Slaven Garaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253109/publications.pdf

Version: 2024-02-01

55 papers	7,010 citations	26 h-index	214800 47 g-index
56	56	56	9033
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26, 1146-1153.	17.5	2,201
2	Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467, 190-193.	27.8	1,259
3	Molecular transport through capillaries made with atomic-scale precision. Nature, 2016, 538, 222-225.	27.8	483
4	Size effect in ion transport through angstrom-scale slits. Science, 2017, 358, 511-513.	12.6	418
5	Directing Assembly and Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 15286-15296.	8.0	232
6	Molecule-hugging graphene nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12192-12196.	7.1	229
7	Lowâ€Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Advanced Functional Materials, 2016, 26, 7034-7056.	14.9	208
8	Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications, 2019, 10, 41.	12.8	168
9	Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity. Nano Letters, 2017, 17, 728-732.	9.1	166
10	Probing Surface Charge Fluctuations with Solid-State Nanopores. Physical Review Letters, 2009, 102, 256804.	7.8	163
11	Diffusion-Mediated Synthesis of MoS ₂ /WS ₂ Lateral Heterostructures. Nano Letters, 2016, 16, 5129-5134.	9.1	129
12	Crested two-dimensional transistors. Nature Nanotechnology, 2019, 14, 223-226.	31.5	129
13	Graphene synthesis by ion implantation. Applied Physics Letters, 2010, 97, 183103.	3.3	103
14	Anisotropy of SuperconductingMgB2as Seen in Electron Spin Resonance and Magnetization Data. Physical Review Letters, 2001, 87, 047002.	7.8	99
15	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	16.0	95
16	Gate-Defined Quantum Dots on Carbon Nanotubes. Nano Letters, 2005, 5, 1267-1271.	9.1	86
17	Complex DNA knots detected with a nanopore sensor. Nature Communications, 2019, 10, 4473.	12.8	85
18	Controlling covalent chemistry on graphene oxide. Nature Reviews Physics, 2022, 4, 247-262.	26.6	78

#	Article	IF	Citations
19	Mechanical Purification of Single-Walled Carbon Nanotube Bundles from Catalytic Particles. Nano Letters, 2002, 2, 1349-1352.	9.1	69
20	Electronic properties of carbon nanohorns studied by ESR. Physical Review B, 2000, 62, 17115-17119.	3.2	57
21	Field emission properties of carbon nanohorn films. Journal of Applied Physics, 2002, 91, 10107.	2.5	54
22	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	3.6	49
23	Role of Dynamic Jahn-Teller Distortions inNa2C60andNa2CsC60Studied by NMR. Physical Review Letters, 2001, 86, 4680-4683.	7.8	40
24	Gaps and excitations in fullerides with partially filled bands: NMR study ofNa2C60andK4C60. Physical Review B, 2002, 66, .	3.2	37
25	ESR Signal in Azafullerene (C59N)2 Induced by Thermal Homolysis. Journal of Physical Chemistry A, 1999, 103, 6969-6971.	2.5	35
26	Azafullerene C59N, a stable free radical substituent in crystalline C60. Chemical Physics Letters, 2001, 334, 233-237.	2.6	29
27	Tunable Optical Properties of Thin Films Controlled by the Interface Twist Angle. Nano Letters, 2021, 21, 2832-2839.	9.1	26
28	Dielectric resonator-based resonant structure for sensitive ESR measurements at high-hydrostatic pressures. Journal of Magnetic Resonance, 2005, 177, 261-273.	2.1	25
29	Persistence of molecular excitations in metallic fullerides and their role in a possible metal to insulator transition at high temperatures. Physical Review B, 2002, 66, .	3.2	24
30	Two-Dimensional MoxW1â^xxS2 Graded Alloys: Growth and Optical Properties. Scientific Reports, 2018, 8, 12889.	3.3	24
31	The potential and challenges of nanopore sequencing. , 2009, , 261-268.		23
32	Defectâ€Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonicsâ€Driven Reactive Oxygen Species Generation. Advanced Materials, 2022, 34, .	21.0	23
33	Nanopores in 2D MoS ₂ : Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Defect-Mediated Policy Materials & D	8.0	22
34	Instrumental recording of electrophonic sounds from Leonid fireballs. Journal of Geophysical Research, 2002, 107, SIA 11-1.	3.3	21
35	Electron Delocalization and Dimerization in SolidC59NDopedC60Fullerene. Physical Review Letters, 2005, 94, 066603.	7.8	20
36	Polymer phase of the tetrakis(dimethylamino)ethylene-C60organic ferromagnet. Physical Review B, 2003, 68, .	3.2	18

