List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Principle and Analysis of Radial-Force-Based Swirling Actuator for Low-Speed High-Torque Applications. IEEE Transactions on Industry Applications, 2022, 58, 1963-1975.	4.9	2
2	Estimation of Magnetic Suspension Loss in a 30000 r/Min One-Axis Actively Positioned Single-Drive Bearingless Motor. , 2022, , .		3
3	Novel Reluctance-type Magnetic Geared Motor with Integrated with High-speed Bearingless Motor. , 2022, , .		2

ãf™ã,¢ãfªãf³ã,°ãf¬ã,¹ãf¢ãf¼ã,¿ã®ã,®ãf£ãffãf—磜Ÿå⁻†åº¦ã«åŸºã¥ãåŠå¾"æ–¹å'磜°—æ"⁻æŒåŠ›ç™ºç"ŸåŽök⊄tã®çtè∢–. IEEJ Tra

5	Guest Editorial for Special Issue on Magnetically Levitated Motor Systems. IEEE Transactions on Industry Applications, 2021, , 1-1.	4.9	0
6	Voltage Sensorless Control of Split Capacitor for Three-Phase Four-Wire Motor System With Zero-Sequence Suspension Winding. IEEE Transactions on Industry Applications, 2021, 57, 6823-6832.	4.9	6
7	A Novel Combined Winding and Test Result of a 20-Pole/24-Slot Consequent-Pole Bearingless Motor With Parallel Motor Winding. IEEE Transactions on Industry Applications, 2021, 57, 6880-6891.	4.9	3
8	Three-Coil Combined Winding Configuration for a 2-DOF Actively Controlled Bearingless Permanent Magnet Motor. IEEE Transactions on Industry Applications, 2021, 57, 6765-6773.	4.9	4
9	A Bearingless Motor With Passive Electrodynamic Suspension in Axial Direction. IEEE Transactions on Industry Applications, 2021, 57, 6812-6822.	4.9	14
10	Analysis and Experimental Comparison of Acoustic Noise of Three Switched Reluctance Motors Made of Conventional Steel, High Silicon Steel, and Amorphous Iron. IEEE Transactions on Industry Applications, 2021, 57, 5907-5915.	4.9	10
11	Design, Development, and Experimental Results of a 30 000-R/Min One-Axis Actively Positioned Single-Drive Bearingless Motor. IEEE Transactions on Industry Applications, 2021, 57, 6783-6791.	4.9	12
12	Asymmetrical Four-Phase Combined Winding Arrangement for Bearingless PM Motors. IEEE Transactions on Industry Applications, 2021, 57, 6870-6879.	4.9	3
13	Dynamic Modeling and Experimental Validations of Passing Through Critical Speeds by High Acceleration in One-Axis Actively Positioned Bearingless Motors. IEEE Transactions on Industry Applications, 2021, 57, 6956-6964.	4.9	4
14	Development of Axial-Flux Single-Drive Bearingless Motor With One-Axis Active Positioning. IEEE Transactions on Industry Applications, 2021, 57, 6792-6800.	4.9	6
15	Experimental Verification of Acoustic Noise and Radial Force Sum Variation in Switched Reluctance Motor. IEEE Transactions on Industry Applications, 2021, 57, 2481-2493.	4.9	21
16	Improved Current Profile Selection for Noise Reduction of Switched Reluctance Motor at Middle Speed Considering Back EMF. IEEE Transactions on Industry Applications, 2021, 57, 4707-4719.	4.9	12
17	Performance Evaluation of a Homopolar Bearingless Motor for Ultrahigh Speed Applications. IEEE Transactions on Industry Applications, 2021, 57, 6913-6920.	4.9	6
18	Analytical and Experimental Investigations of Magnetostriction Influence on Strain Measurement in		4

Analytical and Experimental Investigations of Magnetostriction Influence on Strain Measurement in Switched Reluctance Machines. , 2021, , .

