wave polarizatıon field of light wıth repulsive type. Physica Scripta, 2021, 96, 045104.	2.5	19
158	Numerical simulation for timeâ€fractional nonlinear reaction–diffusion system on a uniform and nonuniform time stepping. Mathematical Methods in the Applied Sciences, 2021, 44, 5340-5364.	2.3	2
159	Fractional calculus in the sky. Advances in Difference Equations, 2021, 2021, .	3.5	58
160	Evolutionary computing for nonlinear singular boundary value problems using neural network, genetic algorithm and active-set algorithm. European Physical Journal Plus, 2021, 136, 1.	2.6	39
161	Testing the equality of several independent stationary and non-stationary time series models with fractional Brownian motion errors. AEJ - Alexandria Engineering Journal, 2021, 60, 1767-1775.	6.4	1
162	Analysis and applications of the proportional Caputo derivative. Advances in Difference Equations, 2021, 2021, .	3.5	15

#	Article	IF	CITATIONS
163	Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems. Advances in Difference Equations, 2021, 2021, .	3.5	26
164	The effects of using corrugated booster reflectors to improve the performance of a novel solar collector to apply in cooling PV cells-Navigating performance using ANN. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2151-2162.	3.6	4
165	Fractional-Order Investigation of Diffusion Equations via Analytical Approach. Frontiers in Physics, 2021, 8, .	2.1	5
166	Approximate solutions of nonlinear twoâ€dimensional Volterra integral equations. Mathematical Methods in the Applied Sciences, 2021, 44, 5548-5559.	2.3	3
167	Criteria for existence of solutions for a Liouville–Caputo boundary value problem via generalized Gronwall's inequality. Journal of Inequalities and Applications, 2021, 2021, .	1.1	9
168	A divided differences based medium to analyze smoothness of the binary bivariate refinement schemes. Advances in Difference Equations, 2021, 2021, .	3.5	0
169	A FRACTAL FRACTIONAL MODEL FOR CERVICAL CANCER DUE TO HUMAN PAPILLOMAVIRUS INFECTION. Fractals, 2021, 29, 2140015.	3.7	20
170	Numerical and bifurcation analysis of spatio-temporal delay epidemic model. Results in Physics, 2021, 22, 103851.	4.1	4
171	NEW NEWTON'S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS. Fractals, 2021, 29, 2140018.	3.7	11
172	ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE. Fractals, 2021, 29, 2140027.	3.7	16
173	ON THE APPROXIMATE SOLUTIONS FOR A SYSTEM OF COUPLED KORTEWEG–DE VRIES EQUATIONS WITH LOCAL FRACTIONAL DERIVATIVE. Fractals, 2021, 29, 2140012.	3.7	34
174	Emergent patterns in diffusive Turing-like systems with fractional-order operator. Neural Computing and Applications, 2021, 33, 12703-12720.	5.6	24
175	A new fractional SICA model and numerical method for the transmission of HIV/AIDS. Mathematical Methods in the Applied Sciences, 2021, 44, 8648-8659.	2.3	11
176	Recovering the source term for parabolic equation with nonlocal integral condition. Mathematical Methods in the Applied Sciences, 2021, 44, 9026-9041.	2.3	3
177	FRACTIONAL MAYER NEURO-SWARM HEURISTIC SOLVER FOR MULTI-FRACTIONAL ORDER DOUBLY SINGULAR MODEL BASED ON LANE–EMDEN EQUATION. Fractals, 2021, 29, 2140017.	3.7	55
178	The stability of the fractional Volterra integroâ€differential equation by means of Ψâ€Hilfer operator revisited. Mathematical Methods in the Applied Sciences, 2021, 44, 10905-10911.	2.3	5
179	Classes of operators in fractional calculus: A case study. Mathematical Methods in the Applied Sciences, 2021, 44, 9143-9162.	2.3	33
180	Caputo SIR model for COVID-19 under optimized fractional order. Advances in Difference Equations, 2021, 2021, 185.	3.5	23

#	Article	IF	CITATIONS
181	A mathematical model to optimize the available control measures of COVID – 19. Ecological Complexity, 2021, 46, 100930.	2.9	4
182	DESIGN OF NEURO-SWARMING HEURISTIC SOLVER FOR MULTI-PANTOGRAPH SINGULAR DELAY DIFFERENTIAL EQUATION. Fractals, 2021, 29, 2140022.	3.7	30
183	NEW MULTI-FUNCTIONAL APPROACH FOR ήTH-ORDER DIFFERENTIABILITY GOVERNED BY FRACTIONAL CALCULUS VIA APPROXIMATELY GENERALIZED (Î^, â,,)-CONVEX FUNCTIONS IN HILBERT SPACE. Fractals, 2021, 29 2140019.),3.7	10
184	Fractional unit-root tests allowing for a fractional frequency flexible Fourier form trend: predictability of Covid-19. Advances in Difference Equations, 2021, 2021, 167.	3.5	25
185	Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Advances in Difference Equations, 2021, 2021, .	3.5	98
186	An analytic study on the approximate solution of a nonlinear timeâ€fractional Cauchy reaction–diffusion equation with the Mittag–Leffler law. Mathematical Methods in the Applied Sciences, 2021, 44, 6247-6258.	2.3	37
187	A new extension of hesitant fuzzy set: An application to an offshore wind turbine technology selection process. IET Renewable Power Generation, 2021, 15, 2340-2355.	3.1	14
188	A hybrid stochastic fractional order Coronavirus (2019-nCov) mathematical model. Chaos, Solitons and Fractals, 2021, 145, 110762.	5.1	31
189	On solutions of fractional multi-term sequential problems via some special categories of functions and (AEP)-property. Advances in Difference Equations, 2021, 2021, .	3.5	3
190	The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations. Results in Physics, 2021, 23, 104006.	4.1	55
191	Existence of solutions for the Caputo-Hadamard fractional dil̃ferential equations and inclusions. Journal of Physics: Conference Series, 2021, 1850, 012107.	0.4	2
192	Analytic Solution of the Langevin Differential Equations Dominated by a Multibrot Fractal Set. Fractal and Fractional, 2021, 5, 50.	3.3	10
193	Dynamics of pattern formation process in fractional-order super-diffusive processes: a computational approach. Soft Computing, 2021, 25, 11191-11208.	3.6	12
194	Continuity Result on the Order of a Nonlinear Fractional Pseudo-Parabolic Equation with Caputo Derivative. Fractal and Fractional, 2021, 5, 41.	3.3	4
195	Balance equations with generalised memory and the emerging fractional kernels. Nonlinear Dynamics, 2021, 104, 4149.	5.2	5
196	Analysis and dynamics of fractional order Covid-19 model with memory effect. Results in Physics, 2021, 24, 104017.	4.1	39
197	Existence results for the Hadamard fractional dilferential equations and inclusions. Journal of Physics: Conference Series, 2021, 1850, 012122.	0.4	0
198	New and more fractional soliton solutions related to generalized Davey–Stewartson equation using oblique wave transformation. Modern Physics Letters B, 2021, 35, 2150317.	1.9	11

#	Article	IF	CITATIONS
199	Composite Structures with Symmetry. Symmetry, 2021, 13, 792.	2.2	0
200	Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Advances in Difference Equations, 2021, 2021, .	3.5	16
201	On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: a new fractional analysis and control. Advances in Difference Equations, 2021, 2021, .	3.5	86
202	Factor analysis approach to classify COVID-19 datasets in several regions. Results in Physics, 2021, 25, 104071.	4.1	19
203	A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Advances in Difference Equations, 2021, 2021, .	3.5	89
204	Identifying the source function for time fractional diffusion with non-local in time conditions. Computational and Applied Mathematics, 2021, 40, 1.	2.2	8
205	Heat and mass transport impact on MHD secondâ€gradeÂfluid: A comparative analysis of fractional operators. Heat Transfer, 2021, 50, 7042-7064.	3.0	22
206	Mathematical modeling and analysis of the novel Coronavirus using Atangana–Baleanu derivative. Results in Physics, 2021, 25, 104240.	4.1	12
207	Soliton solutions of nonlinear Boussinesq models using the exponential function technique. Physica Scripta, 2021, 96, 105209.	2.5	9
208	Search for adequate closed form wave solutions to space–time fractional nonlinear equations. Partial Differential Equations in Applied Mathematics, 2021, 3, 100025.	2.4	12
209	A hybrid fractional COVID-19 model with general population mask use: Numerical treatments. AEJ - Alexandria Engineering Journal, 2021, 60, 3219-3232.	6.4	14
210	Symmetry Breaking of a Time-2D Space Fractional Wave Equation in a Complex Domain. Axioms, 2021, 10, 141.	1.9	4
211	Multibody Systems with Flexible Elements. Symmetry, 2021, 13, 1359.	2.2	0
212	Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications. Fractal and Fractional, 2021, 5, 80.	3.3	7
213	A Novel Collocated-Shifted Lucas Polynomial Approach for Fractional Integro-Differential Equations. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	6
214	Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms, 2021, 10, 175.	1.9	27
215	Exact solutions for thermomagetized unsteady non-singularized jeffrey fluid: Effects of ramped velocity, concentration with newtonian heating. Results in Physics, 2021, 26, 104367.	4.1	23
216	The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions. European Physical Journal Plus, 2021, 136, 1.	2.6	24

#	Article	IF	CITATIONS
217	Application of some special operators on the analysis of a new generalized fractional Navier problem in the context of q-calculus. Advances in Difference Equations, 2021, 2021, .	3.5	2
218	APPLICATIONS OF GUDERMANNIAN NEURAL NETWORK FOR SOLVING THE SITR FRACTAL SYSTEM. Fractals, 2021, 29, .	3.7	23
219	A novel method for analysing the fractal fractional integrator circuit. AEJ - Alexandria Engineering Journal, 2021, 60, 3721-3729.	6.4	29
220	Multi-wave, homoclinic breather, M-shaped rational and other solitary wave solutions for coupled-Higgs equation. European Physical Journal: Special Topics, 2021, 230, 3519-3532.	2.6	11
221	Physically significant wave solutions to the Riemann wave equations and the Landau-Ginsburg-Higgs equation. Results in Physics, 2021, 27, 104517.	4.1	19
222	Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. AEJ - Alexandria Engineering Journal, 2021, 60, 3593-3604.	6.4	62
223	Explicit wave phenomena to the couple type fractional order nonlinear evolution equations. Results in Physics, 2021, 28, 104597.	4.1	16
224	Finite-time stabilization of a perturbed chaotic finance model. Journal of Advanced Research, 2021, 32, 1-14.	9.5	20
225	Simpson's method for fractional differential equations with a non-singular kernel applied to a chaotic tumor model. Physica Scripta, 2021, 96, 124019.	2.5	2
226	A novel modeling of boundary value problems on the glucose graph. Communications in Nonlinear Science and Numerical Simulation, 2021, 100, 105844.	3.3	49
227	On a New Modification of the Erdélyi–Kober Fractional Derivative. Fractal and Fractional, 2021, 5, 121.	3.3	9
228	Analysis and numerical solution of the generalized proportional fractional Cauchy problem. Applied Numerical Mathematics, 2021, 167, 173-186.	2.1	9
229	An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense. Mathematics and Computers in Simulation, 2021, 187, 248-260.	4.4	37
230	Existence of measure pseudo-almost automorphic functions and applications to impulsive integro-differential equation. Chaos, 2021, 31, 093126.	2.5	0
231	Role of Cattaneo–Christov heat flux in an MHD Micropolar dusty nanofluid flow with zero mass flux condition. Scientific Reports, 2021, 11, 19528.	3.3	19
232	Structure preserving numerical scheme for spatio-temporal epidemic model of plant disease dynamics. Results in Physics, 2021, 30, 104821.	4.1	2
233	Some applications of the least squares-residual power series method for fractional generalized long wave equations. Journal of Ocean Engineering and Science, 2021, , .	4.3	2
234	Evaluation the vibrational behavior of carbon nanotubes in different sizes and chiralities and argon flows at supersonic velocity using molecular dynamics simulation. Journal of Molecular Liquids, 2021, 339, 116796.	4.9	5

#	Article	IF	CITATIONS
235	On hybrid nanofluid Yamada-Ota and Xue flow models in a rotating channel with modified Fourier law. Scientific Reports, 2021, 11, 19590.	3.3	9
236	Modeling the dynamics of the novel coronavirus using Caputo-Fabrizio derivative. AEJ - Alexandria Engineering Journal, 2021, 60, 4651-4662.	6.4	10
237	Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats. Chaos, Solitons and Fractals, 2021, 151, 111261.	5.1	14
238	The Molecular dynamics study of atomic Management and thermal behavior of Al-Water Nanofluid: A two phase unsteady simulation. Journal of Molecular Liquids, 2021, 340, 117286.	4.9	6
239	Improve thermal performance of Simulated-Body-Fluid as a solution with an ion concentration close to human blood plasma, by additive Zinc Oxide and its composites: ZnO/Carbon Nanotube and ZnO/Hydroxyapatite. Journal of Molecular Liquids, 2021, 342, 117457.	4.9	13
240	The investigation of energy management and atomic interaction between coronavirus structure in the vicinity of aqueous environment of H2O molecules via molecular dynamics approach. Journal of Molecular Liquids, 2021, 341, 117430.	4.9	2
241	Terminal value problems for the nonlinear systems of fractional differential equations. Applied Numerical Mathematics, 2021, 170, 162-178.	2.1	37
242	Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) against an oxide such as NaCO2O4. Optik, 2021, 247, 168035.	2.9	4
243	Representation of exact solutions of ï^-fractional nonlinear evolution equations using two different approaches. Partial Differential Equations in Applied Mathematics, 2021, 4, 100068.	2.4	1
244	Investigation on Ginzburg-Landau equation via a tested approach to benchmark stochastic Davis-Skodje system. AEJ - Alexandria Engineering Journal, 2021, 60, 5521-5526.	6.4	10
245	Recovering the space source term for the fractional-diffusion equation with Caputo–Fabrizio derivative. Journal of Inequalities and Applications, 2021, 2021, .	1.1	5
246	Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6, 3352-3377.	1.6	6
247	On the weighted fractional integral inequalities for Chebyshev functionals. Advances in Difference Equations, 2021, 2021, .	3.5	12
248	New approximate analytical technique for the solution of time fractional fluid flow models. Advances in Difference Equations, 2021, 2021, .	3.5	12
249	Optimal Control of a MIMO Bioreactor System Using Direct Approach. International Journal of Control, Automation and Systems, 2021, 19, 1159-1174.	2.7	4
250	Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6, 168-194.	1.6	30
251	Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation. AIMS Mathematics, 2021, 6, 8352-8366.	1.6	6
252	A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6, 4526-4555.	1.6	13

#	Article	IF	CITATIONS
253	Investigation of COVID-19 mathematical model under fractional order derivative. Mathematical Modelling of Natural Phenomena, 2021, 16, 50.	2.4	2
254	Quantization of fractional harmonic oscillator using creation and annihilation operators. Open Physics, 2021, 19, 395-401.	1.7	5
255	Travelling waves solution for fractional-order biological population model. Mathematical Modelling of Natural Phenomena, 2021, 16, 32.	2.4	13
256	A fractional study of generalized Oldroyd-B fluid with ramped conditions via local & non-local kernels. Nonlinear Engineering, 2021, 10, 177-186.	2.7	9
257	Ginzburg Landau equation's Innovative Solution (GLEIS). Physica Scripta, 2021, 96, 035204.	2.5	4
258	A Numerical Simulation on the Effect of Vaccination and Treatments for the Fractional Hepatitis B Model. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	1.2	19
259	An Efficient Technique for Fractional Coupled System Arisen in Magnetothermoelasticity With Rotation Using Mittag–Leffler Kernel. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	1.2	16
260	Propagation of diverse ultrashort pulses in optical fiber to Triki–Biswas equation and its modulation instability analysis. Modern Physics Letters B, 2021, 35, .	1.9	4
261	Modeling the transmission dynamics of delayed pneumonia-like diseases with a sensitivity of parameters. Advances in Difference Equations, 2021, 2021, 468.	3.5	7
262	Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic. Results in Physics, 2021, 31, 104917.	4.1	17
263	Approximating Real-Life BVPs via Chebyshev Polynomials' First Derivative Pseudo-Galerkin Method. Fractal and Fractional, 2021, 5, 165.	3.3	17
264	Extension of perturbation theory to quantum systems with conformable derivative. Modern Physics Letters A, 2021, 36, .	1.2	4
265	Green's function and an inequality of Lyapunov-type for conformable boundary value problem. Novi Sad Journal of Mathematics, 2021, 51, 123-131.	0.2	1
266	Fractional Propagation of Short Light Pulses in Monomode Optical Fibers: Comparison of Beta Derivative and Truncated M- Fractional Derivative. Journal of Computational and Nonlinear Dynamics, 2021, , .	1.2	4
267	Protracted study on a real physical phenomenon generated by media inhomogeneities. Results in Physics, 2021, 31, 104933.	4.1	25
268	Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2021, 7, 1791-1810.	1.6	7
269	Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2021, 7, 1507-1535.	1.6	11
270	A New Three-Step Root-Finding Numerical Method and Its Fractal Global Behavior. Fractal and Fractional, 2021, 5, 204.	3.3	12

#	Article	IF	CITATIONS
271	Soliton structures of a nonlinear SchrĶdinger equation involving the parabolic law. Optical and Quantum Electronics, 2021, 53, 1.	3.3	8
272	A new and general fractional Lagrangian approach: A capacitor microphone case study. Results in Physics, 2021, 31, 104950.	4.1	91
273	Flow and heat transport phenomenon for dynamics of Jeffrey nanofluid past stretchable sheet subject to Lorentz force and dissipation effects. Scientific Reports, 2021, 11, 22924.	3.3	17
274	On new general versions of Hermite–Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel. Journal of Inequalities and Applications, 2021, 2021, .	1.1	4
275	The Molecular Dynamics study of atomic structure behavior of LL-37 peptide as the antimicrobial agent, derived from the human cathelicidin, inside a nano domain filled by the aqueous environment. Journal of Molecular Liquids, 2021, 349, 118187.	4.9	1
276	Design of Gudermannian Neuroswarming to solve the singular Emden–Fowler nonlinear model numerically. Nonlinear Dynamics, 2021, 106, 3199-3214.	5.2	14
277	Fractional heat equation optimized by a chaotic function. Thermal Science, 2021, 25, 173-178.	1.1	1
278	Bright, dark, and singular optical soliton solutions for perturbed Gerdjikov-Ivanov equation. Thermal Science, 2021, 25, 151-156.	1.1	6
279	Clobal optimization and applications to a variational inequality problem. Open Mathematics, 2021, 19, 1349-1358.	1.0	Ο
280	Conformable differential operators for meromorphically multivalent functions. Concrete Operators, 2021, 8, 150-157.	0.2	3
281	Study of electro-osmotic nanofluid transport for scraped surface heat exchanger with heat transfer phenomenon. Thermal Science, 2021, 25, 213-218.	1.1	2
282	Fractional model of second grade fluid induced by generalized thermal and molecular fluxes with constant proportional caputo. Thermal Science, 2021, 25, 207-212.	1.1	6
283	Odd-order differential equations with deviating arguments: asymptomatic behavior and oscillation. Mathematical Biosciences and Engineering, 2021, 19, 1411-1425.	1.9	5
284	Exact solutions of stochastic KdV equation with conformable derivatives in white noise environment. Thermal Science, 2021, 25, 143-149.	1.1	13
285	Investigation of electroosmosis flow of copper nanoparticles with heat transfer due to metachronal rhythm. Thermal Science, 2021, 25, 193-198.	1.1	7
286	Prabhakar fractional derivative and its applications in the transport phenomena containing nanoparticles. Thermal Science, 2021, 25, 411-416.	1.1	35
287	Magnetic charged particles of optical spherical antiferromagnetic model with fractional system. Open Physics, 2021, 19, 590-601.	1.7	0
288	Soliton solutions for non-linear Kudryashov's equation via three integrating schemes. Thermal Science, 2021, 25, 157-163.	1.1	6