#	Article	IF	CITATIONS
37	Generalized Elliott-Yafet Theory of Electron Spin Relaxation in Metals: Origin of the Anomalous Electron Spin Lifetime inMgB2. Physical Review Letters, 2008, 101, 177003.	7.8	16
38	DNA Knot Malleability in Single-Digit Nanopores. Nano Letters, 2021, 21, 3772-3779.	9.1	14
39	Embedding a carbon nanotube across the diameter of a solid state nanopore. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 053001.	1.2	11
40	Magnetic-field-induced density of states inMgB2: Spin susceptibility measured by conduction-electron spin resonance. Physical Review B, 2005, 72, .	3.2	9
41	NMR Studies of Insulating, Metallic, and Superconducting Fullerides: Importance of Correlations and Jahn–Teller Distortions. Structure and Bonding, 0, , 165-199.	1.0	8
42	Influence of local fullerene orientation on the electronic properties ofNa2AC60(A=Cs,Rb,K)compounds. Physical Review B, 2006, 74, .	3.2	8
43	Modulation of Spin Dynamics in 2D Transitionâ€Metal Dichalcogenide via Strainâ€Driven Symmetry Breaking. Advanced Science, 2022, , 2200816.	11.2	4
44	Temperature induced de-polymerization in TDAE-C60. Synthetic Metals, 2003, 133-134, 697-698.	3.9	3
45	High Pressure ESR System with Double-Stacked Dielectric Resonators –Its Application to the Polymerization of the TDAE–C ₆₀ Organic Ferromagnet–. Journal of the Physical Society of Japan, 2003, 72, 151-155.	1.6	3
46	Fullerene local order in Na2CsC60 by23Na NMR. Applied Magnetic Resonance, 2004, 27, 133-138.	1.2	3
47	Comment on "Low Temperature Magnetic Instabilities in Triply Charged Fulleride Polymers― Physical Review Letters, 2001, 87, 129703.	7.8	1
48	Application of Electron Spin Resonance in Biophysics: from Rapid Mixing Stopped-Flow to High-Hydrostatic Pressure ESR. Defect and Diffusion Forum, 2002, 208-209, 1-18.	0.4	1
49	NMR Studies of Insulating, Metallic, and Superconducting Fullerides: Importance of Correlations and Jahnâ€"Teller Distortions. ChemInform, 2005, 36, no.	0.0	1
50	Pressure and doping dependence of electronic properties of carbon nanotube ropes. AIP Conference Proceedings, 2000, , .	0.4	0
51	Electronic properties of nanohorns. AIP Conference Proceedings, 2001, , .	0.4	0
52	Electron delocalization and dimerization in solid C59N doped C60 fullerene. AIP Conference Proceedings, 2005, , .	0.4	0
53	NMR Evidence for C60 Configurational Fluctuations Around Na Sites in Na2CsC60. Journal of Superconductivity and Novel Magnetism, 2007, 20, 155-159.	1.8	0
54	Optofluidic Devices for Light Manipulation and Bio-sensing. , 2013, , 1-13.		0

#	Article	IF	CITATIONS
55	Nucleic Acid Sequencing and Analysis with Nanopores. Nucleic Acids and Molecular Biology, 2014, , 287-303.	0.2	0