#	Article	IF	CITATIONS
19	Requirements for Full Passive Suspension on a Bearingless Motor with Electrodynamic Axial Stabilization and Radial Permanent Magnet Bearings. , 2021, , .		1
20	Principles and Test Result of Novel Full Passive Magnetic Levitation Motor with Diamagnetic Disk. , 2021, , .		4
21	Optimum Pole Number Combination of a Buried Permanent Magnet Bearingless Motor and Test Results at an Output of 60 kW With a Speed of 37000 r/min. IEEE Open Journal of Industry Applications, 2020, 1, 33-41.	6.5	29
22	Switched Reluctance Machines for Automotive Application. , 2020, , 273-299.		0
23	DC current control of a zero-sequence load using a diode rectifier for a three-phase four-wire motor drive system. Transactions of the JSME (in Japanese), 2020, 86, 19-00403-19-00403.	0.2	О
24	Parameter Identification for acoustic noise analysis of SRM made of 6.5% Si Steel and Amorphous Iron - Comparison of noise Analysis and Experiment , 2020, , .		3
25	Analytical and Experimental Investigations of Radial Force Detection by Strain Gauge for Possible Application for Switched Reluctance Machines. , 2020, , .		2
26	Investigation of Mode 0 Acoustic Noise Reduction of Interior Permanent Magnet Motor with a Principle of Radial Force Sum Flattening. , 2020, , .		3
27	The Effectiveness of Radial Force Sum Flattening for Vibration Mode 0 and Noise Reduction in Switched Reluctance Motor. , 2020, , .		7
28	Investigation of a Combined Electro Magnetic Structure of Bearingless Motor and Magnetic Gear. , 2020, , .		3
29	Proposal of Magnetic Geared Motor with Bearingless High-Speed Rotor. , 2020, , .		3
30	Design and Analysis of a Bearingless Motor with Passive Axial Suspension Through Null-Flux Coils. , 2019, , .		5
31	Current Reference Selection for Acoustic Noise Reduction in Two Switched Reluctance Motors by Flattening Radial Force Sum. IEEE Transactions on Industry Applications, 2019, 55, 3617-3629.	4.9	21
32	Analytical and Experimental Verification of Novel Current Waveforms for Noise Reduction in Switched Reluctance Motor. , 2019, , .		12
33	Parameter Identification of Current–Force Factor and Torque Constant in Single-Drive Bearingless Motors With Back EMF. IEEE Transactions on Industry Applications, 2019, 55, 4754-4761.	4.9	12
34	Combined Winding Structure of a Consequent-Pole Bearingless Motor with Parallel Motor Winding Topology. , 2019, , .		3
35	Vibration Control for a Rotor Supported by Oil-Film Bearings Using a Bearingless Motor. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1368-1375.	5.8	12
36	Radial-Force-Based Swirling Actuator with Surface-Permanent-Magnet Structure for Low-Speed High-Torque Applications. , 2019, , .		1

#	Article	IF	CITATIONS
37	Improved Current Profile for Noise Reduction of Switched Reluctance Motor at Middle Speed. , 2019, ,		9
38	Design of a Miniaturized Single-Drive Bearingless Motor. , 2019, , .		0
39	Acoustic Noise Reduction of a High-Efficiency Switched Reluctance Motor for Hybrid Electric Vehicles With Novel Current Waveform. IEEE Transactions on Industry Applications, 2019, 55, 2519-2528.	4.9	71
40	Positioning Accuracy Improvement for a Magnetically Levitated System Using Zero-Sequence Current of a Permanent Magnet Motor. IEEJ Transactions on Industry Applications, 2019, 139, 322-329.	0.2	3
41	Current Waveform for Noise Reduction of a Switched Reluctance Motor Under Magnetically Saturated Condition. IEEE Transactions on Industry Applications, 2018, 54, 213-222.	4.9	43
42	Experimental Evaluation for Core Loss Reduction of a Consequent-Pole Bearingless Disk Motor Using Soft Magnetic Composites. IEEE Transactions on Energy Conversion, 2018, 33, 324-332.	5.2	9
43	Axial Vibration Suppression by Field Flux Regulation in Two-Axis Actively Positioned Permanent Magnet Bearingless Motors With Axial Position Estimation. IEEE Transactions on Industry Applications, 2018, 54, 1264-1272.	4.9	21
44	Design Optimization of Permanent Magnet Bearingless Motor Using Differential Evolution. , 2018, , .		6
45	Parameter Identifications of Current-Force Factor and Torque Constant in Single-Drive Bearingless Motors. , 2018, , .		2
46	Development of a Homo-Polar Bearingless Motor with Concentrated Winding for High Speed Applications. , 2018, , .		6
47	Principle of a Radial-Foree-Based Electromagnetic Swirling Actuator for Low-Speed Applications. , 2018, , .		2
48	Design of Switched Reluctance Generator for Competitive Energy Efficiency in the Latest Hybrid Electric Vehicle. , 2018, , .		7
49	Design of High Power Density Motor for EV Applications. , 2018, , .		3
50	Torque Density Improvement of a One Axis Actively Positioned Single-Drive Bearingless Motor. , 2018, , .		7
51	Experimental Results Passing Through Critical Speeds of Radial and Tilting Motions in a One-Axis Actively Positioned Single-Drive Bearingless Motor. , 2018, , .		1
52	Asymmetrical Combined Winding Arrangement for a Four-Phase Bearingless Motor. , 2018, , .		2
53	Simultaneous Torque and Radial Force Ripple Control for Reduction of Acoustic Noise and Vibration in Switch Reluctance Machines. , 2018, , .		15
54	Balance Control of Split Capacitor Potential for Magnetically Levitated Motor System Using Zero-Phase Current. , 2018, , .		6