#	Article	IF	CITATIONS
289	The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique. Scientific Reports, 2021, 11, 23535.	3.3	21
290	Entropy generation and induced magnetic field in pseudoplastic nanofluid flow near a stagnant point. Scientific Reports, 2021, 11, 23736.	3.3	18
291	Generalized Quantum Integro-Differential Fractional Operator with Application of 2D-Shallow Water Equation in a Complex Domain. Axioms, 2021, 10, 342.	1.9	0
292	On the boundary value problem in the nonlinear theory of dipolar elastic materials. Mechanics of Advanced Materials and Structures, 2020, 27, 1619-1625.	2.6	1
293	Solution of multi-dimensional Fredholm equations using Legendre scaling functions. Applied Numerical Mathematics, 2020, 150, 313-324.	2.1	14
294	A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel. Chaos, Solitons and Fractals, 2020, 130, 109405.	5.1	125
295	On the analysis of vibration equation involving a fractional derivative with Mittagâ€Leffler law. Mathematical Methods in the Applied Sciences, 2020, 43, 443-457.	2.3	177
296	Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions. Chaos, Solitons and Fractals, 2020, 131, 109476.	5.1	19
297	Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X=Mo,) Tj ETQq1	1 9.78431	4 rgBT /Over
298	Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems. Neural Computing and Applications, 2020, 32, 8381-8399.	5.6	27
299	An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration. Thermal Science and Engineering Progress, 2020, 16, 100379.	2.7	28
300	Single and combined optical solitons, and conservation laws in (2+1)-dimensions with Kundu–Mukherjee–Naskar equation. Chinese Journal of Physics, 2020, 63, 410-418.	3.9	19
301	An Avant-Garde Handling of Temporal-Spatial Fractional Physical Models. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 183-194.	1.0	13
302	Spline collocation methods for systems of fuzzy fractional differential equations. Chaos, Solitons and Fractals, 2020, 131, 109510.	5.1	68
303	Approximate solutions to the conformable Rosenauâ€Hyman equation using the twoâ€step Adomian decomposition method with Pad é approximation. Mathematical Methods in the Applied Sciences, 2020, 43, 7632-7639.	2.3	11
304	Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems. Mathematical Methods in the Applied Sciences, 2020, 43, 4614.	2.3	8
305	A Tau–like numerical method for solving fractional delay integro–differential equations. Applied Numerical Mathematics, 2020, 151, 322-336.	2.1	24
306	Chebyshev cardinal functions for a new class of nonlinear optimal control problems with dynamical systems of weakly singular variable-order fractional integral equations. JVC/Journal of Vibration and Control, 2020, 26, 713-723.	2.6	5

#	Article	IF	CITATIONS
307	Insights into the Stability of Mixed Convective Darcy–Forchheimer Flows of Cross Liquids from a Vertical Plate with Consideration of the Significant Impact of Velocity and Thermal Slip Conditions. Mathematics, 2020, 8, 31.	2.2	9
308	Analytical and numerical solutions of mathematical biology models: The Newellâ€Whitehead‧egel and Allen ahn equations. Mathematical Methods in the Applied Sciences, 2020, 43, 2588-2600.	2.3	77
309	Numerical analysis of diffusive susceptible-infected-recovered epidemic model in three space dimension. Chaos, Solitons and Fractals, 2020, 132, 109535.	5.1	4
310	A new fractional HRSV model and its optimal control: A non-singular operator approach. Physica A: Statistical Mechanics and Its Applications, 2020, 547, 123860.	2.6	109
311	A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system. Chaos, Solitons and Fractals, 2020, 132, 109530.	5.1	8
312	Maximum principle for Hadamard fractional differential equations involving fractional Laplace operator. Mathematical Methods in the Applied Sciences, 2020, 43, 2646-2655.	2.3	10
313	Analysis of fractional Swiftâ€Hohenberg equation using a novel computational technique. Mathematical Methods in the Applied Sciences, 2020, 43, 1970-1987.	2.3	39
314	On a terminal value problem for a generalization of the fractional diffusion equation with hyperâ€Bessel operator. Mathematical Methods in the Applied Sciences, 2020, 43, 2858-2882.	2.3	28
315	On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method. Chinese Journal of Physics, 2020, 63, 149-162.	3.9	81
316	Double-wave solutions and Lie symmetry analysis to the (2Â+Â1)-dimensional coupled Burgers equations. Chinese Journal of Physics, 2020, 63, 122-129.	3.9	107
317	On a backward problem for fractional diffusion equation with Riemannâ€Liouville derivative. Mathematical Methods in the Applied Sciences, 2020, 43, 1292-1312.	2.3	9
318	Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space. Applied Numerical Mathematics, 2020, 152, 310-322.	2.1	12
319	A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations. Applied Mathematics and Computation, 2020, 370, 124915.	2.2	14
320	Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods. Journal of Applied Mathematics and Computing, 2020, 63, 29-57.	2.5	44
321	Analytical Solutions of (2+Time Fractional Order) Dimensional Physical Models, Using Modified Decomposition Method. Applied Sciences (Switzerland), 2020, 10, 122.	2.5	28
322	Numerical Treatment of Time-Fractional Klein–Gordon Equation Using Redefined Extended Cubic B-Spline Functions. Frontiers in Physics, 2020, 8, .	2.1	24
323	The numerical solution of fourth order nonlinear singularly perturbed boundary value problems via 10-point subdivision scheme based numerical algorithm. AIP Advances, 2020, 10, .	1.3	7
324	Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation. Entropy, 2020, 22, 1171.	2.2	23

#	Article	IF	CITATIONS
325	Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system. Chinese Journal of Physics, 2020, 68, 19-27.	3.9	40
326	Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux. Frontiers in Chemistry, 2020, 8, 792.	3.6	37
327	A new generalization of the fractional Euler–Lagrange equation for a vertical mass-spring-damper. JVC/Journal of Vibration and Control, 2020, , 107754632096168.	2.6	4
328	The Pathway Fractional Integrals of Incomplete I-Functions. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	1
329	Rotating 3D Flow of Hybrid Nanofluid on Exponentially Shrinking Sheet: Symmetrical Solution and Duality. Symmetry, 2020, 12, 1637.	2.2	15
330	The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk. European Physical Journal Plus, 2020, 135, 1.	2.6	29
331	MHD Radiative Blood Flow Embracing Gold Particles via a Slippery Sheet through an Erratic Heat Sink/Source. Mathematics, 2020, 8, 1597.	2.2	15
332	Marangoni Boundary Layer Flow and Heat Transfer of Graphene–Water Nanofluid with Particle Shape Effects. Processes, 2020, 8, 1120.	2.8	17
333	Finite Element Study of Magnetohydrodynamics (MHD) and Activation Energy in Darcy–Forchheimer Rotating Flow of Casson Carreau Nanofluid. Processes, 2020, 8, 1185.	2.8	51
334	Study of global dynamics of COVID-19 via a new mathematical model. Results in Physics, 2020, 19, 103468.	4.1	27
335	A novel assessment of bio-medical waste disposal methods using integrating weighting approach and hesitant fuzzy MOOSRA. Journal of Cleaner Production, 2020, 275, 122587.	9.3	67
336	A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations. Journal of Taibah University for Science, 2020, 14, 963-974.	2.5	33
337	A Class of Refinement Schemes With Two Shape Control Parameters. IEEE Access, 2020, 8, 98316-98329.	4.2	4
338	Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation. Symmetry, 2020, 12, 1154.	2.2	33
339	Numerical schemes for studying biomathematics model inherited with memory-time and delay-time. AEJ - Alexandria Engineering Journal, 2020, 59, 2969-2974.	6.4	10
340	Residual power series algorithm for fractional cancer tumor models. AEJ - Alexandria Engineering Journal, 2020, 59, 1405-1412.	6.4	28
341	Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3Â+Â1)-dimensional generalized breaking soliton equation. AEJ - Alexandria Engineering Journal, 2020, 59, 3473-3479.	6.4	33
342	New Solitary Wave Solutions for Variants of (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations. Frontiers in Physics, 2020, 8, .	2.1	131

#	Article	IF	CITATIONS
343	Geometric phase for timelike spherical normal magnetic charged particles optical ferromagnetic model. Journal of Taibah University for Science, 2020, 14, 742-749.	2.5	14
344	A New Approach to Increase the Flexibility of Curves and Regular Surfaces Produced by 4-Point Ternary Subdivision Scheme. Mathematical Problems in Engineering, 2020, 2020, 1-17.	1.1	4
345	A spectral collocation method for fractional chemical clock reactions. Computational and Applied Mathematics, 2020, 39, 1.	2.2	17
346	Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii–Kadomtsev–Petviashvili equation. Results in Physics, 2020, 19, 103492.	4.1	31
347	Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes. Advances in Difference Equations, 2020, 2020, .	3.5	19
348	On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease. Results in Physics, 2020, 19, 103510.	4.1	32
349	The Klein–Fock–Gordon and Tzitzeica dynamical equations with advanced analytical wave solutions. Results in Physics, 2020, 19, 103565.	4.1	13
350	New Exact Solutions of Kolmogorov Petrovskii Piskunov Equation, Fitzhugh Nagumo Equation, and Newell-Whitehead Equation. Advances in Mathematical Physics, 2020, 2020, 1-14.	0.8	4
351	Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler kernel. Results in Physics, 2020, 19, 103559.	4.1	42
352	Exploration of Aluminum and Titanium Alloys in the Stream-Wise and Secondary Flow Directions Comprising the Significant Impacts of Magnetohydrodynamic and Hybrid Nanofluid. Crystals, 2020, 10, 679.	2.2	13
353	Stability analysis and numerical simulations of spatiotemporal HIV CD4+ T cell model with drug therapy. Chaos, 2020, 30, 083122.	2.5	12
354	Numerical study for a novel variable-order multiple time delay awareness programs mathematical model. Applied Numerical Mathematics, 2020, 158, 212-235.	2.1	3
355	New Aspects of ZZ Transform to Fractional Operators With Mittag-Leffler Kernel. Frontiers in Physics, 2020, 8, .	2.1	11
356	Derivation of operational matrix of Rabotnov fractional-exponential kernel and its application to fractional Lienard equation. AEJ - Alexandria Engineering Journal, 2020, 59, 2991-2997.	6.4	6
357	Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics, 2020, 8, 806.	2.2	12
358	Closed-form solutions to the solitary wave equation in an unmagnatized dusty plasma. AEJ - Alexandria Engineering Journal, 2020, 59, 1505-1514.	6.4	23
359	On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. AEJ - Alexandria Engineering Journal, 2020, 59, 3019-3027.	6.4	96
360	Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional, 2020, 4, 30.	3.3	24

#	Article	IF	CITATIONS
361	Optimal control for variable order fractional HIV/AIDS and malaria mathematical models with multi-time delay. AEJ - Alexandria Engineering Journal, 2020, 59, 3149-3162.	6.4	30
362	Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction. Heliyon, 2020, 6, e04565.	3.2	17
363	Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model. Advances in Difference Equations, 2020, 2020, 384.	3.5	26
364	The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium. AIP Advances, 2020, 10, .	1.3	28
365	A Numerical Approach of a Time Fractional Reaction–Diffusion Model with a Non-Singular Kernel. Symmetry, 2020, 12, 1653.	2.2	28
366	Fractional Klein-Gordon-SchrĶdinger equations with Mittag-Leffler memory. Chinese Journal of Physics, 2020, 68, 65-78.	3.9	40
367	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg"> <mml:mrow> <mml:mo stretchy="false" > (<mml:mn> 1 </mml:mn> <mml:mo) 0.784314="" 1="" 10="" 50="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2 Td (linel 4.1</td><td>oreak="badb</td></mml:mo)></mml:mo </mml:mrow>	2 Td (linel 4.1	oreak="badb
368	equation in plasma physics. Results in Physics, 2020, 19, 103330. A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives. Chinese Journal of Physics, 2020, 68, 712-722.	3.9	5
369	A New Computational Approach to Estimate the Subdivision Depth of n-Ary Subdivision Scheme. IEEE Access, 2020, 8, 187146-187155.	4.2	1
370	On the Fractional View Analysis of Keller–Segel Equations with Sensitivity Functions. Complexity, 2020, 2020, 1-15.	1.6	7
371	New wavelet method for solving boundary value problems arising from an adiabatic tubular chemical reactor theory. International Journal of Biomathematics, 2020, 13, 2050059.	2.9	7
372	Convective Effect on Magnetohydrodynamic (MHD) Stagnation Point Flow of Casson Fluid over a Vertical Exponentially Stretching/Shrinking Surface: Triple Solutions. Symmetry, 2020, 12, 1238.	2.2	19
373	Analysis of Fractional Order Chaotic Financial Model with Minimum Interest Rate Impact. Fractal and Fractional, 2020, 4, 43.	3.3	26
374	Mixed Convective Radiative Flow through a Slender Revolution Bodies Containing Molybdenum-Disulfide Graphene Oxide along with Generalized Hybrid Nanoparticles in Porous Media. Crystals, 2020, 10, 771.	2.2	24
375	Consequences of Soret–Dufour Effects, Thermal Radiation, and Binary Chemical Reaction on Darcy Forchheimer Flow of Nanofluids. Symmetry, 2020, 12, 1421.	2.2	60
376	Computational Results With Non-singular and Non-local Kernel Flow of Viscous Fluid in Vertical Permeable Medium With Variant Temperature. Frontiers in Physics, 2020, 8, .	2.1	18
377	A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	1.6	2
378	An Accurate Predictor-Corrector-Type Nonstandard Finite Difference Scheme for an SEIR Epidemic Model. Journal of Mathematics, 2020, 2020, 1-18.	1.0	9

#	Article	IF	CITATIONS
379	Finite Element Least Square Technique for Newtonian Fluid Flow through a Semicircular Cylinder of Recirculating Region via COMSOL Multiphysics. Journal of Mathematics, 2020, 2020, 1-11.	1.0	11
380	Multiple Lump Novel and Accurate Analytical and Numerical Solutions of the Three-Dimensional Potential Yu–Toda–Sasa–Fukuyama Equation. Symmetry, 2020, 12, 2081.	2.2	9
381	Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms. Case Studies in Thermal Engineering, 2020, 22, 100798.	5.7	32
382	Analytical Solution of System of Volterra Integral Equations Using OHAM. Journal of Mathematics, 2020, 2020, 1-9.	1.0	8
383	Fractional Grassi–Miller Map Based on the Caputo h-Difference Operator: Linear Methods for Chaos Control and Synchronization. Discrete Dynamics in Nature and Society, 2020, 2020, 1-10.	0.9	9
384	Normalized Lucas wavelets: an application to Lane–Emden and pantograph differential equations. European Physical Journal Plus, 2020, 135, 1.	2.6	9
385	Coupled transform method for time-space fractional Black-Scholes option pricing model. AEJ - Alexandria Engineering Journal, 2020, 59, 3239-3246.	6.4	16
386	New Optical Solutions of the Fractional Gerdjikov-Ivanov Equation With Conformable Derivative. Frontiers in Physics, 2020, 8, .	2.1	73
387	A New Numerical Method for Time Fractional Non-linear Sharma-Tasso-Oliver Equation and Klein-Gordon Equation With Exponential Kernel Law. Frontiers in Physics, 2020, 8, .	2.1	10
388	Bifurcations, Hidden Chaos and Control in Fractional Maps. Symmetry, 2020, 12, 879.	2.2	10
389	A New Dynamic Scheme via Fractional Operators on Time Scale. Frontiers in Physics, 2020, 8, .	2.1	12
390	An Analytical Investigation of Fractional-Order Biological Model Using an Innovative Technique. Complexity, 2020, 2020, 1-13.	1.6	7
391	Existence of Solutions for Nonlinear Fractional Differential Equations and Inclusions Depending on Lower-Order Fractional Derivatives. Axioms, 2020, 9, 44.	1.9	11
392	Modified Modelling for Heat Like Equations within Caputo Operator. Energies, 2020, 13, 2002.	3.1	23
393	Generalized 5-Point Approximating Subdivision Scheme of Varying Arity. Mathematics, 2020, 8, 474.	2.2	12
394	New Aspects for Non-Existence of Kneser Solutions of Neutral Differential Equations with Odd-Order. Mathematics, 2020, 8, 494.	2.2	24
395	Dynamic Hilbert-Type Inequalities with Fenchel-Legendre Transform. Symmetry, 2020, 12, 582.	2.2	13
396	Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations. Mathematical Methods in the Applied Sciences, 2020, 43, 8669-8682.	2.3	25

#	Article	IF	CITATIONS
397	Nonstandard finite difference method for solving complex-order fractional Burgers' equations. Journal of Advanced Research, 2020, 25, 19-29.	9.5	15
398	Numerical solution of twoâ€dimensional time fractional cable equation with Mittag‣effler kernel. Mathematical Methods in the Applied Sciences, 2020, 43, 8348-8362.	2.3	11
399	A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons and Fractals, 2020, 138, 109919.	5.1	149
400	A novel method to detect almost cyclostationary structure. AEJ - Alexandria Engineering Journal, 2020, 59, 2339-2346.	6.4	12
401	Regularity results for fractional diffusion equations involving fractional derivative with Mittag–Leffler kernel. Mathematical Methods in the Applied Sciences, 2020, 43, 7208-7226.	2.3	13
402	A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water. Frontiers in Physics, 2020, 8, .	2.1	31
403	Fractal and multifractional-based predictive optimization model for stroke subtypes' classification. Chaos, Solitons and Fractals, 2020, 136, 109820.	5.1	19
404	An efficient computational approach for a fractional-order biological population model with carrying capacity. Chaos, Solitons and Fractals, 2020, 138, 109880.	5.1	90
405	The Analytical Analysis of Time-Fractional Fornberg–Whitham Equations. Mathematics, 2020, 8, 987.	2.2	22
406	A novel fractional grey model applied to the environmental assessment in Turkey. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 11, 2050039.	1.4	6
407	Exact Solution of Two-Dimensional Fractional Partial Differential Equations. Fractal and Fractional, 2020, 4, 21.	3.3	24
408	A Computational Method for Subdivision Depth of Ternary Schemes. Mathematics, 2020, 8, 817.	2.2	3
409	New Weighted Opial-Type Inequalities on Time Scales for Convex Functions. Symmetry, 2020, 12, 842.	2.2	8
410	A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host. Chaos, Solitons and Fractals, 2020, 138, 109931.	5.1	24
411	Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative. Advances in Difference Equations, 2020, 2020, .	3.5	105
412	Analysis of Eyring–Powell Fluid Flow Used as a Coating Material for Wire with Variable Viscosity Effect along with Thermal Radiation and Joule Heating. Crystals, 2020, 10, 168.	2.2	26
413	The Properties of a Decile-Based Statistic to Measure Symmetry and Asymmetry. Symmetry, 2020, 12, 296.	2.2	4
414	Post Quantum Integral Inequalities of Hermite-Hadamard-Type Associated with Co-Ordinated Higher-Order Generalized Strongly Pre-Invex and Quasi-Pre-Invex Mappings. Symmetry, 2020, 12, 443.	2.2	23

