emmanuelle Charafe-Jauffret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2531581/publications.pdf

Version: 2024-02-01

107 papers 15,056 citations

51 h-index 22102 113 g-index

124 all docs

124 docs citations

times ranked

124

18013 citing authors

#	Article	IF	CITATIONS
1	BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death and Disease, 2022, 13, 96.	2.7	13
2	Genome-wide RNA interference screen in cancer stem cells. Methods in Cell Biology, 2022, , .	0.5	0
3	Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin. Cancers, 2022, 14, 2404.	1.7	2
4	Overcoming Resistance to Anti–Nectin-4 Antibody-Drug Conjugate. Molecular Cancer Therapeutics, 2022, 21, 1227-1235.	1.9	13
5	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
6	Modeling Heterogeneity of Tripleâ€Negative Breast Cancer Uncovers a Novel Combinatorial Treatment Overcoming Primary Drug Resistance. Advanced Science, 2021, 8, 2003049.	5.6	15
7	Quantification of Immune Variables from Liquid Biopsy in Breast Cancer Patients Links Vδ2+ γδT Cell Alterations with Lymph Node Invasion. Cancers, 2021, 13, 441.	1.7	6
8	Phenotypic discordance between primary and metastatic breast cancer in the large-scale real-life multicenter French ESME cohort. Npj Breast Cancer, 2021, 7, 41.	2.3	33
9	Prospective high-throughput genome profiling of advanced cancers: results of the PERMED-01 clinical trial. Genome Medicine, 2021, 13, 87.	3.6	24
10	A stem cell population at the anorectal junction maintains homeostasis and participates in tissue regeneration. Nature Communications, 2021, 12, 2761.	5.8	15
11	The Evolution and Prognostic Role of Tumour-Infiltrating Lymphocytes and Peripheral Blood-Based Biomarkers in Inflammatory Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers, 2021, 13, 4656.	1.7	10
12	CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. IScience, 2021, 24, 103538.	1.9	16
13	CD95/Fas and metastatic disease: What does not kill you makes you stronger. Seminars in Cancer Biology, 2020, 60, 121-131.	4.3	31
14	CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nature Chemistry, 2020, 12, 929-938.	6.6	132
15	Transcriptomic Analysis of Breast Cancer Stem Cells and Development of a pALDH1A1:mNeptune Reporter System for Live Tracking. Proteomics, 2019, 19, e1800454.	1.3	7
16	A genomeâ€wide <scp>RNA</scp> i screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Molecular Medicine, 2019, 11, e9930.	3.3	27
17	Stem Cells Inhibition by Bevacizumab in Combination with Neoadjuvant Chemotherapy for Breast Cancer. Journal of Clinical Medicine, 2019, 8, 612.	1.0	5
18	PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling. Nature Chemical Biology, 2019, 15, 358-366.	3.9	22