4

#	Article	IF	CITATIONS
55	Analysis and Design of a Disk Shaped One-Axis Actively Positioned Single-Drive Bearingless Motor with High Torque Density. Nihon AEM Gakkaishi, 2018, 26, 205-211.	0.1	0
56	Combination of Oil Film Bearing and Bearingless Motor for High Load Capacity and Stable Rotation. , 2018, , .		0
57	A Fast Calculation Method of Optimal Ratio of Outer Diameter and Axial Length for Torque Improvement in Switched Reluctance Motor. IEEE Transactions on Industry Applications, 2018, 54, 5802-5811.	4.9	14
58	Radial excitation force generated by permanent magnet motor using d-axis current injection. , 2018, , .		0
59	Simple Driving Method for a 2-DOF Controlled Bearingless Motor Using One Three-Phase Inverter. IEEE Transactions on Industry Applications, 2018, 54, 4365-4376.	4.9	10
60	Acoustic noise reduction of a high efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform. , 2017, , .		9
61	Design of a high-speed single-drive bearingless motor. , 2017, , .		6
62	Investigation of integrated winding configuration for a two-DOF controlled bearingless PM motor using one three-phase inverter. , 2017, , .		8
63	A Novel Stator Structure for Active Axial Force Improvement in a One-Axis Actively Positioned Single-Drive Bearingless Motor. IEEE Transactions on Industry Applications, 2017, 53, 4414-4421.	4.9	26
64	Suppression of self-excited vibration caused by oil film bearing using bearingless motor. , 2017, , .		4
65	Comparison of current waveforms for noise reduction in switched reluctance motors. , 2017, , .		12
66	Current injection solutions for active suspension in bearingless motors. , 2017, , .		8
67	Performance improvement of a bearingless motor by rotation about an estimated center of inertia. , 2017, , .		5
68	Design of a novel disk-shaped single-drive bearingless motor with high torque density. , 2017, , .		0
69	Principle and Test Results of Energy-Saving Effect of a Single-Drive Bearingless Motor in Cooling Fan Applications. IEEJ Journal of Industry Applications, 2017, 6, 456-462.	1.1	24
70	Ripple compensation of suspension force and torque in a bearingless SPM motor with integrated winding. , 2017, , .		4
71	Design of 6-slot inset PM bearingless motor for high-speed and higher than 100kW applications. , 2017, ,		16