#	Article	IF	CITATIONS
415	New fractional signal smoothing equations with short memory and variable order. Optik, 2020, 218, 164507.	2.9	53
416	A semi-analytical method to solve family of Kuramoto–Sivashinsky equations. Journal of Taibah University for Science, 2020, 14, 402-411.	2.5	35
417	Analysis of Geometric Properties of Ternary Four-Point Rational Interpolating Subdivision Scheme. Mathematics, 2020, 8, 338.	2.2	13
418	Dual Solutions and Stability Analysis of Magnetized Hybrid Nanofluid with Joule Heating and Multiple Slip Conditions. Processes, 2020, 8, 332.	2.8	56
419	Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data. Journal of Computational and Applied Mathematics, 2020, 376, 112883.	2.0	39
420	Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative. Chaos, 2020, 30, 033137.	2.5	11
421	The fractional features of a harmonic oscillator with position-dependent mass. Communications in Theoretical Physics, 2020, 72, 055002.	2.5	122
422	A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel. International Journal of Biomathematics, 2020, 13, 2050010.	2.9	97
423	Comments on: "The Failure of Certain Fractional Calculus Operators in Two Physical Models―by M. Ortigueira, V. Martynyuk, M. Fedula and J.A.T. Machado. Fractional Calculus and Applied Analysis, 2020, 23, 292-297.	2.2	16
424	Mathematical Analysis of Entropy Generation in the Flow of Viscoelastic Nanofluid through an Annular Region of Two Asymmetric Annuli Having Flexible Surfaces. Coatings, 2020, 10, 213.	2.6	37
425	A Novel Numerical Algorithm to Estimate the Subdivision Depth of Binary Subdivision Schemes. Symmetry, 2020, 12, 66.	2.2	11
426	New Multi-Parametrized Estimates Having pth-Order Differentiability in Fractional Calculus for Predominating â"•Convex Functions in Hilbert Space. Symmetry, 2020, 12, 222.	2.2	41
427	More Effective Criteria for Oscillation of Second-Order Differential Equations with Neutral Arguments. Mathematics, 2020, 8, 986.	2.2	29
428	On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method. AEJ - Alexandria Engineering Journal, 2020, 59, 3029-3039.	6.4	67
429	Structure preserving algorithms for mathematical model of auto-catalytic glycolysis chemical reaction and numerical simulations. European Physical Journal Plus, 2020, 135, 1.	2.6	5
430	A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models. Symmetry, 2020, 12, 929.	2.2	5
431	A New Iterative Method for the Numerical Solution of High-Order Non-linear Fractional Boundary Value Problems. Frontiers in Physics, 2020, 8,	2.1	106
432	An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems. Energies, 2020, 13, 2725.	3.1	33

#	Article	IF	CITATIONS
433	Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator. Communications in Nonlinear Science and Numerical Simulation, 2020, 91, 105396.	3.3	26
434	Solitary wave solution for a generalized Hirota-Satsuma coupled KdV and MKdV equations: A semi-analytical approach. AEJ - Alexandria Engineering Journal, 2020, 59, 2877-2889.	6.4	19
435	The analytical investigation of time-fractional multi-dimensional Navier–Stokes equation. AEJ - Alexandria Engineering Journal, 2020, 59, 2941-2956.	6.4	34
436	Inequalities of trapezoidal type involving generalized fractional integrals. AEJ - Alexandria Engineering Journal, 2020, 59, 2975-2984.	6.4	23
437	On comparing and clustering the spectral densities of several almost cyclostationary processes. AEJ - Alexandria Engineering Journal, 2020, 59, 2555-2565.	6.4	12
438	Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model. Chaos, Solitons and Fractals, 2020, 139, 110036.	5.1	77
439	Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Chaos, Solitons and Fractals, 2020, 139, 110089.	5.1	100
440	Discrete fractional watermark technique. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 880-883.	2.6	31
441	A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model. Applied Mathematics and Computation, 2020, 374, 125061.	2.2	30
442	An Approximate-Analytical Solution to Analyze Fractional View of Telegraph Equations. IEEE Access, 2020, 8, 25638-25649.	4.2	4
443	Fractional View Analysis of Acoustic Wave Equations, Using Fractional-Order Differential Equations. Applied Sciences (Switzerland), 2020, 10, 610.	2.5	12
444	Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers–Huxley Equation. Symmetry, 2020, 12, 170.	2.2	32
445	Lump-Type and Bell-Shaped Soliton Solutions of the Time-Dependent Coefficient Kadomtsev-Petviashvili Equation. Frontiers in Physics, 2020, 7, .	2.1	6
446	Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis. Crystals, 2020, 10, 142.	2.2	28
447	Quantum Analogs of Ostrowski-Type Inequalities for Raina's Function correlated with Coordinated Generalized Φ-Convex Functions. Symmetry, 2020, 12, 308.	2.2	13
448	A quadraticâ€phase integral operator for sets of generalized integrable functions. Mathematical Methods in the Applied Sciences, 2020, 43, 4168.	2.3	2
449	Abundant new solutions of the transmission of nerve impulses of an excitable system. European Physical Journal Plus, 2020, 135, 1.	2.6	25
450	Numerical Analysis of Fluid Forces for Flow Past a Square Rod with Detached Dual Control Rods at Various Gap Spacing. Symmetry, 2020, 12, 159.	2.2	6

#	Article	IF	CITATIONS
451	A mathematical study of natural convection flow through a channel with non-singular kernels: An application to transport phenomena. AEJ - Alexandria Engineering Journal, 2020, 59, 2269-2281.	6.4	34
452	A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons and Fractals, 2020, 134, 109705.	5.1	534
453	Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission. Chaos, Solitons and Fractals, 2020, 134, 109706.	5.1	48
454	Structure preserving computational technique for fractional order Schnakenberg model. Computational and Applied Mathematics, 2020, 39, 1.	2.2	10
455	Brownian Motion on Cantor Sets. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 275-281.	1.0	2
456	Numerical solutions of hybrid fuzzy differential equations in a Hilbert space. Applied Numerical Mathematics, 2020, 151, 402-412.	2.1	37
457	Positivity Preserving Technique for the Solution of HIV/AIDS Reaction Diffusion Model With Time Delay. Frontiers in Physics, 2020, 7, .	2.1	10
458	Fractional View Analysis of Third Order Kortewege-De Vries Equations, Using a New Analytical Technique. Frontiers in Physics, 2020, 7, .	2.1	17
459	A modified analytical approach with existence and uniqueness for fractional Cauchy reactionâ ϵ "diffusion equations. Advances in Difference Equations, 2020, 2020, .	3.5	46
460	Regularization of a terminal value problem for time fractional diffusion equation. Mathematical Methods in the Applied Sciences, 2020, 43, 3850-3878.	2.3	16
461	The dynamics of new dual-mode Kawahara equation: interaction of dual-waves solutions and graphical analysis. Physica Scripta, 2020, 95, 045216.	2.5	13
462	Numerical Analysis of the Susceptible Exposed Infected Quarantined and Vaccinated (SEIQV) Reaction-Diffusion Epidemic Model. Frontiers in Physics, 2020, 7, .	2.1	14
463	Stability Analysis and Dual Solutions of Micropolar Nanofluid over the Inclined Stretching/Shrinking Surface with Convective Boundary Condition. Symmetry, 2020, 12, 74.	2.2	37
464	Numerical solution of variable fractional order advectionâ€dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. Mathematical Methods in the Applied Sciences, 2020, 43, 3936.	2.3	8
465	Fractional KdV and Boussenisqâ€Burger's equations, reduction to PDE and stability approaches. Mathematical Methods in the Applied Sciences, 2020, 43, 4125.	2.3	6
466	Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Applied Numerical Mathematics, 2020, 156, 94-105.	2.1	126
467	Re-Evaluating the Classical Falling Body Problem. Mathematics, 2020, 8, 553.	2.2	3
468	On the Generalized Hermite–Hadamard Inequalities via the Tempered Fractional Integrals. Symmetry, 2020, 12, 595.	2.2	64

#	Article	IF	CITATIONS
469	Entropy Generation and Consequences of MHD in Darcy–Forchheimer Nanofluid Flow Bounded by Non-Linearly Stretching Surface. Symmetry, 2020, 12, 652.	2.2	76
470	On a Fractional Operator Combining Proportional and Classical Differintegrals. Mathematics, 2020, 8, 360.	2.2	193
471	Existence Results for Langevin Equation Involving Atangana-Baleanu Fractional Operators. Mathematics, 2020, 8, 408.	2.2	6
472	Numerical Simulation of Drag Reduction on a Square Rod Detached with Two Control Rods at Various Gap Spacing via Lattice Boltzmann Method. Symmetry, 2020, 12, 475.	2.2	6
473	A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane–Emden equations. Applied Numerical Mathematics, 2020, 153, 443-456.	2.1	28
474	Propagation of harmonic waves in a cylindrical rod via generalized Pochhammer-Chree dynamical wave equation. Results in Physics, 2020, 17, 103039.	4.1	8
475	Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos, 2020, 30, 043106.	2.5	35
476	A Novel Hybrid Model for Cu–Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels. Energies, 2020, 13, 1686.	3.1	23
477	Abundant periodic wave solutions for fifth-order Sawada-Kotera equations. Results in Physics, 2020, 17, 103105.	4.1	22
478	Comparative study for optimal control nonlinear variable-order fractional tumor model. Chaos, Solitons and Fractals, 2020, 136, 109810.	5.1	30
479	On the determination of the impulsive Sturm–Liouville operator with the eigenparameterâ€dependent boundary conditions. Mathematical Methods in the Applied Sciences, 2020, 43, 7143-7151.	2.3	4
480	An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets. Mathematics, 2020, 8, 558.	2.2	145
481	Numerical study of third-order ordinary differential equations using a new class of two derivative Runge-Kutta type methods. AEJ - Alexandria Engineering Journal, 2020, 59, 2449-2467.	6.4	13
482	Triple Solutions and Stability Analysis of Micropolar Fluid Flow on an Exponentially Shrinking Surface. Crystals, 2020, 10, 283.	2.2	10
483	Numerical study for two types variable-order Burgers' equations with proportional delay. Applied Numerical Mathematics, 2020, 156, 364-376.	2.1	16
484	Collocation methods for terminal value problems of tempered fractional differential equations. Applied Numerical Mathematics, 2020, 156, 385-395.	2.1	69
485	Approximate solution for a 2-D fractional differential equation with discrete random noise. Chaos, Solitons and Fractals, 2020, 133, 109650.	5.1	11
486	An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment. Chaos, Solitons and Fractals, 2020, 137, 109892.	5.1	67

#	Article	IF	CITATIONS
487	Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries. Chaos, Solitons and Fractals, 2020, 140, 110230.	5.1	60
488	On well-posedness of the sub-diffusion equation with conformable derivative model. Communications in Nonlinear Science and Numerical Simulation, 2020, 89, 105332.	3.3	30
489	Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Scientific Reports, 2020, 10, 15405.	3.3	39
490	Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Physica Scripta, 2020, 95, 075217.	2.5	130
491	Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Physica Scripta, 2020, 95, 105215.	2.5	63
492	An algebraic stability test for fractional order time delay systems. International Journal of Optimization and Control: Theories and Applications, 2020, 10, 94-103.	1.7	4
493	Nonlinear Dynamics of Cattaneo–Christov Heat Flux Model for Third-Grade Power-Law Fluid. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	1.2	26
494	Numerical Solution of Nonlinear Space–Time Fractional-Order Advection–Reaction–Diffusion Equation. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	1.2	10
495	An Efficient Computational Technique for Fractional Model of Generalized Hirota–Satsuma-Coupled Korteweg–de Vries and Coupled Modified Korteweg–de Vries Equations. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	1.2	38
496	NEW GENERALIZATIONS IN THE SENSE OF THE WEIGHTED NON-SINGULAR FRACTIONAL INTEGRAL OPERATOR. Fractals, 2020, 28, 2040003.	3.7	28
497	APPROXIMATE ENDPOINT SOLUTIONS FOR A CLASS OF FRACTIONAL q-DIFFERENTIAL INCLUSIONS BY COMPUTATIONAL RESULTS. Fractals, 2020, 28, 2040029.	3.7	16
498	A Mathematical and Statistical Estimation of Potential Transmission and Severity of COVID-19: A Combined Study of Romania and Pakistan. BioMed Research International, 2020, 2020, 1-14.	1.9	10
499	Reconstructing the right-hand side of a fractional subdiffusion equation from the final data. Journal of Inequalities and Applications, 2020, 2020, .	1.1	10
500	New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. Journal of Inequalities and Applications, 2020, 2020, .	1.1	18
501	A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Boundary Value Problems, 2020, 2020, .	0.7	196
502	Analysis of the model of HIV-1 infection of \$CD4^{+}\$ T-cell with a new approach of fractional derivative. Advances in Difference Equations, 2020, 2020, .	3.5	183
503	The invariant subspace method for solving nonlinear fractional partial differential equations with generalized fractional derivatives. Advances in Difference Equations, 2020, 2020, .	3.5	7
504	Existence and uniqueness of positive solutions for a new class of coupled system via fractional derivatives. Advances in Difference Equations, 2020, 2020, .	3.5	7

#	Article	IF	CITATIONS
505	Fractional spectral differentiation matrices based on Legendre approximation. Advances in Difference Equations, 2020, 2020, .	3.5	5
506	Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel. Advances in Difference Equations, 2020, 2020, .	3.5	15
507	Numerical simulations for stochastic meme epidemic model. Advances in Difference Equations, 2020, 2020, .	3.5	10
508	A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the Rubella disease model. Advances in Difference Equations, 2020, 2020, .	3.5	58
509	A numerical investigation of Caputo time fractional Allen–Cahn equation using redefined cubic B-spline functions. Advances in Difference Equations, 2020, 2020, .	3.5	32
510	Solving time fractional Burgers' and Fisher's equations using cubic B-spline approximation method. Advances in Difference Equations, 2020, 2020, .	3.5	28
511	Positive explicit and implicit computational techniques for reaction–diffusion epidemic model of dengue disease dynamics. Advances in Difference Equations, 2020, 2020, .	3.5	6
512	Relations between fractional models with three-parameter Mittag-Leffler kernels. Advances in Difference Equations, 2020, 2020, .	3.5	19
513	On Grüss inequalities within generalized K-fractional integrals. Advances in Difference Equations, 2020, 2020, .	3.5	19
514	Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel. Advances in Difference Equations, 2020, 2020, .	3.5	16
515	A novel time efficient structure-preserving splitting method for the solution of two-dimensional reaction-diffusion systems. Advances in Difference Equations, 2020, 2020, .	3.5	7
516	A fractional derivative with two singular kernels and application to a heat conduction problem. Advances in Difference Equations, 2020, 2020, .	3.5	41
517	A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives. Advances in Difference Equations, 2020, 2020, .	3.5	10
518	On abundant new solutions of two fractional complex models. Advances in Difference Equations, 2020, 2020, .	3.5	26
519	Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Advances in Difference Equations, 2020, 2020, .	3.5	10
520	On a fractional hybrid multi-term integro-differential inclusion with four-point sum and integral boundary conditions. Advances in Difference Equations, 2020, 2020, .	3.5	4
521	Generation of new fractional inequalities via n polynomials s-type convexity with applications. Advances in Difference Equations, 2020, 2020, .	3.5	48
522	Some fractional calculus findings associated with the incomplete I-functions. Advances in Difference Equations, 2020, 2020, .	3.5	13

#	Article	IF	CITATIONS
523	On stability analysis and existence of positive solutions for a general non-linear fractional differential equations. Advances in Difference Equations, 2020, 2020, .	3.5	24
524	A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Advances in Difference Equations, 2020, 2020, 299.	3.5	137
525	A detailed study on a new \$(2 + 1)\$-dimensional mKdV equation involving the Caputo–Fabrizio time-fractional derivative. Advances in Difference Equations, 2020, 2020, .	3.5	9
526	On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions. Advances in Difference Equations, 2020, 2020, .	3.5	7
527	On the mathematical model of Rabies by using the fractional Caputo–Fabrizio derivative. Advances in Difference Equations, 2020, 2020, .	3.5	24
528	On a strong-singular fractional differential equation. Advances in Difference Equations, 2020, 2020, .	3.5	10
529	Higher-dimensional physical models with multimemory indices: analytic solution and convergence analysis. Advances in Difference Equations, 2020, 2020, 364.	3.5	2
530	Some modifications in conformable fractional integral inequalities. Advances in Difference Equations, 2020, 2020, .	3.5	18
531	Laplace decomposition for solving nonlinear system of fractional order partial differential equations. Advances in Difference Equations, 2020, 2020, .	3.5	37
532	New quantum estimates in the setting of fractional calculus theory. Advances in Difference Equations, 2020, 2020, .	3.5	19
533	Two sequential fractional hybrid differential inclusions. Advances in Difference Equations, 2020, 2020, .	3.5	25
534	On exact special solutions for the stochastic regularized long wave-Burgers equation. Advances in Difference Equations, 2020, 2020, .	3.5	4
535	Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. Advances in Difference Equations, 2020, 2020, .	3.5	45
536	On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Advances in Difference Equations, 2020, 2020, .	3.5	26
537	On a Caputo conformable inclusion problem with mixed Riemann–Liouville conformable integro-derivative conditions. Advances in Difference Equations, 2020, 2020, .	3.5	5
538	On the optimal control of coronavirus (2019-nCov) mathematical model; a numerical approach. Advances in Difference Equations, 2020, 2020, 528.	3.5	20
539	A reliable and competitive mathematical analysis of Ebola epidemic model. Advances in Difference Equations, 2020, 2020, .	3.5	22
540	An approximate analytical solution of the Navier–Stokes equations within Caputo operator and Elzaki transform decomposition method. Advances in Difference Equations, 2020, 2020, .	3.5	22

#	Article	IF	CITATIONS
541	On a Kirchhoff diffusion equation with integral condition. Advances in Difference Equations, 2020, 2020, .	3.5	3
542	Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg–de Vries equations. Advances in Difference Equations, 2020, 2020, .	3.5	74
543	New (<i>p</i> , <i>q</i>)-estimates for different types of integral inequalities via (<i>î±</i> , <i>m</i>)-convex mappings. Open Mathematics, 2020, 18, 1830-1854.	1.0	8
544	Novel numerical analysis for nonlinear advection–reaction–diffusion systems. Open Physics, 2020, 18, 112-125.	1.7	6
545	Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems. Open Physics, 2020, 18, 478-491.	1.7	20
546	New optical solitons of conformable resonant nonlinear Schrödinger's equation. Open Physics, 2020, 18, 761-769.	1.7	27
547	Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction. Open Physics, 2020, 18, 1011-1024.	1.7	9
548	Influence of interfacial electrokinetic on MHD radiative nanofluid flow in a permeable microchannel with Brownian motion and thermophoresis effects. Open Physics, 2020, 18, 726-737.	1.7	5
549	Analytical mathematical schemes: Circular rod grounded via transverse Poisson's effect and extensive wave propagation on the surface of water. Open Physics, 2020, 18, 545-554.	1.7	5
550	Exact optical solitons of the perturbed nonlinear Schrödinger–Hirota equation with Kerr law nonlinearity in nonlinear fiber optics. Open Physics, 2020, 18, 526-534.	1.7	19
551	Closed-form wave structures of the space-time fractional Hirota–Satsuma coupled KdV equation with nonlinear physical phenomena. Open Physics, 2020, 18, 555-565.	1.7	18
552	Exact solutions of the Laplace fractional boundary value problems via natural decomposition method. Open Physics, 2020, 18, 1178-1187.	1.7	2
553	New analytical solutions of heat transfer flow of clay-water base nanoparticles with the application of novel hybrid fractional derivative. Thermal Science, 2020, 24, 343-350.	1.1	17
554	Thermal analysis of magnetohydrodynamic viscous fluid with innovative fractional derivative. Thermal Science, 2020, 24, 351-359.	1.1	8
555	Families of exact solutions of Biswas-Milovic equation by an exponential rational function method. Tbilisi Mathematical Journal, 2020, 13, .	0.3	7
556	Different Types of Progressive Wave Solutions via the 2D-Chiral Nonlinear Schrödinger Equation. Frontiers in Physics, 2020, 8, .	2.1	32
557	Solitons and Jacobi Elliptic Function Solutions to the Complex Ginzburg–Landau Equation. Frontiers in Physics, 2020, 8,	2.1	23
558	Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation. Mathematics, 2020, 8, 159.	2.2	17