2

#	Article	IF	CITATIONS
19	Development of parallel reaction monitoring (PRM)-based quantitative proteomics applied to HER2-Positive breast cancer. Oncotarget, 2018, 9, 33762-33777.	0.8	17
20	The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/ \hat{l}^2 -Catenin Signaling. Stem Cell Reports, 2018, 11, 1040-1050.	2.3	18
21	miR-600 Acts as a Bimodal Switch that Regulates Breast Cancer Stem Cell Fate through WNT Signaling. Cell Reports, 2017, 18, 2256-2268.	2.9	111
22	Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in <i>ex vivo</i> culture. Gut, 2017, 66, 1802-1810.	6.1	163
23	A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nature Medicine, 2017, 23, 568-578.	15.2	131
24	Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 2017, 9, 1025-1033.	6.6	423
25	Flick the cancer stem cells' switch to turn cancer off. Molecular and Cellular Oncology, 2017, 4, e1319896.	0.3	0
26	MARCKS protein overexpression in inflammatory breast cancer. Oncotarget, 2017, 8, 6246-6257.	0.8	27
27	Prognostic impact of hormone receptor- and HER2-defined subtypes in inflammatory breast cancer treated with high-dose chemotherapy: a retrospective study. Journal of Cancer, 2016, 7, 2077-2084.	1.2	6
28	Invasive ductal breast carcinoma with predominant intraductal component: Clinicopathological features and prognosis. Breast, 2016, 27, 8-14.	0.9	5
29	Consistency in recognizing microinvasion in breast carcinomas is improved by immunohistochemistry for myoepithelial markers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 468, 473-481.	1.4	11
30	Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2–JNK signalling in breast cancer. Nature Communications, 2016, 7, 10318.	5.8	85
31	Bevacizumab plus neoadjuvant chemotherapy in patients with HER2-negative inflammatory breast cancer (BEVERLY-1): a multicentre, single-arm, phase 2 study. Lancet Oncology, The, 2016, 17, 600-611.	5.1	43
32	Immunohistochemical subtypes predict survival in metastatic breast cancer receiving high-dose chemotherapy with autologous haematopoietic stem cell transplantation. European Journal of Cancer, 2016, 57, 118-126.	1.3	5
33	Breast cancer stem cells programs: enter the (non)-code. Briefings in Functional Genomics, 2016, 15, 186-199.	1.3	6
34	Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study. Oncotarget, 2016, 7, 79428-79441.	0.8	11
35	Comparative genomic analysis of primary tumors and metastases in breast cancer. Oncotarget, 2016, 7, 27208-27219.	0.8	69
36	Immunohistochemical subtypes predict the clinical outcome in high-risk node-negative breast cancer patients treated with adjuvant FEC regimen: results of a single-center retrospective study. BMC Cancer, 2015, 15, 697.	1.1	3

#	Article	IF	Citations
37	Pathological Response and Circulating Tumor Cell Count Identifies Treated HER2+ Inflammatory Breast Cancer Patients with Excellent Prognosis: BEVERLY-2 Survival Data. Clinical Cancer Research, 2015, 21, 1298-1304.	3.2	56
38	Corrélation imagerie-anatomopathologie en biopsie mammaireÂ: utilité de la classification européenne illustrée en cas cliniques. Imagerie De La Femme, 2015, 25, 22-31.	0.0	0
39	Depleting MET-Expressing Tumor Cells by ADCC Provides a Therapeutic Advantage over Inhibiting HGF/MET Signaling. Cancer Research, 2015, 75, 3373-3383.	0.4	32
40	Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib. PLoS ONE, 2014, 9, e104302.	1.1	43
41	Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling. PLoS ONE, 2014, 9, e81843.	1.1	53
42	Brief Reports: A Distinct DNA Methylation Signature Defines Breast Cancer Stem Cells and Predicts Cancer Outcome. Stem Cells, 2014, 32, 3031-3036.	1.4	33
43	Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts. Stem Cell Reports, 2014, 2, 78-91.	2.3	854
44	ALDH1-Positive Cancer Stem Cells Predict Engraftment of Primary Breast Tumors and Are Governed by a Common Stem Cell Program. Cancer Research, 2013, 73, 7290-7300.	0.4	103
45	The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low <i>Xist</i> Expression. Clinical Cancer Research, 2013, 19, 6520-6531.	3.2	122
46	MicroRNA93 Regulates Proliferation and Differentiation of Normal and Malignant Breast Stem Cells. PLoS Genetics, 2012, 8, e1002751.	1.5	150
47	p53 and cancer stem cells: The mevalonate connexion. Cell Cycle, 2012, 11, 2583-2584.	1.3	21
48	Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncology, The, 2012, 13, 375-384.	5.1	160
49	8q24 Cancer Risk Allele Associated with Major Metastatic Risk in Inflammatory Breast Cancer. PLoS ONE, 2012, 7, e37943.	1.1	34
50	Mevalonate Metabolism Regulates Basal Breast Cancer Stem Cells and Is a Potential Therapeutic Target. Stem Cells, 2012, 30, 1327-1337.	1.4	120
51	What drives breast cancer heterogeneity: oncogenic events or cell of origin?. Journal of Pathology, 2012, 227, 267-269.	2.1	2
52	High expression of indoleamine 2,3â€dioxygenase in the tumour is associated with medullary features and favourable outcome in basalâ€ike breast carcinoma. International Journal of Cancer, 2012, 130, 96-104.	2.3	77
53	Protein expression, survival and docetaxel benefit in node-positive breast cancer treated with adjuvant chemotherapy in the FNCLCC - PACS 01 randomized trial. Breast Cancer Research, 2011, 13, R109.	2.2	24
54	<i>ZNF703</i> gene amplification at 8p12 specifies luminal B breast cancer. EMBO Molecular Medicine, 2011, 3, 153-166.	3.3	126