72 Improving of bearingless 6-slot IPM motor radial force characteristics using rotor skew. , 2017, , .

#	Article	IF	CITATIONS
73	Efficiency Improvement of SR Motor. Journal of the Institute of Electrical Engineers of Japan, 2017, 137, 821-824.	0.0	0
74	A novel simplified structure for single-drive bearingless motor. , 2016, , .		4
75	Reduction in torque and suspension force ripples of an axial-gap single-drive bearingless motor. , 2016, , .		2
76	Suspension loss measurement and its reduction in single-drive bearingless motor. , 2016, , .		3
77	Optimal winding arrangement of a surface-mounted permanent magnet motor for torque ripple reduction. , 2016, , .		0
78	Current waveform for noise reduction of switched reluctance motor in magnetically saturated condition. , 2016, , .		9
79	Effect of Compressive Stress on Iron Loss of Gradient Si Steel Sheet. Electronics and Communications in Japan, 2016, 99, 74-83.	0.5	5
80	Noise Reduction of Switched Reluctance Motor With High Number of Poles by Novel Simplified Current Waveform at Low Speed and Low Torque Region. IEEE Transactions on Industry Applications, 2016, 52, 3013-3021.	4.9	41
81	An optimal ratio of outer diameter and axial length for torque improvement in switched reluctance motor. , 2016, , .		2
82	Axial vibration suppression by field flux regulation in two-axis actively positioned permanent magnet bearingless motors with axial position estimation. , 2016, , .		6
83	Simple driving method for a two-DOF controlled bearingless motor using one three-phase inverter. , 2016, , .		4
84	A Vibration Reduction Method of One-Axis Actively Position Regulated Single-Drive Bearingless Motor With Repulsive Passive Magnetic Bearings. IEEE Transactions on Industry Applications, 2016, 52, 181-188.	4.9	11
85	Acoustic Noise Reduction of Switched Reluctance Motor With Reduced RMS Current and Enhanced Efficiency. IEEE Transactions on Energy Conversion, 2016, 31, 627-636.	5.2	61
86	Cylindrical Rotor Design for Acoustic Noise and Windage Loss Reduction in Switched Reluctance Motor for HEV Applications. IEEE Transactions on Industry Applications, 2016, 52, 154-162.	4.9	82
87	Magnetic Bearing and Bearingless Motor. Journal of the Institute of Electrical Engineers of Japan, 2016, 136, 301-304.	0.0	0
88	Novel control method for magnetic suspension and motor drive with one three-phase voltage source inverter using zero-phase current. Mechanical Engineering Journal, 2015, 2, 15-00116-15-00116.	0.4	6
89	Suspension performance of a two-DOF actively positioned consequent-pole bearingless motor with a wide magnetic gap. , 2015, , .		3
90	Axial Vibration Suppression in Two-Axis Actively Regulated Bearingless Motor. Nihon AEM Gakkaishi, 2015, 23, 199-205.	0.1	2

#	Article	IF	CITATIONS
91	Structure and Principle in a Novel compact One-Axis Actively Positioned Single-Drive Bearingless Motor. Nihon AEM Gakkaishi, 2015, 23, 48-54.	0.1	Ο
92	Design consideration of the offset of the cylindrical shape rotor switched reluctance motor for hybrid electric vehicles. , 2015, , .		4
93	Fold Angle of Winding Arrangement in Single-Drive Bearingless Motor with Radial Gap. IEEJ Journal of Industry Applications, 2015, 4, 395-401.	1.1	1
94	Noise and vibration reduction of switched reluctance motor with novel simplified current waveform to reduce force sum variation. , 2015, , .		16
95	Suspension force investigation for consequent-pole and surface-mounted permanent magnet bearingless motors with concentrated winding. , 2015, , .		8
96	A relationship of radial force sum and current waveforms in switched reluctance motor for noise reduction. , 2015, , .		12
97	Low speed test in two-axis actively positioned bearingless machines with non-collocated structure for wind power applications. , 2015, , .		1
98	A novel stator structure with soft magnetic composite in one-axis actively positioned single-drive bearingless motor. , 2015, , .		9
99	Energy Efficiency of SR and IPM Generators for Hybrid Electric Vehicle. IEEE Transactions on Industry Applications, 2015, 51, 2874-2883.	4.9	31
100	Development of a Rare-Earth-Free SR Motor With High Torque Density for Hybrid Vehicles. IEEE Transactions on Energy Conversion, 2015, 30, 175-182.	5.2	190
101	Principle of a Novel Single-Drive Bearingless Motor With Cylindrical Radial Gap. IEEE Transactions on Industry Applications, 2015, 51, 3696-3706.	4.9	51
102	Acoustic Noise and Vibration Reduction of SRM by Elimination of Third Harmonic Component in Sum of Radial Forces. IEEE Transactions on Energy Conversion, 2015, 30, 883-891.	5.2	207
103	Review of research and development of switched reluctance motor for hybrid electrical vehicle. , 2015, , .		28
104	Position Sensorless Vector Control Method for IPMSM Drives based on Vector Trajectory of Current Estimation Error. IEEJ Transactions on Industry Applications, 2015, 135, 586-595.	0.2	1
105	Design of SPM and IPM rotors in novel one-axis actively positioned single-drive bearingless motor. , 2014, , .		13
106	Vibration reduction of one-axis actively position regulated single-drive bearingless motor with repulsive passive magnetic bearings. , 2014, , .		0
107	Development of a one-axis actively regulated bearingless motor with a repulsive type passive magnetic bearing. , 2014, , .		43
108	Development of a Compact Centrifugal Pump With a Two-Axis Actively Positioned Consequent-Pole Bearingless Motor. IEEE Transactions on Industry Applications, 2014, 50, 288-295.	4.9	67