#	Article	IF	CITATIONS
559	Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions. Symmetry, 2020, 12, 51.	2.2	18
560	Soliton Solutions of Mathematical Physics Models Using the Exponential Function Technique. Symmetry, 2020, 12, 176.	2.2	24
561	Magnetized Flow of Cu + Al2O3 + H2O Hybrid Nanofluid in Porous Medium: Analysis of Duality and Stability. Symmetry, 2020, 12, 1513.	2.2	26
562	New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 407-428.	1.1	45
563	A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 975-993.	1.1	52
564	Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel. AIMS Mathematics, 2020, 5, 467-481.	1.6	23
565	Optical solitons for Triki-Biswas equation by two analytic approaches. AIMS Mathematics, 2020, 5, 1001-1010.	1.6	17
566	Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5, 1062-1073.	1.6	28
567	A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems. Mathematical Biosciences and Engineering, 2020, 17, 6659-6677.	1.9	0
568	An increasing variables singular system of fractional q-differential equations via numerical calculations. Advances in Difference Equations, 2020, 2020, .	3.5	1
569	Approximate analytical fractional view of convection–diffusion equations. Open Physics, 2020, 18, 897-905.	1.7	3
570	Multifractional Gaussian Process Based on Self-similarity Modelling for MS Subgroups' Clustering with Fuzzy C-Means. Lecture Notes in Computer Science, 2020, , 426-441.	1.3	0
571	Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes' Classification. Lecture Notes in Computer Science, 2020, , 410-425.	1.3	0
572	Numerical simulation of flow field in chemical vapor reactor for nanoparticle synthesized. Thermal Science, 2020, 24, 31-37.	1.1	0
573	Exact solutions of the cubic Boussinesq and the coupled Higgs system. Thermal Science, 2020, 24, 333-342.	1.1	12
574	The inequalities for the analysis of a class of ternary refinement schemes. AIMS Mathematics, 2020, 5, 7581-7603.	1.6	1
575	Non-Differentiable Solution of Nonlinear Biological Population Model on Cantor Sets. Fractal and Fractional, 2020, 4, 5.	3.3	4
576	Determination of an impulsive diffusion operator from interior spectral data. Analysis (Germany), 2020, 40, 39-45.	0.4	0

#	Article	IF	CITATIONS
577	An extension of several essential numerical radius inequalities of \$2imes 2\$ off-diagonal operator matrices. Advances in Difference Equations, 2020, 2020, .	3.5	1
578	δ-β-Gabor integral operators for a space of locally integrable generalized functions. Advances in Difference Equations, 2020, 2020, .	3.5	0
579	Standard routine techniques of modeling of tick-borne encephalitis. Open Physics, 2020, 18, 820-828.	1.7	Ο
580	On some novel exact solutions to the time fractional (2 + 1) dimensional Konopelchenko–Dubrovsky system arising in physical science. Open Physics, 2020, 18, 806-819.	1.7	2
581	Numerical simulation of flow field in chemical vapor reactor for nanoparticle synthesized. Thermal Science, 2020, 24, 31-37.	1.1	Ο
582	Exact solutions of the cubic Boussinesq and the coupled Higgs system. Thermal Science, 2020, 24, 333-342.	1.1	0
583	New analytical solutions of heat transfer flow of clay-water base nanoparticles with the application of novel hybrid fractional derivative. Thermal Science, 2020, 24, 343-350.	1.1	1
584	Thermal analysis of magnetohydrodynamic viscous fluid with innovative fractional derivative. Thermal Science, 2020, 24, 351-359.	1.1	1
585	Fuzzy type-2 fractional Backstepping blood glucose control based on sliding mode observer. International Journal of Dynamics and Control, 2019, 7, 341-354.	2.5	13
586	Adaptive fractional-order blood glucose regulator based on high-order sliding mode observer. IET Systems Biology, 2019, 13, 43-54.	1.5	28
587	Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 517-527.	3.3	114
588	A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets. JVC/Journal of Vibration and Control, 2019, 25, 310-324.	2.6	50
589	Construction and Application of Nine-Tic B-Spline Tensor Product SS. Mathematics, 2019, 7, 675.	2.2	18
590	Regularized solution for nonlinear elliptic equations with random discrete data. Mathematical Methods in the Applied Sciences, 2019, 42, 6829-6848.	2.3	0
591	On New Solutions of Time-Fractional Wave Equations Arising in Shallow Water Wave Propagation. Mathematics, 2019, 7, 722.	2.2	33
592	Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative. Chaos, 2019, 29, 083110.	2.5	25
593	A linearizationâ€based approach of homotopy analysis method for nonâ€linear timeâ€fractional parabolic PDEs. Mathematical Methods in the Applied Sciences, 2019, 42, 7222-7232.	2.3	22
594	New variable-order fractional chaotic systems for fast image encryption. Chaos, 2019, 29, 083103.	2.5	185

#	Article	IF	CITATIONS
595	Coordinate-Free Approach for the Model Operator Associated With a Third-Order Dissipative Operator. Frontiers in Physics, 2019, 7, .	2.1	3
596	First Integral Technique for Finding Exact Solutions of Higher Dimensional Mathematical Physics Models. Symmetry, 2019, 11, 783.	2.2	20
597	On Comparing and Classifying Several Independent Linear and Non-Linear Regression Models with Symmetric Errors. Symmetry, 2019, 11, 820.	2.2	43
598	Certain Hermite–Hadamard Inequalities for Logarithmically Convex Functions with Applications. Mathematics, 2019, 7, 163.	2.2	32
599	Natural Transform Decomposition Method for Solving Fractional-Order Partial Differential Equations with Proportional Delay. Mathematics, 2019, 7, 532.	2.2	30
600	Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes. Modern Physics Letters B, 2019, 33, 1950224.	1.9	14
601	Efficacy of the Post-Exposure Prophylaxis and of the HIV Latent Reservoir in HIV Infection. Mathematics, 2019, 7, 515.	2.2	11
602	On Cauchy problem for nonlinear fractional differential equation with random discrete data. Applied Mathematics and Computation, 2019, 362, 124458.	2.2	5
603	New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications. Results in Physics, 2019, 14, 102491.	4.1	78
604	A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019, 2019, .	3.5	110
605	On (2 + 1)-dimensional physical models endowed with decoupled spatial and temporal memory indices⋆. European Physical Journal Plus, 2019, 134, 1.	2.6	12
606	Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay. Chaos, Solitons and Fractals, 2019, 128, 51-57.	5.1	54
607	A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications. Mathematics, 2019, 7, 639.	2.2	14
608	Inference about the Ratio of the Coefficients of Variation of Two Independent Symmetric or Asymmetric Populations. Symmetry, 2019, 11, 824.	2.2	4
609	Study and control of thermoelastic damping of in-plane vibration of the functionally graded nano-plate. JVC/Journal of Vibration and Control, 2019, 25, 2850-2862.	2.6	23
610	Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery. Applied Soft Computing Journal, 2019, 85, 105826.	7.2	56
611	Numerical solutions of fractional delay differential equations using Chebyshev wavelet method. Computational and Applied Mathematics, 2019, 38, 1.	2.2	14
612	Existence Results for Block Matrix Operator of Fractional Orders in Banach Algebras. Mathematics, 2019, 7, 856.	2.2	4

#	Article	IF	CITATIONS
613	Approximate Controllability of Infinite-Dimensional Degenerate Fractional Order Systems in the Sectorial Case. Mathematics, 2019, 7, 735.	2.2	10
614	Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system. Chaos, 2019, 29, 103101.	2.5	26
615	A novel technique to construct exact solutions for nonlinear partial differential equations. European Physical Journal Plus, 2019, 134, 1.	2.6	67
616	Application of normal wiggly dual hesitant fuzzy sets to site selection for hydrogen underground storage. International Journal of Hydrogen Energy, 2019, 44, 28874-28892.	7.1	40
617	A New Feature of the Fractional Euler–Lagrange Equations for a Coupled Oscillator Using a Nonsingular Operator Approach. Frontiers in Physics, 2019, 7, .	2.1	88
618	On Fractional Operators and Their Classifications. Mathematics, 2019, 7, 830.	2.2	147
619	Fractional Whitham–Broer–Kaup Equations within Modified Analytical Approaches. Axioms, 2019, 8, 125.	1.9	32
620	Existence theory and numerical simulation of HIV-I cure model with new fractional derivative possessing a non-singular kernel. Advances in Difference Equations, 2019, 2019, .	3.5	15
621	Focus Point on Fractional Differential Equations in Physics: Recent Advantages and Future Direction. European Physical Journal Plus, 2019, 134, 1.	2.6	3
622	On Some New Weighted Inequalities for Differentiable Exponentially Convex and Exponentially Quasi-Convex Functions with Applications. Mathematics, 2019, 7, 727.	2.2	26
623	A New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations. IEEE Access, 2019, 7, 150037-150050.	4.2	24
624	Certain Results Comprising the Weighted Chebyshev Function Using Pathway Fractional Integrals. Mathematics, 2019, 7, 896.	2.2	8
625	A new fractional modelling and control strategy for the outbreak of dengue fever. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122524.	2.6	148
626	A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos, 2019, 29, 083127.	2.5	211
627	Solving Helmholtz Equation with Local Fractional Derivative Operators. Fractal and Fractional, 2019, 3, 43.	3.3	30
628	Families of Travelling Waves Solutions for Fractional-Order Extended Shallow Water Wave Equations, Using an Innovative Analytical Method. IEEE Access, 2019, 7, 107523-107532.	4.2	14
629	Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations. Advances in Difference Equations, 2019, 2019, .	3.5	16
630	One dimensional fractional frequency Fourier transform by inverse difference operator. Advances in Difference Equations, 2019, 2019, .	3.5	3
#	Article	IF	CITATIONS
-----	---	-----	-----------
631	On a three step crisis integro-differential equation. Advances in Difference Equations, 2019, 2019, .	3.5	52
632	Family of odd point non-stationary subdivision schemes and their applications. Advances in Difference Equations, 2019, 2019, .	3.5	9
633	Analysis of differential equations involving Caputo–Fabrizio fractional operator and its applications to reaction–diffusion equations. Advances in Difference Equations, 2019, 2019, .	3.5	87
634	Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations. Advances in Difference Equations, 2019, 2019, .	3.5	17
635	Ternary-fractional differential transform schema: theory and application. Advances in Difference Equations, 2019, 2019, .	3.5	22
636	Stationary wave solutions for new developed two-waves' fifth-order Korteweg–de Vries equation. Advances in Difference Equations, 2019, 2019, .	3.5	20
637	Computable solution of fractional kinetic equations using Mathieu-type series. Advances in Difference Equations, 2019, 2019, .	3.5	12
638	A reliable technique for fractional modified Boussinesq and approximate long wave equations. Advances in Difference Equations, 2019, 2019, .	3.5	26
639	A new class of 2m-point binary non-stationary subdivision schemes. Advances in Difference Equations, 2019, 2019, .	3.5	11
640	Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel. Journal of Taibah University for Science, 2019, 13, 813-819.	2.5	32
641	Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE. European Physical Journal Plus, 2019, 134, 1.	2.6	10
642	Ostrowski Type Inequalities Involving Ï^-Hilfer Fractional Integrals. Mathematics, 2019, 7, 770.	2.2	15
643	On the Solution of an Imprecisely Defined Nonlinear Time-Fractional Dynamical Model of Marriage. Mathematics, 2019, 7, 689.	2.2	30
644	A numerical algorithm based on modified extended B-spline functions for solving time-fractional diffusion wave equation involving reaction and damping terms. Advances in Difference Equations, 2019, 2019, .	3.5	19
645	Optical Solitons With M-Truncated and Beta Derivatives in Nonlinear Optics. Frontiers in Physics, 2019, 7, .	2.1	45
646	A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos, 2019, 29, 093111.	2.5	146
647	Analytical Solution of Fractional-Order Hyperbolic Telegraph Equation, Using Natural Transform Decomposition Method. Electronics (Switzerland), 2019, 8, 1015.	3.1	30
648	Fractional dynamics of an erbium-doped fiber laser model. Optical and Quantum Electronics, 2019, 51, 1.	3.3	12

#	Article	IF	CITATIONS
649	Highly Accurate Numerical Technique for Population Models via Rational Chebyshev Collocation Method. Mathematics, 2019, 7, 913.	2.2	4
650	Shapes and dynamics of dual-mode Hirota–Satsuma coupled KdV equations: Exact traveling wave solutions and analysis. Chinese Journal of Physics, 2019, 58, 49-56.	3.9	62
651	Fractional modeling of blood ethanol concentration system with real data application. Chaos, 2019, 29, 013143.	2.5	162
652	Study of implicit type coupled system of nonâ€integer order differential equations with antiperiodic boundary conditions. Mathematical Methods in the Applied Sciences, 2019, 42, 2033-2042.	2.3	12
653	Inequalities for n-class of functions using the Saigo fractional integral operator. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 2407-2420.	1.2	18
654	A robust and accurate disturbance damping control design for nonlinear dynamical systems. Optimal Control Applications and Methods, 2019, 40, 375-393.	2.1	15
655	An Efficient Analytical Technique, for The Solution of Fractional-Order Telegraph Equations. Mathematics, 2019, 7, 426.	2.2	31
656	Numerical solutions of interval-valued fractional nonlinear differential equations. European Physical Journal Plus, 2019, 134, 1.	2.6	13
657	Shifted Chebyshev schemes for solving fractional optimal control problems. JVC/Journal of Vibration and Control, 2019, 25, 2143-2150.	2.6	27
658	Some New Fractional-Calculus Connections between Mittag–Leffler Functions. Mathematics, 2019, 7, 485.	2.2	35
659	New Numerical Aspects of Caputo-Fabrizio Fractional Derivative Operator. Mathematics, 2019, 7, 374.	2.2	58
660	A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 2019, 138, 1222-1227.	4.8	193
661	On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Boundary Value Problems, 2019, 2019, .	0.7	150
662	Editorial: Fractional Calculus and Its Applications in Physics. Frontiers in Physics, 2019, 7, .	2.1	49
663	Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal and Fractional, 2019, 3, 26.	3.3	23
664	Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal and Fractional, 2019, 3, 27.	3.3	45
665	Modeling the dynamics of hepatitis E <i>via</i> the Caputo–Fabrizio derivative. Mathematical Modelling of Natural Phenomena, 2019, 14, 311.	2.4	113
666	Design of computational intelligent procedure for thermal analysis of porous fin model. Chinese Journal of Physics, 2019, 59, 641-655.	3.9	54

#	Article	IF	CITATIONS
667	Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative. Modern Physics Letters A, 2019, 34, 1950155.	1.2	132
668	New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. European Physical Journal Plus, 2019, 134, 1.	2.6	82
669	An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation. Mathematics, 2019, 7, 265.	2.2	48
670	Invariant Subspace and Classification of Soliton Solutions of the Coupled Nonlinear Fokas-Liu System. Frontiers in Physics, 2019, 7, .	2.1	4
671	Dark-Bright Optical Soliton and Conserved Vectors to the Biswas-Arshed Equation With Third-Order Dispersions in the Absence of Self-Phase Modulation. Frontiers in Physics, 2019, 7, .	2.1	29
672	On fractional calculus with general analytic kernels. Applied Mathematics and Computation, 2019, 354, 248-265.	2.2	130
673	The new exact solitary wave solutions and stability analysis for the (2 + 1) \$(2+1)\$ -dimensional Zakharov–Kuznetsov equation. Advances in Difference Equations, 2019, 2019, .	3.5	95
674	Fractional Impulsive Differential Equations: Exact Solutions, Integral Equations and Short Memory Case. Fractional Calculus and Applied Analysis, 2019, 22, 180-192.	2.2	81
675	A Mechanical Model Based on Conformal Strain Energy and Its Application to Bending and Buckling of Nanobeam Structures. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	3
676	New aspects of fractional Biswas–Milovic model with Mittag-Leffler law. Mathematical Modelling of Natural Phenomena, 2019, 14, 303.	2.4	121
677	Magnetohydrodynamic mixed convection flow of Jeffery fluid with thermophoresis, Soret and Dufour effects and convective condition. AIP Advances, 2019, 9, .	1.3	10
678	Optical Solitons Possessing Beta Derivative of the Chen-Lee-Liu Equation in Optical Fibers. Frontiers in Physics, 2019, 7, .	2.1	68
679	New Aspects of Immunogenic Tumors Within Different Fractional Operators. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	3
680	System of fractional differential algebraic equations with applications. Chaos, Solitons and Fractals, 2019, 120, 203-212.	5.1	95
681	Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains. Journal of Advanced Research, 2019, 17, 125-137.	9.5	75
682	Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods. Chaos, 2019, 29, 023116.	2.5	113
683	A fourth order non-polynomial quintic spline collocation technique for solving time fractional superdiffusion equations. Advances in Difference Equations, 2019, 2019, .	3.5	14
684	Extended cubic B-splines in the numerical solution of time fractional telegraph equation. Advances in Difference Equations, 2019, 2019, .	3.5	29

#	Article	IF	CITATIONS
685	Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. Mathematics, 2019, 7, 508.	2.2	20
686	On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative. Open Physics, 2019, 17, 816-822.	1.7	14
687	Analysis for fractionalâ€order predator–prey model with uncertainty. IET Systems Biology, 2019, 13, 277-289.	1.5	17
688	Some further results of the laplace transform for variable–order fractional difference equations. Fractional Calculus and Applied Analysis, 2019, 22, 1641-1654.	2.2	52
689	Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a twoâ€sex population. IET Systems Biology, 2019, 13, 305-315.	1.5	18
690	Competitive analysis for stochastic influenza model with constant vaccination strategy. IET Systems Biology, 2019, 13, 316-326.	1.5	16
691	A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets. Fractal and Fractional, 2019, 3, 30.	3.3	26
692	An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator. Journal of Taibah University for Science, 2019, 13, 1147-1157.	2.5	37
693	New Solutions of Gardner's Equation Using Two Analytical Methods. Frontiers in Physics, 2019, 7, .	2.1	56
694	Solitons and complexitons to the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model. International Journal of Modern Physics B, 2019, 33, 1950368.	2.0	7
695	Determination of source term for the fractional Rayleigh–Stokes equation with random data. Journal of Inequalities and Applications, 2019, 2019, .	1.1	4
696	Symmetry in Applied Continuous Mechanics. Symmetry, 2019, 11, 1286.	2.2	0
697	On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 2019, 69, 119-133.	3.3	133
698	Dynamics of optical solitons, multipliers and conservation laws to the nonlinear schrödinger equation in (2+1)-dimensions with non-Kerr law nonlinearity. Journal of Modern Optics, 2019, 66, 136-142.	1.3	21
699	Inverse problems for the impulsive Sturm–Liouville operator with jump conditions. Inverse Problems in Science and Engineering, 2019, 27, 1442-1450.	1.2	1
700	New Exact Solutions of the Generalized Benjamin–Bona–Mahony Equation. Symmetry, 2019, 11, 20.	2.2	61
701	Symmetry reductions, explicit solutions, convergence analysis and conservation laws via multipliers approach to the Chen–Lee–Liu model in nonlinear optics. Modern Physics Letters B, 2019, 33, 1950035.	1.9	10
702	Grey and black optical solitary waves, and modulation instability analysis to the perturbed nonlinear SchrĶdinger equation with Kerr law nonlinearity. Journal of Modern Optics, 2019, 66, 647-651.	1.3	5

#	Article	IF	CITATIONS
703	Fractal-fractional modelling of partially penetrating wells. Chaos, Solitons and Fractals, 2019, 119, 135-142.	5.1	10
704	A numerical framework for the approximate solution of fractional tumor-obesity model. International Journal of Modeling, Simulation, and Scientific Computing, 2019, 10, 1941008.	1.4	5
705	Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations. Mathematics, 2019, 7, 40.	2.2	62
706	On the local fractional wave equation in fractal strings. Mathematical Methods in the Applied Sciences, 2019, 42, 1588-1595.	2.3	84
707	Modified Galerkin algorithm for solving multitype fractional differential equations. Mathematical Methods in the Applied Sciences, 2019, 42, 1389-1412.	2.3	44
708	Physical properties of the projectile motion using the conformable derivative. Chinese Journal of Physics, 2019, 58, 18-28.	3.9	47
709	A uniqueness result for differential pencils with discontinuities from interior spectral data. Analysis (Germany), 2019, 38, 195-202.	0.4	1
710	Optical solitons and stability analysis with spatio-temporal dispersion in Kerr and quadric-cubic nonlinear media. Optik, 2019, 178, 923-931.	2.9	18
711	Convolution theorems associated with some integral operators and convolutions. Mathematical Methods in the Applied Sciences, 2019, 42, 541-552.	2.3	3
712	The investigation of soliton solutions and conservation laws to the coupled generalized SchrĶdinger–Boussinesq system. Waves in Random and Complex Media, 2019, 29, 77-92.	2.7	12
713	Singular conformable sequential differential equations with distributional potentials. Quaestiones Mathematicae, 2019, 42, 277-287.	0.6	12
714	Dark–bright optical solitary waves and modulation instability analysis with (2 + 1)-dimensional cubic-quintic nonlinear SchrĶdinger equation. Waves in Random and Complex Media, 2019, 29, 393-402.	2.7	22
715	Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. Journal of King Saud University - Science, 2019, 31, 83-88.	3.5	38
716	Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains. Computers and Mathematics With Applications, 2019, 78, 1826-1837.	2.7	10
717	New Fractional Analytical Study of Three-Dimensional Evolution Equation Equipped With Three Memory Indices. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	11
718	Refinement multidimensional dynamic inequalities with general kernels and measures. Journal of Inequalities and Applications, 2019, 2019, .	1.1	13
719	On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Advances in Difference Equations, 2019, 2019, .	3.5	68
720	A novel method for the analytical solution of fractional Zakharov–Kuznetsov equations. Advances in Difference Equations, 2019, 2019, .	3.5	25