#	Article	IF	Citations
55	Breast tumor microenvironment: In the eye of the cytokine storm. Cell Cycle, 2011, 10, 2421-2421.	1.3	7
56	High-Resolution Comparative Genomic Hybridization of Inflammatory Breast Cancer and Identification of Candidate Genes. PLoS ONE, 2011, 6, e16950.	1.1	57
57	Cancer stem cells: Just sign here!. Cell Cycle, 2010, 9, 227-232.	1.3	3
58	Genome profiling of ERBB2-amplified breast cancers. BMC Cancer, 2010, 10, 539.	1.1	136
59	Aldehyde Dehydrogenase 1–Positive Cancer Stem Cells Mediate Metastasis and Poor Clinical Outcome in Inflammatory Breast Cancer. Clinical Cancer Research, 2010, 16, 45-55.	3.2	646
60	Targeting breast cancer stem cells: fishing season open!. Breast Cancer Research, 2010, 12, 312.	2.2	11
61	CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. Journal of Clinical Investigation, 2010, 120, 485-497.	3.9	658
62	Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle, 2009, 8, 3297-3302.	1.3	193
63	Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/β-Catenin Signaling. PLoS Biology, 2009, 7, e1000121.	2.6	484
64	Breast cancer stem cells: tools and models to rely on. BMC Cancer, 2009, 9, 202.	1.1	105
65	Prognostic marker profile to assess risk in stage lâ€"III hormone receptorâ€positive breast cancer patients. International Journal of Cancer, 2009, 124, 896-904.	2.3	12
66	How different are luminal A and basal breast cancers?. International Journal of Cancer, 2009, 124, 1338-1348.	2.3	51
67	Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Research, 2009, 69, 1302-1313.	0.4	1,067
68	Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Research, 2009, 11, R23.	2.2	74
69	Docetaxel first-line therapy in HER2-negative advanced breast cancer: a cohort study in patients with prospectively determined HER2 status. Anti-Cancer Drugs, 2009, 20, 946-952.	0.7	6
70	Absence of ESR1 amplification in a series of breast cancers. International Journal of Cancer, 2008, 123, 2970-2972.	2.3	23
71	Markers of subtypes in inflammatory breast cancer studied by immunohistochemistry: Prominent expression of P-cadherin. BMC Cancer, 2008, 8, 28.	1.1	32
72	Defining the Molecular Biology of Inflammatory Breast Cancer. Seminars in Oncology, 2008, 35, 41-50.	0.8	52