AKIRA CHIBA

#	Article	IF	CITATIONS
109	Stability Consideration of Magnetic Suspension in Two-Axis Actively Positioned Bearingless Motor With Collocation Problem. IEEE Transactions on Industry Applications, 2014, 50, 338-345.	4.9	15
110	Pole selection and vibration reduction of Switched Reluctance Motor for hybrid electric vehicles. , 2014, , .		7
111	Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications. , 2014, , .		10
112	Winding arrangement in single-drive bearingless motor with radial gap. , 2014, , .		4
113	Comparison of Test Result and Design Stage Prediction of Switched Reluctance Motor Competitive With 60-kW Rare-Earth PM Motor. IEEE Transactions on Industrial Electronics, 2014, 61, 5712-5721.	7.9	116
114	Estimation and comparison of the windage loss of a 60 kW Switched Reluctance Motor for hybrid electric vehicles. , 2014, , .		21
115	Comparing Electric Motors: An Analysis Using Four Standard Driving Schedules. IEEE Industry Applications Magazine, 2014, 20, 12-20.	0.4	41
116	Comparison of the Test Result and 3D-FEM Analysis at the Knee Point of a 60 kW SRM for a HEV. IEEE Transactions on Magnetics, 2013, 49, 2291-2294.	2.1	120
117	Design of Homopolar Consequent-Pole Bearingless Motor With Wide Magnetic Gap. IEEE Transactions on Magnetics, 2013, 49, 2315-2318.	2.1	19
118	Suspension Performance of a Two-Axis Actively Regulated Consequent-Pole Bearingless Motor. IEEE Transactions on Energy Conversion, 2013, 28, 894-901.	5.2	15
119	A Novel Parallel Motor Winding Structure for Bearingless Motors. IEEE Transactions on Magnetics, 2013, 49, 2287-2290.	2.1	52
120	Proposal and Analysis of a Novel Single-Drive Bearingless Motor. IEEE Transactions on Industrial Electronics, 2013, 60, 129-138.	7.9	123
121	Design and test result of novel single-drive bearingless motor with cylindrical radial gap. , 2013, , .		8
122	A two-axis actively regulated consequent-pole bearingless motor with wide magnetic gaps. , 2013, , .		1
123	Energy efficiency comparison of SR and IPM generators for hybrid electric vehicle. , 2013, , .		5
124	A principle and test results of a novel bearingless motor with motor parallel winding structure. , 2013, , .		7
125	Investigation of permanent magnet magnetization for a bearingless servomotor. , 2013, , .		1
126	Influence of Rotor Skew in Induction Type Bearingless Motor. IEEE Transactions on Magnetics, 2012, 48, 4646-4649.	2.1	35

#	Article	IF	CITATIONS
127	Basic performance of two-axis actively positioned bearingless disk motor. , 2012, , .		2
128	Stability consideration of magnetic suspension in two-axis actively positioned bearingless motor with collocation problem. , 2012, , .		0
129	Performance investigation of a centrifugal pump with a consequent-pole bearingless motor. , 2012, , .		6
130	A PWM Harmonics Elimination Method in Simultaneous Estimation of Magnetic Field and Displacements in Bearingless Induction Motors. IEEE Transactions on Industry Applications, 2012, 48, 124-131.	4.9	52
131	Test Results and Torque Improvement of the 50-kW Switched Reluctance Motor Designed for Hybrid Electric Vehicles. IEEE Transactions on Industry Applications, 2012, 48, 1327-1334.	4.9	195
132	Design of Switched Reluctance Motor Competitive to 60-kW IPMSM in Third-Generation Hybrid Electric Vehicle. IEEE Transactions on Industry Applications, 2012, 48, 2303-2309.	4.9	207
133	Test results of high torque and high efficiency SRMs designed for 50kW Hybrid Electric Vehicle. , 2012, , .		1
134	Comparison of energy consumption of SRM and IPMSM in automotive driving schedules. , 2012, , .		23
135	Characteristic measurements of switched reluctance motor on prototype electric vehicle. , 2012, , .		10
136	Reduction of force interference and performance improvement of a consequent-pole bearingless motor. Precision Engineering, 2012, 36, 10-18.	3.4	34
137	Suspension Characteristics of Multi-Consequent-Pole Bearingless Motor with Toroidal Windings. IEEJ Transactions on Industry Applications, 2012, 132, 1112-1120.	0.2	1
138	533 Analysis of Wide-Gap Bearingless Motor. The Proceedings of the Dynamics & Design Conference, 2012, 2012, _533-1533-10	0.0	0
139	Effects of Permanent-Magnet Passive Magnetic Bearing on a Two-Axis Actively Regulated Low-Speed Bearingless Motor. IEEE Transactions on Energy Conversion, 2011, 26, 46-54.	5.2	46
140	A test result of a 50kW switched reluctance motor designed for a Hybrid Electric Vehicle. , 2011, , .		6
141	Design of switched reluctance motor competitive to 60 kW IPMSM in third generation hybrid electric vehicle. , 2011, , .		13
142	Power and efficiency measurements and design improvement of a 50kW switched reluctance motor for Hybrid Electric Vehicles. , 2011, , .		15
143	Torque Density and Efficiency Improvements of a Switched Reluctance Motor Without Rare-Earth Material for Hybrid Vehicles. IEEE Transactions on Industry Applications, 2011, 47, 1240-1246.	4.9	233
144	A Novel Middle-Point-Current-Injection-Type Bearingless PM Synchronous Motor for Vibration Suppression. IEEE Transactions on Industry Applications, 2011, 47, 1700-1706.	4.9	65