#	Article	IF	CITATIONS
721	Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations. Nonlinear Analysis: Modelling and Control, 2019, 24, 176-188.	1.6	16
722	Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations. Nonlinear Analysis: Modelling and Control, 2019, 24, 332-352.	1.6	18
723	Application of Shehu transform to Atangana-Baleanu derivatives. Journal of Mathematics and Computer Science, 2019, 20, 101-107.	1.0	56
724	On a new definition of fractional differintegrals with Mittag-Leffer kernel. Filomat, 2019, 33, 245-254.	0.5	13
725	N-wave and other solutions to the B-type Kadomtsev-Petviashvili equation. Thermal Science, 2019, 23, 2027-2035.	1.1	11
726	Uncertain fractional operator with application arising in the steady heat flow. Thermal Science, 2019, 23, 1289-1296.	1.1	8
727	Simulating chloride penetration in fly ash concrete by a fractal derivative model. Thermal Science, 2019, 23, 67-78.	1.1	7
728	Adomian-Padé approximate solutions to the conformable nonlinear heat transfer equation. Thermal Science, 2019, 23, 235-242.	1.1	5
729	Ficitious time integration method for solving the time fractional gas dynamics equation. Thermal Science, 2019, 23, 2009-2016.	1.1	15
730	Existence results for fractional neutral integro-differential systems with nonlocal condition through resolvent operators. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2019, 27, 107-124.	0.3	3
731	On exact solutions for new coupled nonlinear models getting evolution of curves in Galilean space. Thermal Science, 2019, 23, 227-233.	1.1	3
732	Approximate solutions and conservation laws of the periodic base temperature of convective longitudinal fins in thermal conductivity. Thermal Science, 2019, 23, 267-273.	1.1	2
733	A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel. European Physical Journal Plus, 2018, 133, 1.	2.6	90
734	Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws. Advances in Difference Equations, 2018, 2018, .	3.5	33
735	Modeling the fractional non-linear Schrödinger equation via Liouville-Caputo fractional derivative. Optik, 2018, 162, 1-7.	2.9	24
736	A reliable mixed method for singular integro-differential equations of non-integer order. Mathematical Modelling of Natural Phenomena, 2018, 13, 4.	2.4	5
737	Fractional optical solitons for the conformable space–time nonlinear Schrödinger equation with Kerr law nonlinearity. Optical and Quantum Electronics, 2018, 50, 1.	3.3	17
738	A new glance on the Leibniz rule for fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2018, 62, 244-249.	3.3	7

#	Article	IF	CITATIONS
739	Gray optical soliton, linear stability analysis and conservation laws via multipliers to the cubic nonlinear Schrödinger equation. Optik, 2018, 164, 472-478.	2.9	15
740	Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law nonlinearity. Optik, 2018, 162, 65-75.	2.9	36
741	New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger's equations. Computational and Applied Mathematics, 2018, 37, 5203-5216.	1.3	70
742	A novel shuffling technique based on fractional chaotic maps. Optik, 2018, 168, 553-562.	2.9	25
743	Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 520-531.	2.6	43
744	Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers. Results in Physics, 2018, 9, 1275-1281.	4.1	33
745	A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. Journal of the Franklin Institute, 2018, 355, 3938-3967.	3.4	61
746	Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation. Optical and Quantum Electronics, 2018, 50, 1.	3.3	43
747	Optical solitons for the Kundu–Eckhaus equation with time dependent coefficient. Optik, 2018, 159, 324-332.	2.9	15
748	On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system. Physica A: Statistical Mechanics and Its Applications, 2018, 497, 139-153.	2.6	59
749	Traveling wave solutions and conservation laws for nonlinear evolution equation. Journal of Mathematical Physics, 2018, 59, 023506.	1.1	31
750	On nonautonomous complex wave solutions described by the coupled Schrödinger–Boussinesq equation with variable-coefficients. Optical and Quantum Electronics, 2018, 50, 1.	3.3	61
751	Optical solitons for complex Ginzburg–Landau model in nonlinear optics. Optik, 2018, 158, 368-375.	2.9	41
752	Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers. Optik, 2018, 158, 297-304.	2.9	36
753	Dark and combined optical solitons, and modulation instability analysis in dispersive metamaterial. Optik, 2018, 157, 484-491.	2.9	15
754	Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Optical and Quantum Electronics, 2018, 50, 1.	3.3	24
755	Complexiton and solitary wave solutions of the coupled nonlinear Maccari's system using two integration schemes. Modern Physics Letters B, 2018, 32, 1850014	1.9	29
756	Optimal control of nonlinear dynamical systems based on a new parallel eigenvalue decomposition approach. Optimal Control Applications and Methods, 2018, 39, 1071-1083.	2.1	13

#	Article	IF	CITATIONS
757	Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Applied Mathematics and Computation, 2018, 325, 146-158.	2.2	75
758	Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations. Physica A: Statistical Mechanics and Its Applications, 2018, 496, 371-383.	2.6	66
759	Some results for Laplace-type integral operator in quantum calculus. Advances in Difference Equations, 2018, 2018, .	3.5	15
760	On the existence of solutions of a three steps crisis integro-differential equation. Advances in Difference Equations, 2018, 2018, .	3.5	46
761	A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 2018, 64, 213-231.	3.3	1,042
762	Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics. Optical and Quantum Electronics, 2018, 50, 1.	3.3	40
763	Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Applied Mathematics Letters, 2018, 82, 71-78.	2.7	62
764	The mean value theorem and Taylor's theorem for fractional derivatives with Mittag–Leffler kernel. Advances in Difference Equations, 2018, 2018, 86.	3.5	31
765	Some Kinds of the Controllable Problems for Fuzzy Control Dynamic Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2018, 140, .	1.6	2
766	Optical and singular solitary waves to the PNLSE with third order dispersion in Kerr media via two integration approaches. Optik, 2018, 163, 142-151.	2.9	14
767	Passivity-based cruise control of high speed trains. JVC/Journal of Vibration and Control, 2018, 24, 492-504.	2.6	8
768	Suboptimal control of fractional-order dynamic systems with delay argument. JVC/Journal of Vibration and Control, 2018, 24, 2430-2446.	2.6	83
769	A freely damped oscillating fractional dynamic system modeled by fractional Euler–Lagrange equations. JVC/Journal of Vibration and Control, 2018, 24, 1228-1238.	2.6	11
770	Study on Application of Hybrid Functions to Fractional Differential Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1343-1350.	1.5	8
771	Steady periodic response for a vibration system with distributed order derivatives to periodic excitation. JVC/Journal of Vibration and Control, 2018, 24, 3124-3131.	2.6	9
772	Numerical solutions of fuzzy differential equations by an efficient Runge–Kutta method with generalized differentiability. Fuzzy Sets and Systems, 2018, 331, 47-67.	2.7	59
773	Numerical approach of Fokker–Planck equation with Caputo–Fabrizio fractional derivative using Ritz approximation. Journal of Computational and Applied Mathematics, 2018, 339, 367-373.	2.0	59
774	Stochastic fractional perturbed control systems with fractional Brownian motion and Sobolev stochastic non local conditions. Collectanea Mathematica, 2018, 69, 283-296.	0.9	12

#	Article	IF	CITATIONS
775	Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 155-167.	2.6	187
776	Optical solitary waves, conservation laws and modulation instability analysis to the nonlinear SchrĶdinger's equation in compressional dispersive AlvĨn waves. Optik, 2018, 155, 257-266.	2.9	52
777	A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dynamics, 2018, 91, 307-317.	5.2	121
778	Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 299-308.	3.3	61
779	A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. Journal of Computational and Applied Mathematics, 2018, 339, 3-29.	2.0	134
780	A new approach for the optimal control of time-varying delay systems with external persistent matched disturbances. JVC/Journal of Vibration and Control, 2018, 24, 4505-4512.	2.6	16
781	Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	49
782	New discretization of Caputo–Fabrizio derivative. Computational and Applied Mathematics, 2018, 37, 3307-3333.	1.3	27
783	Existence and discrete approximation for optimization problems governed by fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 338-348.	3.3	10
784	Optical solitons to the resonance nonlinear Schrödinger equation by Sine-Gordon equation method. Superlattices and Microstructures, 2018, 113, 541-549.	3.1	42
785	Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrödinger's equation for Davydov solitons. Journal of Electromagnetic Waves and Applications, 2018, 32, 858-873.	1.6	21
786	Optical solitons for Biswas-Milovic Model in nonlinear optics by Sine-Gordon equation method. Optik, 2018, 157, 267-274.	2.9	43
787	Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 222-234.	3.3	88
788	On some new properties of fractional derivatives with Mittag-Leffler kernel. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 444-462.	3.3	237
789	Novel optical solitary waves and modulation instability analysis for the coupled nonlinear SchrĶdinger equation in monomode step-index optical fibers. Superlattices and Microstructures, 2018, 113, 745-753.	3.1	34
790	On the accurate discretization of a highly nonlinear boundary value problem. Numerical Algorithms, 2018, 79, 679-695.	1.9	71
791	Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Physica A: Statistical Mechanics and Its Applications, 2018, 493, 94-106.	2.6	91
792	Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlattices and Microstructures, 2018, 113, 319-327.	3.1	37

#	Article	IF	CITATIONS
793	A new hybrid algorithm for continuous optimization problem. Applied Mathematical Modelling, 2018, 55, 652-673.	4.2	58
794	Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik, 2018, 155, 357-365.	2.9	94
795	An Efficient Nonstandard Finite Difference Scheme for a Class of Fractional Chaotic Systems. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	59
796	Local existence for an impulsive fractional neutral integro-differential system with Riemann–Liouville fractional derivatives in a Banach space. Advances in Difference Equations, 2018, 2018, .	3.5	13
797			

#	Article	IF	CITATIONS
811	New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics, 2018, 6, 245.	2.2	5
812	New observations on optimal cancer treatments for a fractional tumor growth model with and without singular kernel. Chaos, Solitons and Fractals, 2018, 117, 226-239.	5.1	17
813	On the motion of a heavy bead sliding on a rotating wire – Fractional treatment. Results in Physics, 2018, 11, 579-583.	4.1	3
814	Stability and existence results for a class of nonlinear fractional differential equations with singularity. Mathematical Methods in the Applied Sciences, 2018, 41, 9321-9334.	2.3	36
815	Sturm-Liouville difference equations having Bessel and hydrogen atom potential type. Open Physics, 2018, 16, 801-809.	1.7	8
816	Differintegration with Respect to Functions in Fractional Models Involving Mittag-Leffler Functions. SSRN Electronic Journal, 2018, , .	0.4	12
817	Efficient numerical treatments for a fractional optimal control nonlinear Tuberculosis model. International Journal of Biomathematics, 2018, 11, 1850115.	2.9	15
818	Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators. Advances in Difference Equations, 2018, 2018, .	3.5	24
819	Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos, 2018, 28, 123121.	2.5	99
820	Some new soliton-like and doubly periodic-like solutions of Fisher equation with time-dependent coefficients. Modern Physics Letters B, 2018, 32, 1850413.	1.9	7
821	Optical Solitons and Stability Analysis in Ring-Cavity Fiber System with Carbon Nanotube as Saturable Absorber. Communications in Theoretical Physics, 2018, 70, 511.	2.5	11
822	Optimal chemotherapy and immunotherapy schedules for a cancerâ€obesity model with Caputo time fractional derivative. Mathematical Methods in the Applied Sciences, 2018, 41, 9390-9407.	2.3	19
823	Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations. Chaos, Solitons and Fractals, 2018, 116, 220-226.	5.1	31
824	Collocation methods for fractional differential equations involving non-singular kernel. Chaos, Solitons and Fractals, 2018, 116, 136-145.	5.1	87
825	Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation. Open Physics, 2018, 16, 364-370.	1.7	21
826	A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives. Chaos, Solitons and Fractals, 2018, 116, 268-277.	5.1	50
827	A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Advances in Difference Equations, 2018, 2018, .	3.5	76
828	A Remark on the Fractional Integral Operators and the Image Formulas of Generalized Lommel–Wright Function. Frontiers in Physics, 2018, 6, .	2.1	13

#	Article	IF	CITATIONS
829	Optical solitary waves and conservation laws to the (2 + 1)-dimensional hyperbolic nonlinear Schrödinger equation. Modern Physics Letters B, 2018, 32, 1850373.	1.9	15
830	M-fractional derivative under interval uncertainty: Theory, properties and applications. Chaos, Solitons and Fractals, 2018, 117, 84-93.	5.1	52
831	Quaternion fourier integral operators for spaces of generalized quaternions. Mathematical Methods in the Applied Sciences, 2018, 41, 9477-9484.	2.3	14
832	Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation. Advances in Difference Equations, 2018, 2018, .	3.5	22
833	A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. European Physical Journal Plus, 2018, 133, 1.	2.6	131
834	Diffusion on Middle-ξ Cantor Sets. Entropy, 2018, 20, 504.	2.2	28
835	A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation. European Physical Journal Plus, 2018, 133, 1.	2.6	14
836	A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform. Applied Mathematics and Computation, 2018, 334, 30-40.	2.2	49
837	Solving FDEs with Caputoâ€Fabrizio derivative by operational matrix based on Genocchi polynomials. Mathematical Methods in the Applied Sciences, 2018, 41, 9134-9141.	2.3	44
838	On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dynamics, 2018, 94, 397-414.	5.2	132
839	Time fractional third-order variant Boussinesq system: Symmetry analysis, explicit solutions, conservation laws and numerical approximations. European Physical Journal Plus, 2018, 133, 1.	2.6	20
840	A new fractional analysis on the interaction of HIV with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mtext>CD4</mml:mtext><mml:mo>+</mml:mo></mml:msup></mml:math Chaos, Solitons and Fractals, 2018, 113, 221-229.	> 1: cells.	174
841	Reproducing kernel method for strongly non-linear equation. AIP Conference Proceedings, 2018, , .	0.4	0
842	A homotopy perturbation solution for solving highly nonlinear fluid flow problem arising in mechanical engineering. AIP Conference Proceedings, 2018, , .	0.4	2
843	An Efficient Computational Technique for Fractal Vehicular Traffic Flow. Entropy, 2018, 20, 259.	2.2	73
844	Finite Difference Method for Time-Space Fractional Advection–Diffusion Equations with Riesz Derivative. Entropy, 2018, 20, 321.	2.2	28
845	A new stochastic computing paradigm for nonlinear Painlevé II systems in applications of random matrix theory. European Physical Journal Plus, 2018, 133, 1.	2.6	52
846	Analysis of a fractional model of the Ambartsumian equation. European Physical Journal Plus, 2018, 133, 1.	2.6	93

#	Article	IF	CITATIONS
847	Invariant investigation on the system of Hirota-Satsuma coupled KdV equation. AIP Conference Proceedings, 2018, , .	0.4	0
848	Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors. Entropy, 2018, 20, 384.	2.2	40
849	An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Applied Mathematics and Computation, 2018, 335, 12-24.	2.2	132
850	HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Advances in Difference Equations, 2018, 2018, .	3.5	65
851	Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation. Advances in Difference Equations, 2018, 2018, .	3.5	22
852	Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 166-175.	2.6	22
853	Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation. Symmetry, 2018, 10, 341.	2.2	36
854	Solving PDEs of fractional order using the unified transform method. Applied Mathematics and Computation, 2018, 339, 738-749.	2.2	38
855	An optimal method for approximating the delay differential equations of noninteger order. Advances in Difference Equations, 2018, 2018, .	3.5	11
856	On stability in the thermoelastostatics of dipolar bodies. Acta Mechanica, 2018, 229, 4267-4277.	2.1	1
857	On artificial neural networks approach with new cost functions. Applied Mathematics and Computation, 2018, 339, 546-555.	2.2	28
858	Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation. Open Physics, 2018, 16, 302-310.	1.7	31
859	New fractional derivatives with non-singular kernel applied to the Burgers equation. Chaos, 2018, 28, 063109.	2.5	98
860	Spectral technique for solving variableâ€order fractional Volterra integroâ€differential equations. Numerical Methods for Partial Differential Equations, 2018, 34, 1659-1677.	3.6	51
861	Stability Analysis of Impulsive Fractional Difference Equations. Fractional Calculus and Applied Analysis, 2018, 21, 354-375.	2.2	44
862	On square integrable solutions of a fractional differential equation. Applied Mathematics and Computation, 2018, 337, 153-157.	2.2	4
863	On the classification of conservation laws and soliton solutions of the long short-wave interaction system. Modern Physics Letters B, 2018, 32, 1850202.	1.9	16
864	Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1.2	35

#	Article	IF	CITATIONS
865	Optical Solitary Wave Solutions for the Conformable Perturbed Nonlinear SchrĶdinger Equation with Power Law Nonlinearity. Journal of Advanced Physics, 2018, 7, 49-57.	0.4	2
866	Solitons and Conservation Laws for the (2+1)-Dimensional Davey-Stewartson Equations with Conformable Derivative. Journal of Advanced Physics, 2018, 7, 167-175.	0.4	3
867	Invariant Subspace and Lie Symmetry Analysis, Exact Solutions and Conservation Laws of a Nonlinear Reaction-Diffusion Murray Equation Arising in Mathematical Biology. Journal of Advanced Physics, 2018, 7, 176-182.	0.4	1
868	An analysis of analytic and approximate solutions of the nonlinear foam-drainage equation and its applications. Journal of Coupled Systems and Multiscale Dynamics, 2018, 6, 176-183.	0.2	1
869	Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schrödinger equation. Nonlinear Analysis: Modelling and Control, 2018, 24, 20-33.	1.6	5
870	A new numerical technique for solving fractional partial differential equations. Miskolc Mathematical Notes, 2018, 19, 3.	0.6	11
871	Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative. Filomat, 2018, 32, 5633-5643.	0.5	28
872	Modified Kawahara equation within a fractional derivative with non-singular kernel. Thermal Science, 2018, 22, 789-796.	1.1	34
873	A new fractional model for convective straight fins with temperature-dependent thermal conductivity. Thermal Science, 2018, 22, 2791-2802.	1.1	24
874	New method for investigating the density-dependent diffusion Nagumo equation. Thermal Science, 2018, 22, 143-152.	1.1	9
875	A modification fractional variational iteration method for solving nonlinear gas dynamic and coupled KdV equations involving local fractional operators. Thermal Science, 2018, 22, 165-175.	1.1	44
876	Modified variational iteration method for straight fins with temperature dependent thermal conductivity. Thermal Science, 2018, 22, 229-236.	1.1	15
877	Nonlinear Self-Adjointness and Nonclassical Solutions of a Population Model with Variable Coefficients. Journal of Advanced Physics, 2018, 7, 103-109.	0.4	0
878	Optical Solitons for Complex Ginzburg-Landau Model with Beta Derivative in Nonlinear Optics. Journal of Advanced Physics, 2018, 7, 224-229.	0.4	1
879	Magnetic Stimulation on Human Blood Electromotive force analysis. Revista De Chimie (discontinued), 2018, 69, 3037-3041.	0.4	0
880	A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems. JVC/Journal of Vibration and Control, 2017, 23, 16-30.	2.6	60
881	Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	200
882	A new algorithm for solving dynamic equations on a time scale. Journal of Computational and Applied Mathematics, 2017, 312, 167-173.	2.0	12