#	Article	IF	Citations
73	BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1680-1685.	3.3	417
74	Sixteen–Kinase Gene Expression Identifies Luminal Breast Cancers with Poor Prognosis. Cancer Research, 2008, 68, 767-776.	0.4	105
75	Cancer Stem Cells in Breast: Current Opinion and Future Challenges. Pathobiology, 2008, 75, 75-84.	1.9	169
76	Protein Profiling of Human Breast Tumor Cells Identifies Novel Biomarkers Associated with Molecular Subtypes. Molecular and Cellular Proteomics, 2008, 7, 1420-1433.	2.5	74
77	Integrated Profiling of Basal and Luminal Breast Cancers. Cancer Research, 2007, 67, 11565-11575.	0.4	254
78	ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007, 1, 555-567.	5.2	3,550
79	Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Human Pathology, 2007, 38, 830-841.	1.1	142
80	Moesin expression is a marker of basal breast carcinomas. International Journal of Cancer, 2007, 121, 1779-1785.	2.3	70
81	Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer, 2007, 7, 73.	1.1	134
82	Inflammatory breast cancers in Tunisia and France show similar immunophenotypes. Breast, 2007, 16, 352-358.	0.9	15
83	Gene Expression Profiling Shows Medullary Breast Cancer Is a Subgroup of Basal Breast Cancers. Cancer Research, 2006, 66, 4636-4644.	0.4	273
84	Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer, 2006, 6, 245.	1.1	120
85	Prognosis and Gene Expression Profiling of 20q13-Amplified Breast Cancers. Clinical Cancer Research, 2006, 12, 4533-4544.	3.2	121
86	ETV6 gene rearrangements in invasive breast carcinoma. Genes Chromosomes and Cancer, 2005, 44, 103-108.	1.5	30
87	Typical medullary breast carcinomas have a basal/myoepithelial phenotype. Journal of Pathology, 2005, 207, 260-268.	2.1	198
88	Comprehensive Profiling of 8p11-12 Amplification in Breast Cancer. Molecular Cancer Research, 2005, 3, 655-667.	1.5	201
89	Gene Expression Profiling Identifies Molecular Subtypes of Inflammatory Breast Cancer. Cancer Research, 2005, 65, 2170-2178.	0.4	229
90	How to best classify breast cancer: Conventional and novel classifications (Review). International Journal of Oncology, 2005, 27, 1307.	1.4	17

#	Article	IF	Citations
91	Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Research, 2005, 65, 767-79.	0.4	148
92	How to best classify breast cancer: conventional and novel classifications (review). International Journal of Oncology, 2005, 27, 1307-13.	1.4	9
93	Gene Expression Profiling for Molecular Characterization of Inflammatory Breast Cancer and Prediction of Response to Chemotherapy. Cancer Research, 2004, 64, 8558-8565.	0.4	177
94	Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene, 2004, 23, 1377-1391.	2.6	293
95	Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene, 2004, 23, 2564-2575.	2.6	117
96	Immunophenotypic analysis of inflammatory breast cancers: identification of anâ€~inflammatory signature'. Journal of Pathology, 2004, 202, 265-273.	2.1	180
97	Comparative multi-methodological measurement of ERBB2 status in breast cancer. Journal of Pathology, 2004, 202, 286-298.	2.1	61
98	Basal and luminal breast cancers: basic or luminous? (review). International Journal of Oncology, 2004, 25, 249-58.	1.4	16
99	Loss of FHIT protein expression is a marker of adverse evolution in good prognosis localized breast cancer. International Journal of Cancer, 2003, 107, 854-862.	2.3	19
100	Constitutive nuclear localization and initial cytoplasmic apoptotic activation of endogenous caspase-3 evidenced by confocal microscopy. International Journal of Experimental Pathology, 2003, 84, 75-81.	0.6	34
101	Chromosome arm 8p and cancer: a fragile hypothesis. Lancet Oncology, The, 2003, 4, 639-642.	5.1	57
102	Loss of heterozygosity at microsatellite markers from region p11-21 of chromosome 8 in microdissected breast tumor but not in peritumoral cells. International Journal of Oncology, 2002, 21, 989.	1.4	7
103	Distinct and Complementary Information Provided by Use of Tissue and DNA Microarrays in the Study of Breast Tumor Markers. American Journal of Pathology, 2002, 161, 1223-1233.	1.9	144
104	Reciprocal translocations in breast tumor cell lines: Cloning of a t(3;20) that targets the FHIT gene. Genes Chromosomes and Cancer, 2002, 35, 204-218.	1.5	30
105	Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators. Oncogene, 2002, 21, 5619-5630.	2.6	73
106	WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene, 2001, 20, 5810-5817.	2.6	169
107	Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene, 1999, 18, 1903-1910.	2.6	118