#	Article	IF	CITATIONS
145	Evaluation of Magnetic Suspension Performance in a Multi-Consequent-Pole Bearingless Motor. IEEE Transactions on Magnetics, 2011, 47, 4262-4265.	2.1	17
146	A novel concept of a single-drive bearingless motor. , 2011, , .		12
147	A PWM harmonics elimination method in simultaneous estimation of magnetic field and displacements in bearingless induction motors. , 2011, , .		2
148	Fundamental characteristics of a ferrite permanent magnet axial gap motor with segmented rotor structure for the hybrid electric vehicle. , 2011, , .		34
149	Operating area of a Switched Reluctance Motor with continuous current operation. , 2010, , .		13
150	A ferrite permanent magnet axial gap motor with segmented rotor structure for the next generation hybrid vehicle. , 2010, , .		45
151	Design and analysis of a switched reluctance motor for next generation hybrid vehicle without PM materials. , 2010, , .		43
152	Torque density and efficiency improvements of a Switched Reluctance Motor without rare earth material for hybrid vehicles. , 2010, , .		37
153	Evaluation of a Bearingless PM Motor With Wide Magnetic Gaps. IEEE Transactions on Energy Conversion, 2010, 25, 957-964.	5.2	46
154	A novel middle-point current-injection type bearingless motor for vibration suppression. , 2010, , .		2
155	A novel design of a thrust magnetic bearing with a cylindrical-shaped rotor. , 2009, , .		4
156	Experimental evaluation of magnetic suspension characteristics in a 5-axis active control type bearingless motor without a thrust disk for wide-gap condition. , 2009, , .		25
157	Efficiency Improvements of Switched Reluctance Motors With High-Quality Iron Steel and Enhanced Conductor Slot Fill. IEEE Transactions on Energy Conversion, 2009, 24, 819-825.	5.2	53
158	Rotational characteristics of a bearingless motor with passive magnetic bearings. , 2009, , .		3
159	Stator design of a multi-consequent-pole bearingless motor with toroidal winding. , 2009, , .		6
160	Design and Basic Characteristics of Multi-Consequent-Pole Bearingless Motor With Bi-Tooth Main Poles. IEEE Transactions on Magnetics, 2009, 45, 2791-2794.	2.1	17
161	Suspension Characteristics Measurement of a Bearingless Motor. IEEE Transactions on Magnetics, 2009, 45, 2795-2798.	2.1	13
162	Voltage Characteristics of a Consequent-Pole Bearingless PM Motor With Concentrated Windings. IEEE Transactions on Magnetics, 2009, 45, 2823-2826.	2.1	31