#	Article	IF	CITATIONS
883	Artificial neural network approach for a class of fractional ordinary differential equation. Neural Computing and Applications, 2017, 28, 765-773.	5.6	53
884	Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. JVC/Journal of Vibration and Control, 2017, 23, 2912-2925.	2.6	87
885	New Numerical Approach for Fractional Variational Problems Using Shifted Legendre Orthonormal Polynomials. Journal of Optimization Theory and Applications, 2017, 174, 295-320.	1.5	34
886	Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. JVC/Journal of Vibration and Control, 2017, 23, 1285-1295.	2.6	60
887	Lattice fractional diffusion equation of random order. Mathematical Methods in the Applied Sciences, 2017, 40, 6054-6060.	2.3	5
888	New exact solutions of Burgers' type equations with conformable derivative. Waves in Random and Complex Media, 2017, 27, 103-116.	2.7	166
889	Stability analysis of Caputo–like discrete fractional systems. Communications in Nonlinear Science and Numerical Simulation, 2017, 48, 520-530.	3.3	141
890	On a Discrete Chaos Induction Via an Aperiodic Kicks Pattern. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	1.2	3
891	Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel. Advances in Mechanical Engineering, 2017, 9, 168781401769006.	1.6	40
892	On solving fractional mobile/immobile equation. Advances in Mechanical Engineering, 2017, 9, 168781401668861.	1.6	6
893	On solutions of fractional Riccati differential equations. Advances in Difference Equations, 2017, 2017, .	3.5	46
894	A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative. Advances in Difference Equations, 2017, 2017, .	3.5	108
895	New study of weakly singular kernel fractional fourth-order partial integro-differential equations based on the optimum <mml:math <br="" altimg="si16.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>q</mml:mi></mml:math> -homotopic analysis method. lournal of Computational and Applied Mathematics. 2017. 320. 193-201.	2.0	15
896	Analysis of a New Fractional Model for Damped Bergers' Equation. Open Physics, 2017, 15, 35-41.	1.7	23
897	Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 44-64.	3.3	87
898	SchrĶdinger equation involving fractional operators with non-singular kernel. Journal of Electromagnetic Waves and Applications, 2017, 31, 752-761.	1.6	36
899	Optical solitons of transmission equation of ultra-short optical pulse in parabolic law media with the aid of Backlund transformation. Optik, 2017, 140, 114-122.	2.9	22
900	New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos, Solitons and Fractals, 2017, 99, 285-296.	5.1	88

#	Article	IF	CITATIONS
901	A new analysis for fractional model of regularized longâ€wave equation arising in ion acoustic plasma waves. Mathematical Methods in the Applied Sciences, 2017, 40, 5642-5653.	2.3	94
902	EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN. Fractals, 2017, 25, 1740006.	3.7	165
903	Almost local stability in discrete delayed chaotic systems. Nonlinear Dynamics, 2017, 89, 2393-2402.	5.2	2
904	Optical solitons and stability analysis of the NLSE with anti-cubic nonlinearity. Superlattices and Microstructures, 2017, 109, 784-793.	3.1	28
905	New solitary wave solutions and conservation laws to the Kudryashov–Sinelshchikov equation. Optik, 2017, 142, 665-673.	2.9	51
906	A new fractional model for giving up smoking dynamics. Advances in Difference Equations, 2017, 2017, .	3.5	125
907	Effects of HIV infection on CD4+ T-cell population based on a fractional-order model. Advances in Difference Equations, 2017, 2017, .	3.5	39
908	Existence Results for Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives and Nonlocal Conditions. Fundamenta Informaticae, 2017, 151, 487-504.	0.4	2
909	Monotonicity results for fractional difference operators with discrete exponential kernels. Advances in Difference Equations, 2017, 2017, .	3.5	91
910	Analysis of Riccati Differential Equations within a New Fractional Derivative without Singular Kernel. Fundamenta Informaticae, 2017, 151, 161-171.	0.4	7
911	Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos, Solitons and Fractals, 2017, 102, 99-105.	5.1	176
912	An exact analytical solution of the unsteady magnetohydrodynamics nonlinear dynamics of laminar boundary layer due to an impulsively linear stretching sheet. Continuum Mechanics and Thermodynamics, 2017, 29, 559-567.	2.2	21
913	Solving fractional optimal control problems within a Chebyshev–Legendre operational technique. International Journal of Control, 2017, 90, 1230-1244.	1.9	42
914	Optical solitons and modulation instability analysis of an integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation. Superlattices and Microstructures, 2017, 112, 628-638.	3.1	60
915	Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shr¶dinger equation. Superlattices and Microstructures, 2017, 112, 296-302.	3.1	21
916	Optical solitons, nonlinear self-adjointness and conservation laws for Kundu–Eckhaus equation. Chinese Journal of Physics, 2017, 55, 2341-2355.	3.9	48
917	Stable Numerical Approach for Fractional Delay Differential Equations. Few-Body Systems, 2017, 58, 1.	1.5	23
918	New solutions for conformable fractional Nizhnik–Novikov–Veselov system via \$\$G'/G\$\$ G ′ / G expansion method and homotopy analysis methods. Optical and Quantum Electronics, 2017, 49, 1.	3.3	48

#	Article	IF	CITATIONS
919	On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos, 2017, 27, 103113.	2.5	99
920	On Fractional Derivatives with Exponential Kernel and their Discrete Versions. Reports on Mathematical Physics, 2017, 80, 11-27.	0.8	191
921	Fractional differential equations of Caputo–Katugampola type and numerical solutions. Applied Mathematics and Computation, 2017, 315, 549-554.	2.2	55
922	Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear SchrĶdinger equation. Superlattices and Microstructures, 2017, 112, 164-179.	3.1	39
923	A new iterative algorithm on the time-fractional Fisher equation: Residual power series method. Advances in Mechanical Engineering, 2017, 9, 168781401771600.	1.6	26
924	Dark optical solitons and conservation laws to the resonance nonlinear Shrödinger's equation with Kerr law nonlinearity. Optik, 2017, 147, 248-255.	2.9	35
925	Lyapunov functions for Riemann–Liouville-like fractional difference equations. Applied Mathematics and Computation, 2017, 314, 228-236.	2.2	125
926	A novel approach to approximate fractional derivative with uncertain conditions. Chaos, Solitons and Fractals, 2017, 104, 68-76.	5.1	33
927	Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion. European Physical Journal Plus, 2017, 132, 1.	2.6	11
928	New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method. Open Physics, 2017, 15, 647-651.	1.7	36
929	A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel. Journal of Optimization Theory and Applications, 2017, 175, 718-737.	1.5	74
930	Optical solitons, nonlinear self-adjointness and conservation laws for the cubic nonlinear Shr¶dinger's equation with repulsive delta potential. Superlattices and Microstructures, 2017, 111, 546-555.	3.1	24
931	Regular fractional differential equations in the Sobolev space. Fractional Calculus and Applied Analysis, 2017, 20, 810-817.	2.2	3
932	A fractional derivative with non-singular kernel for interval-valued functions under uncertainty. Optik, 2017, 130, 273-286.	2.9	36
933	Relaxation and diffusion models with non-singular kernels. Physica A: Statistical Mechanics and Its Applications, 2017, 468, 590-596.	2.6	53
934	Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Applied Mathematics and Computation, 2017, 293, 81-95.	2.2	106
935	A hybrid computational approach for Klein–Gordon equations on Cantor sets. Nonlinear Dynamics, 2017, 87, 511-517	5.2	101
936	Analysis of Drude model using fractional derivatives without singular kernels. Open Physics, 2017, 15, 627-636.	1.7	4

53

#	Article	IF	CITATIONS
937	Existence results of fractional differential equations with Riesz–Caputo derivative. European Physical Journal: Special Topics, 2017, 226, 3411-3425.	2.6	26
938	Variation of constant formula for the solution of interval differential equations of non-integer order. European Physical Journal: Special Topics, 2017, 226, 3501-3512.	2.6	10
939	A new fractional derivative involving the normalized sinc function without singular kernel. European Physical Journal: Special Topics, 2017, 226, 3567-3575.	2.6	100
940	Analytical Approximate Solutions of (n + 1)-Dimensional Fractal Heat-Like and Wave-Like Equations. Entropy, 2017, 19, 296.	2.2	6
941	A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships. Entropy, 2017, 19, 375.	2.2	49
942	An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations. Complexity, 2017, 2017, 1-12.	1.6	10
943	On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Boundary Value Problems, 2017, 2017, .	0.7	138
944	Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. Boundary Value Problems, 2017, 2017, .	0.7	44
945	On approximate solutions for two higher-order Caputo-Fabrizio fractional integro-differential equations. Advances in Difference Equations, 2017, 2017, .	3.5	79
946	On a new class of fractional operators. Advances in Difference Equations, 2017, 2017, .	3.5	266
947	A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation. Advances in Difference Equations, 2017, 2017, .	3.5	39
948	Application of ANNs approach for wave-like and heat-like equations. Open Physics, 2017, 15, 1086-1094.	1.7	4
949	Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law. Entropy, 2017, 19, 681.	2.2	70
950	Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators with New Fractional Differentiation. Entropy, 2017, 19, 55.	2.2	49
951	Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos, Solitons and Fractals, 2017, 102, 106-110.	5.1	69
952	New studies for general fractional financial models of awareness and trial advertising decisions. Chaos, Solitons and Fractals, 2017, 104, 772-784.	5.1	49
953	The Motion of a Bead Sliding on a Wire in Fractional Sense. Acta Physica Polonica A, 2017, 131, 1561-1564.	0.5	69
954	Effect of microtemperatures for micropolar thermoelastic bodies. Structural Engineering and Mechanics, 2017, 61, 381-387.	1.0	67

#	Article	IF	CITATIONS
955	A generalisation of the Malgrange–Ehrenpreis theorem to find fundamental solutions to fractional PDEs. Electronic Journal of Qualitative Theory of Differential Equations, 2017, , 1-12.	0.5	8
956	Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov–Kuznetsov equation. Nonlinear Analysis: Modelling and Control, 2017, 22, 861-876.	1.6	53
957	A fixed point theorem on multiplicative metric space with integral-type inequality. Journal of Mathematics and Computer Science, 2017, 18, 18-28.	1.0	1
958	On numerical solutions of time-fraction generalized Hirota Satsuma coupled KdV equation. Journal of Nonlinear Science and Applications, 2017, 10, 724-733.	1.0	5
959	Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. Journal of Nonlinear Science and Applications, 2017, 10, 1098-1107.	1.0	228
960	A uniqueness result for final boundary value problem of microstretch bodies. Journal of Nonlinear Science and Applications, 2017, 10, 1908-1918.	1.0	4
961	On the generalized fractional derivatives and their Caputo modification. Journal of Nonlinear Science and Applications, 2017, 10, 2607-2619.	1.0	192
962	New exact solution of generalized biological population model. Journal of Nonlinear Science and Applications, 2017, 10, 3916-3929.	1.0	20
963	On a completely non-unitary contraction and associated dissipative difference operator. Journal of Nonlinear Science and Applications, 2017, 10, 5999-6019.	1.0	3
964	Inequalities for new class of fractional integral operators. Journal of Nonlinear Science and Applications, 2017, 10, 6166-6176.	1.0	5
965	Using ANNs Approach for Solving Fractional Order Volterra Integro-differential Equations. International Journal of Computational Intelligence Systems, 2017, 10, 470.	2.7	17
966	Analysis of the New Technique to Solution of Fractional Wave- and Heat-like Equation. Acta Physica Polonica B, 2017, 48, 77.	0.8	1
967	Coupling the local fractional Laplace transform with analytic methods. , 2016, , 179-196.		0
968	Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels. Entropy, 2016, 18, 402.	2.2	91
969	Local fractional Fourier transform and applications. , 2016, , 95-145.		9
970	On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative. Journal of Function Spaces, 2016, 2016, 1-8.	0.9	53
971	About the Existence Results of Fractional Neutral Integrodifferential Inclusions with State-Dependent Delay in Fréchet Spaces. Journal of Function Spaces, 2016, 2016, 1-9.	0.9	3
972	New Derivatives on the Fractal Subset of Real-Line. Entropy, 2016, 18, 1.	2.2	315

#	Article	IF	CITATIONS
973	Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator. Entropy, 2016, 18, 49.	2.2	19
974	A Novel Weak Fuzzy Solution for Fuzzy Linear System. Entropy, 2016, 18, 68.	2.2	4
975	On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators. Entropy, 2016, 18, 150.	2.2	25
976	On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy, 2016, 18, 420.	2.2	21
977	A novel computational approach to approximate fuzzy interpolation polynomials. SpringerPlus, 2016, 5, 1428.	1.2	13
978	Regular fractional dissipative boundary value problems. Advances in Difference Equations, 2016, 2016, .	3.5	6
979	A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems. Journal of Inequalities and Applications, 2016, 2016, .	1.1	40
980	Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Advances in Difference Equations, 2016, 2016, .	3.5	88
981	On the Laplace integral representation of multivariate Mittagâ€Leffler functions in anomalous relaxation. Mathematical Methods in the Applied Sciences, 2016, 39, 2983-2992.	2.3	13
982	Fractional calculus and application of generalized Struve function. SpringerPlus, 2016, 5, 910.	1.2	16
983	On two fractional differential inclusions. SpringerPlus, 2016, 5, 882.	1.2	55
984	Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Advances in Mechanical Engineering, 2016, 8, 168781401668330.	1.6	38
985	On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Physics, 2016, 14, 685-689.	1.7	14
986	Preface: Recent Advances in Fractional Dynamics. Chaos, 2016, 26, 084101.	2.5	3
987	On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos, 2016, 26, 084312.	2.5	165
988	Riesz Riemann–Liouville difference on discrete domains. Chaos, 2016, 26, 084308.	2.5	33
989	Numerical Computation of a Fractional Model of Differential-Difference Equation. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	1.2	53
990	On combined optical solitons of the one-dimensional Schrödinger's equation with time dependent coefficients. Open Physics, 2016, 14, 65-68.	1.7	15

#	Article	IF	CITATIONS
991	Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. Journal of Computational Physics, 2016, 316, 10-20.	3.8	63
992	A new method for approximate solutions of some nonlinear equations: Residual power series method. Advances in Mechanical Engineering, 2016, 8, 168781401664458.	1.6	24
993	Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Advances in Difference Equations, 2016, 2016, .	3.5	76
994	Solutions of the time fractional reaction–diffusion equations with residual power series method. Advances in Mechanical Engineering, 2016, 8, 168781401667086.	1.6	63
995	Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions. Advances in Difference Equations, 2016, 2016, .	3.5	7
996	Dynamical analysis of fractional order model of immunogenic tumors. Advances in Mechanical Engineering, 2016, 8, 168781401665670.	1.6	42
997	Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Advances in Difference Equations, 2016, 2016, .	3.5	150
998	On the Kolmogorov forward equations within Caputo and Riemann-Liouville fractions derivatives. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2016, 24, 5-19.	0.3	0
999	On soliton solutions of the Wu-Zhang system. Open Physics, 2016, 14, 76-80.	1.7	10
1000	Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel. Advances in Difference Equations, 2016, 2016, .	3.5	16
1001	Non-local Integrals and Derivatives on Fractal Sets with Applications. Open Physics, 2016, 14, 542-548.	1.7	33
1002	Challenges in fractional dynamics and control theory. JVC/Journal of Vibration and Control, 2016, 22, 2151-2152.	2.6	32
1003	Analysis of time-fractional hunter-saxton equation: a model of neumatic liquid crystal. Open Physics, 2016, 14, 145-149.	1.7	192
1004	Chaos synchronization of fractional chaotic maps based on the stability condition. Physica A: Statistical Mechanics and Its Applications, 2016, 460, 374-383.	2.6	159
1005	Generalized fractional integrals of product of two <i>H</i> -functions and a general class of polynomials. International Journal of Computer Mathematics, 2016, 93, 1320-1329.	1.8	21
1006	Image encryption technique based on fractional chaotic time series. JVC/Journal of Vibration and Control, 2016, 22, 2092-2099.	2.6	68
1007	Fractal calculus involving gauge function. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 125-130.	3.3	20
1008	Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients. Optik, 2016, 127, 1056-1058.	2.9	47

#	Article	IF	CITATIONS
1009	Diffraction from fractal grating Cantor sets. Journal of Modern Optics, 2016, 63, 1364-1369.	1.3	21
1010	Discrete Fractional Diffusion Equation of Chaotic Order. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650013.	1.7	17
1011	Modified Jacobi–Bernstein basis transformation and its application to multi-degree reduction of Bézier curves. Journal of Computational and Applied Mathematics, 2016, 302, 369-384.	2.0	5
1012	Integral inequalities involving generalized Erdélyi-Kober fractional integral operators. Open Mathematics, 2016, 14, 89-99.	1.0	15
1013	Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger's equations arise in propagation of shallow water waves. Nonlinear Dynamics, 2016, 85, 699-715.	5.2	164
1014	On Fractional Duffin–Kemmer–Petiau Equation. Few-Body Systems, 2016, 57, 265-273.	1.5	8
1015	Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dynamics, 2016, 83, 1557-1565.	5.2	63
1016	On comparison between iterative methods for solving nonlinear optimal control problems. JVC/Journal of Vibration and Control, 2016, 22, 2281-2287.	2.6	14
1017	Modeling and simulation of the fractional space-time diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 2016, 30, 115-127.	3.3	82
1018	Mittag-Leffler function for discrete fractional modelling. Journal of King Saud University - Science, 2016, 28, 99-102.	3.5	29
1019	Introduction to local fractional derivative and integral operators. , 2016, , 1-55.		7
1020	Numerical Study for Fractional Euler-Lagrange Equations of a Harmonic Oscillator on a Moving Platform. Acta Physica Polonica A, 2016, 130, 688-691.	0.5	5
1021	OPTIMAL SYSTEM AND SYMMETRY REDUCTION OF THE (1+1) DIMENSIONAL SAWADA-KOTERA EQUATION. International Journal of Pure and Applied Mathematics, 2016, 108, .	0.2	6
1022	Generalized k-Mittag-Leffler function and its composition with pathway integral operators. Journal of Nonlinear Science and Applications, 2016, 09, 3519-3526.	1.0	17
1023	Approximate analytical solutions of Goursat problem within local fractional operators. Journal of Nonlinear Science and Applications, 2016, 09, 4829-4837.	1.0	22
1024	On generalized space of quaternions and its application to a class of Mellin transforms. Journal of Nonlinear Science and Applications, 2016, 09, 3898-3908.	1.0	5
1025	Residual power series method for time-fractional SchrĶdinger equations. Journal of Nonlinear Science and Applications, 2016, 09, 5821-5829.	1.0	53
1026	New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science, 2016, 20, 763-769.	1.1	2,557

#	Article	IF	CITATIONS
1027	On local fractional operators View of computational complexity: Diffusion and relaxation defined on cantor sets. Thermal Science, 2016, 20, 755-767.	1.1	12
1028	Local fractional Fourier series. , 2016, , 57-94.		27
1029	Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Boundary Value Problems, 2015, 2015, .	0.7	40
1030	A highly accurate Jacobi collocation algorithm for systems of highâ€order linear differential–difference equations with mixed initial conditions. Mathematical Methods in the Applied Sciences, 2015, 38, 3022-3032.	2.3	15
1031	Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives. , 2015, , 231-242.		1
1032	Recent Theory and Applications on Numerical Algorithms and Special Functions. Abstract and Applied Analysis, 2015, 2015, 1-1.	0.7	0
1033	Advances on Integrodifferential Equations and Transforms. Abstract and Applied Analysis, 2015, 2015, 1-2.	0.7	1
1034	On a Time-Fractional Integrodifferential Equation via Three-Point Boundary Value Conditions. Mathematical Problems in Engineering, 2015, 2015, 1-12.	1.1	25
1035	New Trends on Fractional and Functional Differential Equations. Abstract and Applied Analysis, 2015, 2015, 1-2.	0.7	1
1036	Improved (G'/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn–Hilliard Equation. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	1.2	30
1037	New Operational Matrices for Solving Fractional Differential Equations on the Half-Line. PLoS ONE, 2015, 10, e0126620.	2.5	11
1038	A New fractional derivative for differential equation of fractional order under interval uncertainty. Advances in Mechanical Engineering, 2015, 7, 168781401561913.	1.6	36
1039	New properties of conformable derivative. Open Mathematics, 2015, 13, .	1.0	355
1040	A novel expansion iterative method for solving linear partial differential equations of fractional order. Applied Mathematics and Computation, 2015, 257, 119-133.	2.2	107
1041	Solving fully fuzzy polynomials using feed-back neural networks. International Journal of Computer Mathematics, 2015, 92, 742-755.	1.8	25
1042	Chaos in the fractional order nonlinear Bloch equation with delay. Communications in Nonlinear Science and Numerical Simulation, 2015, 25, 41-49.	3.3	82
1043	Discrete fractional diffusion equation. Nonlinear Dynamics, 2015, 80, 281-286.	5.2	61
1044	About Schrödinger Equation on Fractals Curves Imbedding in R 3. International Journal of Theoretical Physics, 2015, 54, 1275-1282.	1.2	19