#	Article	lF	CITATIONS
163	Behavior of a Novel Thrust Magnetic Bearing With a Cylindrical Rotor on High Speed Rotation. IEEE Transactions on Magnetics, 2009, 45, 4617-4620.	2.1	33
164	A design consideration of a novel bearingless disk motor for artificial hearts. , 2009, , .		34
165	Outer Rotor Consequent-Pole Bearingless Motor With Improved Start-Up Characteristics. IEEE Transactions on Magnetics, 2008, 44, 4273-4276.	2.1	21
166	Test Results of an SRM Made From a Layered Block of Heat-Treated Amorphous Alloys. IEEE Transactions on Industry Applications, 2008, 44, 699-706.	4.9	36
167	Vibration Suppression of a Flexible Shaft With a Simplified Bearingless Induction Motor Drive. IEEE Transactions on Industry Applications, 2008, 44, 745-752.	4.9	36
168	An Improved Rotor Resistance Identification Method for Magnetic Field Regulation in Bearingless Induction Motor Drives. IEEE Transactions on Industrial Electronics, 2008, 55, 852-860.	7.9	22
169	Suspension characteristics of a consequent-pole type bearingless PM motor with wide magnetic gaps. , 2008, , .		10
170	Basic Characteristics of an Active Thrust Magnetic Bearing With a Cylindrical Rotor Core. IEEE Transactions on Magnetics, 2008, 44, 4167-4170.	2.1	50
171	Efficiency Comparison of Switched Reluctance Motors with Low Loss Materials. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	7
172	Total Efficiency of a Deeply Buried Permanent Magnet Type Bearingless Motor Equipped with 2-pole Motor Windings and 4-pole Suspension Windings. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	12
173	Basic Characteristic of the Multi-Consequent-Pole Bearingless Motor. , 2007, , .		11
174	Winding Design and Characteristic of a Consequent-Pole Type Bearingless Motor with 4-Axis Active Magnetic Suspension. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2007, , .	0.0	4
175	A Novel Magnetic Suspension-Force Compensation in Bearingless Induction-Motor Drive With Squirrel-Cage Rotor. IEEE Transactions on Industry Applications, 2007, 43, 66-76.	4.9	40
176	A simplified variable speed switched reluctance motor drive without using encoder. , 2007, , .		0
177	A design of 15 kW switched reluctance motor for electric vehicle applications. , 2007, , .		13
178	An initial rotor position estimation method for switched reluctance motor without using machine parameter. , 2007, , .		1
179	Vibration Suppression of a Flexible Shaft with a Simplified Bearingless Induction Motor Drive. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	7
180	Development of High Efficiency Switched Reluctance Motor. IEEJ Transactions on Industry Applications, 2006, 126, 511-518.	0.2	9

#	ARTICLE	IF	CITATIONS
181	Identification Methods of Radial Force Parameters for Salient-pole Permanent Magnet Synchronous Bearingless Motors. IEEJ Transactions on Industry Applications, 2004, 124, 784-791.	0.2	1
182	Torque and Suspension Force in a Bearingless Switched Reluctance Motor. IEEJ Transactions on Industry Applications, 2004, 124, 556-565.	0.2	1
183	A Possible Output Area of Torque and Suspension Force in a Switched Reluctance Type Bearingless Motor with One Phase Excitation. IEEJ Transactions on Industry Applications, 2004, 124, 683-692.	0.2	0
184	A Principle and Winding Design of Consequent-Pole Bearingless Motors. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2003, 46, 363-369.	0.3	13
185	An Egg-shaped Diagram and its Discrepancies in Switched Reluctance Machines IEEJ Transactions on Industry Applications, 2003, 123, 82-89.	0.2	1
186	An Analysis of Radial Forces and a Rotor Position Control Method of Reluctance Type Bearingless Motors. IEEJ Transactions on Industry Applications, 1997, 117, 1123-1131.	0.2	8
187	Analysis and characteristics of a permanent magnetâ€ŧype bearingless motor. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1996, 117, 95-108.	0.4	0
188	An Analysis and Characteristics of a Permanent Magnet Type Bearingless Motor IEEJ Transactions on Industry Applications, 1995, 115, 1131-1139.	0.2	4
189	Analysis of No-Load Characteristics of a Bearingless Induction Motor. IEEE Transactions on Industry Applications, 1995, 31, 77-83.	4.9	23
190	A closed loop control of super high speed reluctance motor IEEJ Transactions on Industry Applications, 1987, 107, 271-278.	0.2	0
191	A control method of super high speed reluctance motor for quick torque response IEEJ Transactions on Industry Applications, 1987, 107, 1229-1235.	0.2	4
192	Operation limit of a high frequency power source using cycloconverter and its characteristics on commercial line side IEEJ Transactions on Power and Energy, 1986, 106, 571-578.	0.2	2