#	Article	IF	CITATIONS
1045	Numerical solution of the fractional Euler-Lagrange's equations of a thin elastica model. Nonlinear Dynamics, 2015, 81, 97-102.	5.2	14
1046	Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 2015, 47, 54-60.	2.7	115
1047	On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Rasset Problem. Entropy, 2015, 17, 885-902 A Kamenev-type oscillation result for a linear < mml:math altimg="si1.gif" overflow="scroll"	2.2	127
1048	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.2	8
1049	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://ww.Applied Mathema Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 335-339.	2.6	64
1050	A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations. Nonlinear Dynamics, 2015, 82, 1431-1440.	5.2	27
1051	Synchronization in a nonidentical fractional order of a proposed modified system. JVC/Journal of Vibration and Control, 2015, 21, 1154-1161.	2.6	42
1052	Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dynamics, 2015, 81, 1569-1574.	5.2	58
1053	An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Advances in Difference Equations, 2015, 2015, .	3.5	47
1054	Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. Journal of Computational Physics, 2015, 294, 562-584.	3.8	60
1055	On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Advances in Difference Equations, 2015, 2015, .	3.5	48
1056	Results for Mild solution of fractional coupled hybrid boundary value problems. Open Mathematics, 2015, 13, .	1.0	26
1057	Reprint of: Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2015, 107, 444-447.	3.7	7
1058	Two fractional derivative inclusion problems via integral boundary condition. Applied Mathematics and Computation, 2015, 257, 205-212.	2.2	63
1059	A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. Journal of Computational Physics, 2015, 293, 142-156.	3.8	176
1060	Investigation of the fractional diffusion equation based on generalized integral quadrature technique. Applied Mathematical Modelling, 2015, 39, 86-98.	4.2	24
1061	Application of continuous wavelet transform to the analysis of the modulus of the fractional Fourier transform bands for resolving two component mixture. Signal, Image and Video Processing, 2015, 9, 801-807.	2.7	3
1062	Analysis of UV spectral bands using multidimensional scaling. Signal, Image and Video Processing, 2015, 9, 573-580.	2.7	5

#	Article	IF	CITATIONS
1063	Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 2015, 80, 1697-1703.	5.2	122
1064	Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 95-100.	3.3	110
1065	Applications of Artificial Neural Network Technique to Polypyrrole Gas Sensor Data for Environmental Analysis. Journal of Computational and Theoretical Nanoscience, 2015, 12, 4392-4398.	0.4	2
1066	Several Fractional Differences and Their Applications to Discrete Maps. Journal of Applied Nonlinear Dynamics, 2015, 4, 339-348.	0.3	11
1067	The First Observation of Memory Effects in the InfraRed (FT-IR) Measurements: Do Successive Measurements Remember Each Other?. PLoS ONE, 2014, 9, e94305.	2.5	9
1068	On Fuzzy Fractional Laplace Transformation. Advances in Mathematical Physics, 2014, 2014, 1-9.	0.8	7
1069	Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators. Abstract and Applied Analysis, 2014, 2014, 1-6.	0.7	53
1070	Local Fractional Poisson and Laplace Equations with Applications to Electrostatics in Fractal Domain. Advances in Mathematical Physics, 2014, 2014, 1-5.	0.8	11
1071	Fractional Bateman—Feshbach Tikochinsky Oscillator. Communications in Theoretical Physics, 2014, 61, 221-225.	2.5	26
1072	Comment on "Maxwell's equations and electromagnetic Lagrangian density in fractional form―[J. Math. Phys. 53, 033505 (2012)]. Journal of Mathematical Physics, 2014, 55, 034101.	1.1	2
1073	A <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math> -Dimensional System of Fractional Neutral Functional Differential Equations with Bounded Delay. Abstract and Applied Analysis, 2014, 2014 1-6	0.7	2
1074	Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	49
1075	On Fractional SIRC Model with <i>Salmonella</i> Bacterial Infection. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.7	55
1076	Ak-Dimensional System of Fractional Finite Difference Equations. Abstract and Applied Analysis, 2014, 2014, 1-8.	0.7	7
1077	Fractional Killing-Yano Tensors and Killing Vectors Using the Caputo Derivative in Some One- and Two-Dimensional Curved Space. Abstract and Applied Analysis, 2014, 2014, 1-4.	0.7	2
1078	Fractional Order Models of Industrial Pneumatic Controllers. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.7	5
1079	Hybrid Bernstein Block-Pulse Functions Method for Second Kind Integral Equations with Convergence Analysis. Abstract and Applied Analysis, 2014, 2014, 1-8.	0.7	9
1080	On Fractional Order Hybrid Differential Equations. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	45

#	Article	IF	CITATIONS
1081	Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.7	12
1082	A New Impulsive Multi-Orders Fractional Differential Equation Involving Multipoint Fractional Integral Boundary Conditions. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.7	4
1083	The Existence of Solution for ak-Dimensional System of Multiterm Fractional Integrodifferential Equations with Antiperiodic Boundary Value Problems. Abstract and Applied Analysis, 2014, 2014, 1-13.	0.7	2
1084	On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics. Entropy, 2014, 16, 6254-6262.	2.2	23
1085	Advanced Topics in Dynamics of Complex Systems. Mathematical Problems in Engineering, 2014, 2014, 1-1.	1.1	1
1086	Nonlocal Boundary Value Problem for Nonlinear Impulsive <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi>kEquation. Abstract and Applied Analysis, 2014, 2014, 1-6.</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math 	0 17 nml:mi> </td <td>mml:mrow></td>	mml:mrow>
1087	Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	1.2	55
1088	The existence of solutions for some fractional finite difference equations via sum boundary conditions. Advances in Difference Equations, 2014, 2014, .	3.5	29
1089	The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation. Advances in Difference Equations, 2014, 2014, .	3.5	30
1090	NIMRAD: novel technique for respiratory data treatment. Signal, Image and Video Processing, 2014, 8, 1517-1532.	2.7	19
1091	A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations. Applied Numerical Mathematics, 2014, 77, 43-54.	2.1	86
1092	Discrete chaos in fractional sine and standard maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 484-487.	2.1	119
1093	Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 2014, 75, 283-287.	5.2	383
1094	Sampled-data nonlinear observer design for chaos synchronization: A Lyapunov-based approach. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 2444-2453.	3.3	25
1095	New trends in fractional dynamics. JVC/Journal of Vibration and Control, 2014, 20, 963-963.	2.6	19
1096	Efficient generalized Laguerre-spectral methods for solving multi-term fractional differential equations on the half line. JVC/Journal of Vibration and Control, 2014, 20, 973-985.	2.6	40
1097	Robust stabilization of fractional-order chaotic systems with linear controllers: LMI-based sufficient conditions. JVC/Journal of Vibration and Control, 2014, 20, 1042-1051.	2.6	26
1098	New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fractional Calculus and Applied Analysis, 2014, 17, 1137-1157.	2.2	82

#	Article	IF	CITATIONS
1099	Chaos synchronization of the discrete fractional logistic map. Signal Processing, 2014, 102, 96-99.	3.7	168
1100	Recent Development in Partial Differential Equations and Their Applications. Scientific World Journal, The, 2014, 2014, 1-1.	2.1	1
1101	Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces. Electronic Journal of Qualitative Theory of Differential Equations, 2014, , 1-16.	0.5	19
1102	A Jacobi operational matrix for solving a fuzzy linear fractional differential equation. Advances in Difference Equations, 2013, 2013, .	3.5	84
1103	Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Advances in Difference Equations, 2013, 2013, .	3.5	43
1104	On a nonlinear fractional differential equation on partially ordered metric spaces. Advances in Difference Equations, 2013, 2013, .	3.5	36
1105	Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory and Applications, 2013, 2013, .	1.1	39
1106	Special issue on nonlinear fractional differential equations and their applications in honour of Ravi P. Agarwal on his 65th birthday. Nonlinear Dynamics, 2013, 71, 603-603.	5.2	2
1107	Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Boundary Value Problems, 2013, 2013, .	0.7	62
1108	Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line. International Journal of Theoretical Physics, 2013, 52, 4210-4217.	1.2	15
1109	Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 2013, 23, 873-879.	3.3	99
1110	Analytic Solution for a Nonlinear Problem of Magneto-Thermoelasticity. Reports on Mathematical Physics, 2013, 71, 399-411.	0.8	6
1111	A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients. Reports on Mathematical Physics, 2013, 72, 219-233.	0.8	75
1112	A Fractional Variational Approach to the Fractional Basset-Type Equation. Reports on Mathematical Physics, 2013, 72, 57-64.	0.8	17
1113	Some existence results on nonlinear fractional differential equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120144.	3.4	143
1114	Fractional calculus: A survey of useful formulas. European Physical Journal: Special Topics, 2013, 222, 1827-1846.	2.6	193
1115	Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type. Computational Mathematics and Mathematical Physics, 2013, 53, 1292-1302.	0.8	12
1116	A note on stability of sliding mode dynamics in suppression of fractional-order chaotic systems. Computers and Mathematics With Applications, 2013, 66, 832-837.	2.7	30

#	Article	IF	CITATIONS
1117	Stability of -fractional non-autonomous systems. Nonlinear Analysis: Real World Applications, 2013, 14, 780-784.	1.7	81
1118	Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. JVC/Journal of Vibration and Control, 2013, 19, 2523-2540.	2.6	73
1119	Linear discrete systems with memory: a generalization of the Langmuir model. Open Physics, 2013, 11, .	1.7	1
1120	About Maxwell's equations on fractal subsets of â"3. Open Physics, 2013, 11, .	1.7	5
1121	On shifted Jacobi spectral approximations for solving fractional differential equations. Applied Mathematics and Computation, 2013, 219, 8042-8056.	2.2	67
1122	Variational iteration method for the Burgers' flow with fractional derivatives—New Lagrange multipliers. Applied Mathematical Modelling, 2013, 37, 6183-6190.	4.2	128
1123	A new approach for solving a system of fractional partial differential equations. Computers and Mathematics With Applications, 2013, 66, 838-843.	2.7	114
1124	LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dynamics, 2013, 72, 301-309.	5.2	78
1125	Conditional Optimization Problems: Fractional Order Case. Journal of Optimization Theory and Applications, 2013, 156, 45-55.	1.5	20
1126	Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1696-1700.	2.1	134
1127	A mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivatives. Computers and Mathematics With Applications, 2013, 66, 785-794.	2.7	29
1128	A uniqueness criterion for fractional differential equations with Caputo derivative. Nonlinear Dynamics, 2013, 71, 635-640.	5.2	10
1129	Derivation of a fractional Boussinesq equation for modelling unconfined groundwater. European Physical Journal: Special Topics, 2013, 222, 1805-1812.	2.6	28
1130	On a new measure on fractals. Journal of Inequalities and Applications, 2013, 2013, .	1.1	11
1131	The existence of solutions for a nonlinear mixed problem of singular fractional differential equations. Advances in Difference Equations, 2013, 2013, .	3.5	36
1132	The Fractional Linear Systems of Equations Within an Operational Approach. Journal of Computational and Nonlinear Dynamics, 2013, 8, .	1.2	0
1133	Fractional Sums and Differences with Binomial Coefficients. Discrete Dynamics in Nature and Society, 2013, 2013, 1-6.	0.9	39
1134	Nonlinear Fractional Jaulent-Miodek and Whitham-Broer-Kaup Equations within Sumudu Transform. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	23

#	Article	IF	CITATIONS
1135	The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations with Infinite Delay. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.7	4
1136	On Local Fractional Continuous Wavelet Transform. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	19
1137	Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	6
1138	Systems of Navier-Stokes Equations on Cantor Sets. Mathematical Problems in Engineering, 2013, 2013, 1-8.	1.1	39
1139	Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	43
1140	On Solutions of Linear Fractional Differential Equations with Uncertainty. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.7	9
1141	Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	41
1142	The Existence of Positive Solutions for a New Coupled System of Multiterm Singular Fractional Integrodifferential Boundary Value Problems. Abstract and Applied Analysis, 2013, 2013, 1-15.	0.7	10
1143	Local Fractional Discrete Wavelet Transform for Solving Signals on Cantor Sets. Mathematical Problems in Engineering, 2013, 2013, 1-6.	1.1	9
1144	Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science, 2013, 17, 625-628.	1.1	233
1145	A Jacobi Collocation Method for Solving Nonlinear Burgers-Type Equations. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.7	7
1146	Advanced Theoretical and Applied Studies of Fractional Differential Equations. Abstract and Applied Analysis, 2013, 2013, 1-1.	0.7	3
1147	Approximate Controllability of Sobolev Type Nonlocal Fractional Stochastic Dynamic Systems in Hilbert Spaces. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	27
1148	A Modified Generalized Laguerre Spectral Method for Fractional Differential Equations on the Half Line. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.7	20
1149	Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions. Abstract and Applied Analysis, 2013, 2013, 1-20.	0.7	4
1150	Maxwell's Equations on Cantor Sets: A Local Fractional Approach. Advances in High Energy Physics, 2013, 2013, 1-6.	1.1	30
1151	Existence and uniqueness of positive solutions to fractional boundary value problems with nonlinear boundary conditions. Advances in Difference Equations, 2013, 2013, 266.	3.5	15
1152	Application of the Prony's method to analysis of the FTIR data. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 581-586.	0.4	0

#	Article	IF	CITATIONS
1153	Euler-Lagrange Equations on Cantor Sets. , 2013, , .		0
1154	The Proposed Modified Liu System with Fractional Order. Advances in Mathematical Physics, 2013, 2013, 1-6.	0.8	21
1155	Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices. Advances in Mathematical Physics, 2013, 2013, 1-9.	0.8	13
1156	Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	8
1157	Advanced Topics in Fractional Dynamics. Advances in Mathematical Physics, 2013, 2013, 1-1.	0.8	8
1158	Existence of Solutions for Fractional Differential Inclusions with Separated Boundary Conditions in Banach Space. Advances in Mathematical Physics, 2013, 2013, 1-5.	0.8	15
1159	Exact Null Controllability for Fractional Nonlocal Integrodifferential Equations via Implicit Evolution System. Journal of Applied Mathematics, 2012, 2012, 1-17.	0.9	21
1160	On Riesz-Caputo Formulation for Sequential Fractional Variational Principles. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.7	5
1161	Existence and Uniqueness of Solution for a Class of Nonlinear Fractional Order Differential Equations. Abstract and Applied Analysis, 2012, 2012, 1-14.	0.7	3
1162	A Generalized <i>q</i> -Mittag-Leffler Function by <i>q</i> -Captuo Fractional Linear Equations. Abstract and Applied Analysis, 2012, 2012, 1-11.	0.7	23
1163	On the Stability of Some Discrete Fractional Nonautonomous Systems. Abstract and Applied Analysis, 2012, 2012, 1-9.	0.7	35
1164	The Stability of Gauss Model Having One-Prey and Two-Predators. Abstract and Applied Analysis, 2012, 2012, 1-9.	0.7	4
1165	Set-Valued Fixed-Point Theorems for Generalized Contractive Mappings on Fuzzy Metric Spaces. Abstract and Applied Analysis, 2012, 2012, 1-7.	0.7	2
1166	Fractional Wavelet Transform–Continous Wavelet Transform for the Quantification of Melatonin and Its Photodegradation Product. Spectroscopy Letters, 2012, 45, 337-343.	1.0	10
1167	Existence of a periodic mild solution for a nonlinear fractional differential equation. Computers and Mathematics With Applications, 2012, 64, 3059-3064.	2.7	15
1168	Fractional Hamiltonian analysis of systems with linear velocities within Hilfer derivatives. , 2012, , .		0
1169	Factor Analysis for the Characterization of the Nano-Surface of the Nitroazobenzene-Modified Glassy Carbon Electrode. Journal of Computational and Theoretical Nanoscience, 2012, 9, 319-326.	0.4	0
1170	Existence and uniqueness results for fractional differential equations with uncertainty. Advances in Difference Equations, 2012, 2012, .	3.5	88

#	Article	IF	CITATIONS
1171	On a fractional differential equation with infinitely many solutions. Advances in Difference Equations, 2012, 2012, .	3.5	4
1172	A semigroup-like Property for Discrete Mittag-Leffler Functions. Advances in Difference Equations, 2012, 2012, .	3.5	41
1173	Nonlocal nonlinear integrodifferential equations of fractional orders. Boundary Value Problems, 2012, 2012, .	0.7	30
1174	Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control. JVC/Journal of Vibration and Control, 2012, 18, 1366-1374.	2.6	48
1175	GENERALIZED FRACTIONAL ORDER BLOCH EQUATION WITH EXTENDED DELAY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250071.	1.7	39
1176	Transient chaos in fractional Bloch equations. Computers and Mathematics With Applications, 2012, 64, 3367-3376.	2.7	54
1177	A NONSTANDARD FINITE DIFFERENCE SCHEME FOR TWO-SIDED SPACE-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250079.	1.7	19
1178	Caputo-type modification of the Hadamard fractional derivatives. Advances in Difference Equations, 2012, 2012, .	3.5	237
1179	The variational iteration method for solving n-th order fuzzy differential equations. Open Physics, 2012, 10, .	1.7	27
1180	Fractional Pais–Uhlenbeck Oscillator. International Journal of Theoretical Physics, 2012, 51, 1253-1258.	1.2	20
1181	On the Fractional Hamilton and Lagrange Mechanics. International Journal of Theoretical Physics, 2012, 51, 2909-2916.	1.2	30
1182	Hopf bifurcation for a class of fractional differential equations with delay. Nonlinear Dynamics, 2012, 69, 721-729.	5.2	28
1183	Fractional Euler–Lagrange equations revisited. Nonlinear Dynamics, 2012, 69, 977-982.	5.2	35
1184	Higher order fractional variational optimal control problems with delayed arguments. Applied Mathematics and Computation, 2012, 218, 9234-9240.	2.2	27
1185	Fixed point theory for generalized contractions in cone metric spaces. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 708-712.	3.3	13
1186	A new approach to the characterization of the nano-surface structure by using factor analysis. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1012-1020.	3.3	1
1187	Structure of magnetic field lines. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 713-720.	3.3	0
1188	A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1021-1030.	3.3	22

#	Article	IF	CITATIONS
1189	Comparison of iterative methods by solving nonlinear Sturm-Liouville, Burgers and Navier-Stokes equations. Open Physics, 2012, 10, .	1.7	14
1190	Monotone iterative method for a class of nonlinear fractional differential equations. Fractional Calculus and Applied Analysis, 2012, 15, 244-252.	2.2	41
1191	Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dynamics, 2012, 67, 2433-2439.	5.2	252
1192	Asymptotic integration of some nonlinear differential equations with fractional time derivative. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 055203.	2.1	25
1193	FRACTIONAL TIME ACTION AND PERTURBED GRAVITY. Fractals, 2011, 19, 243-247.	3.7	8
1194	Continuous wavelet transforms for simultaneous spectral determination of trimethoprim and sulphamethoxazole in tablets. Journal of the Iranian Chemical Society, 2011, 8, 90-99.	2.2	8
1195	Fractional Odd-Dimensional Mechanics. Advances in Difference Equations, 2011, 2011, 1-12.	3.5	1
1196	Fractional-Order Variational Calculus with Generalized Boundary Conditions. Advances in Difference Equations, 2011, 2011, 1-9.	3.5	16
1197	Employing of Some Basic Theory for Class of Fractional Differential Equations. Advances in Difference Equations, 2011, 2011, 1-13.	3.5	4
1198	A Nagumo-like uniqueness theorem for fractional differential equations. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 392003.	2.1	16
1199	New method and treatment technique applied to interband transition in GaAs1â ^{~,} x Px ternary alloys. Open Physics, 2011, 9, .	1.7	4
1200	Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics. Open Physics, 2011, 9, .	1.7	11
1201	Fedosov Quantization of Fractional Lagrange Spaces. International Journal of Theoretical Physics, 2011, 50, 233-243.	1.2	19
1202	Hamilton–Jacobi Formulation for Systems in Terms ofÂRiesz's Fractional Derivatives. International Journal of Theoretical Physics, 2011, 50, 1569-1576.	1.2	13
1203	Fractional almost Käler–Lagrange geometry. Nonlinear Dynamics, 2011, 64, 365-373.	5.2	19
1204	Hamilton–Jacobi and fractional like action with time scaling. Nonlinear Dynamics, 2011, 66, 549-555.	5.2	24
1205	Asymptotic integration of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" display="inline" overflow="scroll"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	-?/7mml:mi	>30 > <mml:m< td=""></mml:m<>
1206	Caputo q-fractional initial value problems and a q-analogue Mittag–Leffler function. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 4682-4688.	3.3	103

#	Article	IF	CITATIONS
1207	Fractional and continuous wavelet transforms for the simultaneous spectral analysis of a binary mixture system. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 4602-4609.	3.3	15
1208	Fractional Bloch equation with delay. Computers and Mathematics With Applications, 2011, 61, 1355-1365.	2.7	110
1209	Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Computers and Mathematics With Applications, 2011, 62, 1442-1450.	2.7	191
1210	Solution of a fractional transport equation by using the generalized quadratic form. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3011-3014.	3.3	8
1211	Generalized variational calculus in terms of multi-parameters fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 4756-4767.	3.3	67
1212	On nonlinear fractional Klein–Gordon equation. Signal Processing, 2011, 91, 446-451.	3.7	105
1213	Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics. Journal of Mathematical Physics, 2011, 52, .	1.1	23
1214	Erratum to "Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay― Abstract and Applied Analysis, 2011, 2011, 1-1.	0.7	3
1215	Existence of Positive Solutions for a Class of Delay Fractional Differential Equations with Generalization to N-Term. Abstract and Applied Analysis, 2011, 2011, 1-14.	0.7	5
1216	New Treatise in Fractional Dynamics. Nonlinear Physical Science, 2011, , 1-41.	0.2	2
1217	Fractional Newtonian mechanics. Open Physics, 2010, 8, .	1.7	42
1218	New approach for simultaneous spectral analysis of a complex mixture using the fractional wavelet transform. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 812-818.	3.3	22
1219	A new method of finding the fractional Euler–Lagrange and Hamilton equations within Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1111-1115.	3.3	83
1220	On fractional filtering versus conventional filtering in economics. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 979-986.	3.3	21
1221	On electromagnetic field in fractional space. Nonlinear Analysis: Real World Applications, 2010, 11, 288-292.	1.7	84
1222	Hamiltonian Structure of Fractional First Order Lagrangian. International Journal of Theoretical Physics, 2010, 49, 365-375.	1.2	16
1223	ls It Possible to Derive Newtonian Equations of Motion with Memory?. International Journal of Theoretical Physics, 2010, 49, 701-708.	1.2	29
1224	A Fractional SchrĶdinger Equation and Its Solution. International Journal of Theoretical Physics, 2010, 49, 1746-1752.	1.2	64

#	Article	IF	CITATIONS
1225	Newtonian law with memory. Nonlinear Dynamics, 2010, 60, 81-86.	5.2	60
1226	Perturbation for fractional-order evolution equation. Nonlinear Dynamics, 2010, 62, 593-600.	5.2	11
1227	Fractional variational optimal control problems withÂdelayed arguments. Nonlinear Dynamics, 2010, 62, 609-614.	5.2	48
1228	Analysis of the Effect of Potential Cycles on the Reflective Infrared Signals of Nitro Groups in Nanofilms: Application of the Fractional Moments Statistics. Electroanalysis, 2010, 22, 419-426.	2.9	8
1229	An existence result for a superlinear fractional differential equation. Applied Mathematics Letters, 2010, 23, 1129-1132.	2.7	97
1230	Quantization of fractional systems using WKB approximation. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 807-811.	3.3	9
1231	Fractional wavelet transform for the quantitative spectral resolution of the composite signals of the active compounds in a two-component mixture. Computers and Mathematics With Applications, 2010, 59, 1701-1708.	2.7	21
1232	On the global existence of solutions to a class of fractional differential equations. Computers and Mathematics With Applications, 2010, 59, 1835-1841.	2.7	148
1233	Fractional radiative transfer equation within Chebyshev spectral approach. Computers and Mathematics With Applications, 2010, 59, 1865-1873.	2.7	17
1234	Asymptotically Linear Solutions for Some Linear Fractional Differential Equations. Abstract and Applied Analysis, 2010, 2010, 1-8.	0.7	14
1235	Razumikhin Stability Theorem for Fractional Systems with Delay. Abstract and Applied Analysis, 2010, 2010, 1-9.	0.7	42
1236	On Fractional Dynamics on the Extended Phase Space. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	1.2	2
1237	Analysis of a Nanofilm of the Mercaptophenyl Diazonium Modified Gold Electrode Within New Statistical Parameters. Journal of Computational and Theoretical Nanoscience, 2010, 7, 562-570.	0.4	13
1238	On the solution set for a class of sequential fractional differential equations. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 385209.	2.1	76
1239	Fractional variational principles with delay within caputo derivatives. Reports on Mathematical Physics, 2010, 65, 17-28.	0.8	39
1240	Fractional Optimal Control Problems with Several State and Control Variables. JVC/Journal of Vibration and Control, 2010, 16, 1967-1976.	2.6	117
1241	A fractional Dirac equation and its solution. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 055203.	2.1	28
1242	Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay. Abstract and Applied Analysis, 2010, 2010, 1-7.	0.7	92

#	Article	IF	CITATIONS
1243	Fractional Mechanics on the Extended Phase Space. , 2009, , .		1
1244	Fractional variational principles in action. Physica Scripta, 2009, T136, 014006.	2.5	27
1245	Solving the fractional order Bloch equation. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2009, 34A, 16-23.	0.5	128
1246	On fractional Schrödinger equation in -dimensional fractional space. Nonlinear Analysis: Real World Applications, 2009, 10, 1299-1304.	1.7	51
1247	Fractional Nambu Mechanics. International Journal of Theoretical Physics, 2009, 48, 1044-1052.	1.2	25
1248	The Dual Action of Fractional Multi Time Hamilton Equations. International Journal of Theoretical Physics, 2009, 48, 2558-2569.	1.2	24
1249	Fractional Electromagnetic Equations Using Fractional Forms. International Journal of Theoretical Physics, 2009, 48, 3114-3123.	1.2	74
1250	Fractional WKB approximation. Nonlinear Dynamics, 2009, 57, 171-175.	5.2	16
1251	Fractional-order Euler–Lagrange equations andÂformulation of Hamiltonian equations. Nonlinear Dynamics, 2009, 58, 385-391.	5.2	66
1252	Characterization of a benzoic acid modified glassy carbon electrode expressed quantitatively by new statistical parameters. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 609-616.	2.7	16
1253	About fractional quantization and fractional variational principles. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2520-2523.	3.3	68
1254	Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives. Physica Scripta, 2009, 80, 055101.	2.5	1
1255	Solving Technological Change Model by Using Fractional Calculus. , 2009, , 3-12.		1
1256	A Central Difference Numerical Scheme for Fractional Optimal Control Problems. JVC/Journal of Vibration and Control, 2009, 15, 583-597.	2.6	161
1257	On the asymptotic integration of a class of sublinear fractional differential equations. Journal of Mathematical Physics, 2009, 50, .	1.1	18
1258	Solutions of a Fractional Dirac Equation. , 2009, , .		3
1259	Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. Journal of Magnetic Resonance, 2008, 190, 255-270.	2.1	375
1260	On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dynamics, 2008, 52, 331-335.	5.2	100

#	Article	IF	CITATIONS
1261	On fractional Euler–Lagrange and Hamilton equations andÂthe fractional generalization of total time derivative. Nonlinear Dynamics, 2008, 53, 67-74.	5.2	82
1262	Hamilton Formulation for Continuous Systems with Second Order Derivatives. International Journal of Theoretical Physics, 2008, 47, 2195-2202.	1.2	2
1263	On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Science in China Series A: Mathematics, 2008, 51, 1775-1786.	0.5	67
1264	Fractional Constrained Systems and Caputo Derivatives. Journal of Computational and Nonlinear Dynamics, 2008, 3, .	1.2	23
1265	Fractional variational principles with delay. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 315403.	2.1	49
1266	Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. Journal of Mathematical Physics, 2008, 49, .	1.1	51
1267	New applications of fractional variational principles. Reports on Mathematical Physics, 2008, 61, 199-206.	0.8	57
1268	Hamilton–Jacobi formulation of systems within Caputo's fractional derivative. Physica Scripta, 2008, 77, 015101.	2.5	28
1269	FRACTIONAL EULER-LAGRANGE AND FRACTIONAL HAMILTON EQUATIONS FOR SUPER SYMMETRIC CLASSICAL MODEL. Fractals, 2007, 15, 379-383.	3.7	4
1270	Fractional Euler—Lagrange Equations of Motion in Fractional Space. JVC/Journal of Vibration and Control, 2007, 13, 1209-1216.	2.6	26
1271	Heisenberg's Equations of Motion with Fractional Derivatives. JVC/Journal of Vibration and Control, 2007, 13, 1239-1247.	2.6	19
1272	Fractional Wavelet Analysis of the Composite Signals of Two-component Mixture by Multivariate Spectral Calibration. JVC/Journal of Vibration and Control, 2007, 13, 1283-1290.	2.6	4
1273	On Fractional Hamilton Formulation Within Caputo Derivatives. , 2007, , 1335.		0
1274	A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems. JVC/Journal of Vibration and Control, 2007, 13, 1269-1281.	2.6	241
1275	Fractional variational principles and their applications. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1030201-1030202.	0.2	1
1276	Gravitational potential in fractional space. Open Physics, 2007, 5, .	1.7	17
1277	Fractional Hamiltonâ \in Ms equations of motion in fractional time. Open Physics, 2007, 5, .	1.7	7
1278	The Hamilton formalism with fractional derivatives. Journal of Mathematical Analysis and Applications, 2007, 327, 891-897.	1.0	169
Dumitru Baleanu

#	Article	IF	CITATIONS
1279	Hidden symmetries of two dimensional superintegrable systems. , 2007, , 159-166.		Ο
1280	Chemometric Approach to Simultaneous Chromatographic Determination of Paracetamol and Chlorzoxazone in Tablets and Spiked Human Plasma. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 1803-1822.	1.0	14
1281	Fractional Hamiltonian analysis of higher order derivatives systems. Journal of Mathematical Physics, 2006, 47, 103503.	1.1	58
1282	Fractional Wavelet Analysis for the Simultaneous Quantitative Analysis of Lacidipine and Its Photodegradation Product by Continuous Wavelet Transform and Multilinear Regression Calibration. Journal of AOAC INTERNATIONAL, 2006, 89, 1538-1546.	1.5	24
1283	A new fractional wavelet approach for the simultaneous determination of ampicillin sodium and sulbactam sodium in a binary mixture. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 631-638.	3.9	31
1284	Fractional Hamiltonian analysis of irregular systems. Signal Processing, 2006, 86, 2632-2636.	3.7	55
1285	Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method. Open Physics, 2006, 4, .	1.7	3
1286	Equations of motion for Einstein's field in non-integer dimensional space. European Physical Journal D, 2006, 56, 323-328.	0.4	13
1287	Fractional hamilton formalism within caputo's derivative. European Physical Journal D, 2006, 56, 1087-1092.	0.4	136
1288	Symplectic algorithm for systems with second-class constraints. European Physical Journal D, 2006, 56, 1117-1122.	0.4	0
1289	Difference Discrete Variational Principles. AIP Conference Proceedings, 2006, , .	0.4	0
1290	Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives. Physica Scripta, 2006, 73, 436-438.	2.5	30
1291	Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. Journal of Mathematical Analysis and Applications, 2005, 304, 599-606.	1.0	164
1292	Metafluid dynamics and Hamilton-Jacobi formalism. European Physical Journal D, 2005, 55, 473-478.	0.4	6
1293	Formulation of Hamiltonian Equations for Fractional Variational Problems. European Physical Journal D, 2005, 55, 633-642.	0.4	68
1294	About fractional supersymmetric quantum mechanics. European Physical Journal D, 2005, 55, 1063-1066.	0.4	19
1295	New aspects of irregular constrained systems. European Physical Journal D, 2005, 55, 1321-1326.	0.4	0
1296	Projector quantization method of systems with linearly dependent constraints. European Physical Journal D, 2005, 55, 1379-1384.	0.4	1

Dumitru Baleanu

#	Article	IF	CITATIONS
1297	Lagrangian Formulation of Classical Fields within Riemann-Liouville Fractional Derivatives. Physica Scripta, 2005, 72, 119-121.	2.5	203
1298	A New Application of Chemometric Techniques to HPLC Data for the Simultaneous Analysis of a Two omponent Mixture. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2179-2194.	1.0	14
1299	About Fractional Calculus of Singular Lagrangians. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2005, 9, 395-398.	0.9	6
1300	Application of the Wavelet Method for the Simultaneous Quantitative Determination of Benazepril and Hydrochlorothiazide in Their Mixtures. Journal of AOAC INTERNATIONAL, 2004, 87, 834-841.	1.5	43
1301	Multicomponent Quantitative Resolution of Binary Mixtures by Using Continuous Wavelet Transform. Journal of AOAC INTERNATIONAL, 2004, 87, 360-365.	1.5	39
1302	Fractional Euler-Lagrange Equations for Constrained Systems. AIP Conference Proceedings, 2004, , .	0.4	1
1303	Killing-Yano tensors, surface terms and superintegrable systems. AIP Conference Proceedings, 2004, , .	0.4	1
1304	Compatibility of non-generic supersymmetries and geometric duality for a subclass of generalized pp-wave metrics. AIP Conference Proceedings, 2004, , .	0.4	0
1305	Killing-Yano Tensors and Angular Momentum. European Physical Journal D, 2004, 54, 157-165.	0.4	5
1306	An application of derivative and continuous wavelet transforms to the overlapping ratio spectra for the quantitative multiresolution of a ternary mixture of paracetamol, acetylsalicylic acid and caffeine in tablets. Talanta, 2004, 65, 36-47.	5.5	50
1307	Hamilton–Jacobi and Symplectic Analysis of a Particle Constrained on a Circle. European Physical Journal D, 2003, 53, 759-767.	0.4	0
1308	Variational Formulation of the SchrĶdinger Field. European Physical Journal D, 2003, 53, 971-976.	0.4	0
1309	An Approach to Quantitative Twoâ€Component Analysis of a Mixture Containing Hydrochlorothiazide and Spironolactone in Tablets by Oneâ€Dimensional Continuous Daubechies and Biorthogonal Wavelet Analysis of UVâ€Spectra. Spectroscopy Letters, 2003, 36, 341-355.	1.0	42
1310	SIMULTANEOUS SPECTROPHOTOMETRIC ANALYSIS OF CODEINE PHOSPHATE, ACETYLSALICYLIC ACID, AND CAFFEINE IN TABLETS BY INVERSE LEAST-SQUARES AND PRINCIPAL COMPONENT REGRESSION TECHNIQUES. Analytical Letters, 2002, 35, 545-558.	1.8	14
1311	SYMMETRIES OF THE DUAL METRICS. International Journal of Modern Physics D, 2002, 11, 405-416.	2.1	5
1312	THE HAMILTON–JACOBI TREATMENT OF FRONT-FORM SCHWINGER MODEL. International Journal of Modern Physics A, 2002, 17, 1449-1456.	1.5	3
1313	Hamilton–Jacobi Quantization of Systems with Time-Dependent Constraints. International Journal of Theoretical Physics, 2002, 41, 861-866.	1.2	1
1314	THE HAMILTON – JACOBI TREATMENT OF SUPERSYMMETRIC QUANTUM MECHANICS. International Journal of Modern Physics A, 2001, 16, 2391-2397.	1.5	10

#	Article	IF	CITATIONS
1315	CHEMOMETRIC QUANTITATIVE ANALYSIS OF PYRIDOXINE HCI AND THIAMINE HCI IN A VITAMIN COMBINATION BY PRINCIPAL COMPONENT ANALYSIS, CLASSICAL LEAST SQUARES, AND INVERSE LEAST SQUARES TECHNIQUES. Spectroscopy Letters, 2001, 34, 279-288.	1.0	30
1316	Hamilton-Jacobi treatment of a non-relativistic particle on a curved space. Journal of Physics A, 2001, 34, 73-80.	1.6	13
1317	Hamilton–Jacobi Treatment of Chiral Schwinger Model. International Journal of Theoretical Physics, 2001, 40, 2017-2024.	1.2	2
1318	MULTI-HAMILTON–JACOBI QUANTIZATION OF O(3) NONLINEAR SIGMA MODEL. Modern Physics Letters A, 2001, 16, 873-879.	1.2	15
1319	DUAL METRICS FOR A CLASS OF RADIATIVE SPACE–TIMES. Modern Physics Letters A, 2001, 16, 135-142.	1.2	9
1320	GEOMETRIZATION OF THE LAX PAIR TENSORS. Modern Physics Letters A, 2000, 15, 1503-1510.	1.2	9
1321	About fractional calculus of singular Lagrangians. , 0, , .		2
1322	A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems. JVC/Journal of Vibration and Control, 0, , 107754631774176.	2.6	15
1323	Monotone iterative method for a nonlinear fractional conformable <i>p</i> ‣aplacian differential system. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
1324	Exact solutions of the fractional timeâ€derivative Fokker–Planck equation: A novel approach. Mathematical Methods in the Applied Sciences, 0, , .	2.3	2
1325	An efficient numerical algorithm for the study of time fractional Tricomi and Keldysh type equations. Engineering With Computers, 0, , 1.	6.1	1
1326	On the solutions for generalised multiorder fractional partial differential equations arising in physics. Mathematical Methods in the Applied Sciences, 0, , .	2.3	3
1327	A robust technique based solution of time-fractional seventh-order Sawada–Kotera and Lax's KdV equations. Modern Physics Letters B, 0, , 2150265.	1.9	0
1328	On constrained minimization, variational inequality and split feasibility problem via new iteration scheme in Banach spaces. Bulletin of the Iranian Mathematical Society, 0, , 1.	1.0	8
1329	HYPERCHAOTIC DYNAMICS OF A NEW FRACTIONAL DISCRETE-TIME SYSTEM. Fractals, 0, , 2140034.	3.7	3
1330	Improve the heat exchanger efficiency via examine the Graphene Oxide nanoparticles: a comprehensive study of the preparation and stability, predict the thermal conductivity and rheological properties, convection heat transfer and pressure drop. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	4
1331	A Taylor–Chebyshev approximation technique to solve the 1D and 2D nonlinear Burgers equations. Mathematical Sciences, 0, , 1.	1.7	6
1332	A unifying computational framework for fractional Gross–Pitaevskii equations. Physica Scripta, 0, , .	2.5	8

Dumitru Baleanu

#	Article	IF	CITATIONS
1333	Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Universitaria, 0, 23, 3-8.	0.2	15
1334	Dynamics of multi-point singular fifth-order Lane–Emden system with neuro-evolution heuristics. Evolving Systems, 0, , 1.	3.9	9
1335	A new fractional infectious disease model under the non-singular Mittag–Leffler derivative. Waves in Random and Complex Media, 0, , 1-27.	2.7	13
1336	A survey study of the correlations developed for single-phase heat transfer and pressure drop using nanofluids. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	1