
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25294/publications.pdf Version: 2024-02-01

HIDICH CÃ1/1DENER

#	Article	IF	CITATIONS
1	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	5.9	22
2	Genetically determined intelligence and coronary artery disease risk. Clinical Research in Cardiology, 2021, 110, 211-219.	3.3	19
3	Genome sequencing, annotation and exploration of the SO2-tolerant non-conventional yeast Saccharomycodes ludwigii. BMC Genomics, 2021, 22, 131.	2.8	5
4	Identification and Functional Characterization of the Gene Cluster Responsible for Fusaproliferin Biosynthesis in Fusarium proliferatum. Toxins, 2021, 13, 468.	3.4	8
5	Vascular Tissue Specific miRNA Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery Disease. Biomolecules, 2021, 11, 1683.	4.0	14
6	Polygenic risk for coronary artery disease in the Scottish and English population. BMC Cardiovascular Disorders, 2021, 21, 586.	1.7	6
7	Functional investigation of the coronary artery disease gene SVEP1. Basic Research in Cardiology, 2020, 115, 67.	5.9	25
8	Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology, 2020, 21, 1070-1087.	4.2	33
9	Two Is Better Than One: Studying <i>Ustilago bromivora</i> – <i>Brachypodium</i> Compatibility by Using a Hybrid Pathogen. Molecular Plant-Microbe Interactions, 2019, 32, 1623-1634.	2.6	3
10	Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. Frontiers in Plant Science, 2019, 10, 1072.	3.6	9
11	Genome sequence of the non-conventional wine yeast <i>Hanseniaspora guilliermondii</i> UTAD222 unveils relevant traits of this species and of the <i>Hanseniaspora</i> genus in the context of wine fermentation. DNA Research, 2019, 26, 67-83.	3.4	48
12	The â€~PhenoBox', a flexible, automated, openâ€source plant phenotyping solution. New Phytologist, 2018, 219, 808-823.	7.3	44
13	Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 2018, 102, 279-295.	3.6	39
14	Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata. FEMS Yeast Research, 2018, 18, .	2.3	28
15	Elucidation of the Two H3K36me3 Histone Methyltransferases Set2 and Ash1 in <i>Fusarium fujikuroi</i> Unravels Their Different Chromosomal Targets and a Major Impact of Ash1 on Genome Stability. Genetics, 2018, 208, 153-171.	2.9	61
16	Genome Sequence of the Wine Yeast Saccharomycodes ludwigii UTAD17. Microbiology Resource Announcements, 2018, 7, .	0.6	5
17	A New Reference Genome Shows the One-Speed Genome Structure of the Barley Pathogen <i>Ramularia collo-cygni</i> . Genome Biology and Evolution, 2018, 10, 3243-3249.	2.5	30
18	Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiationâ€specific transcription factor gene <i>ABA1</i> in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2018, 20, 3343-3362.	3.8	38

#	Article	IF	CITATIONS
19	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	3.6	30
20	Genome Sequence of the Nonconventional Wine Yeast Hanseniaspora guilliermondii UTAD222. Genome Announcements, 2017, 5, .	0.8	9
21	Genome sequence of the highly weak-acid-tolerant Zygosaccharomyces bailii IST302, amenable to genetic manipulations and physiological studies. FEMS Yeast Research, 2017, 17, .	2.3	20
22	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	7.8	145
23	High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in the root rot pathogen Armillaria ostoyae. Fungal Genetics and Biology, 2017, 108, 44-54.	2.1	7
24	The GATA-Type Transcription Factor Csm1 Regulates Conidiation and Secondary Metabolism in Fusarium fujikuroi. Frontiers in Microbiology, 2017, 8, 1175.	3.5	35
25	Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathogens, 2017, 13, e1006670.	4.7	58
26	Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS ONE, 2017, 12, e0176194.	2.5	35
27	A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. ELife, 2016, 5, .	6.0	49
28	Comparison of Fusarium graminearum Transcriptomes on Living or Dead Wheat Differentiates Substrate-Responsive and Defense-Responsive Genes. Frontiers in Microbiology, 2016, 7, 1113.	3.5	48
29	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	2.5	124
30	Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics, 2016, 17, 953.	2.8	33
31	Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics, 2016, 17, 1015.	2.8	54
32	A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Genome Biology and Evolution, 2016, 8, 681-704.	2.5	125
33	Fusarium Mycotoxins and Their Role in Plant–Pathogen Interactions. Fungal Biology, 2015, , 199-233.	0.6	13
34	The global regulator <scp>FfSge</scp> 1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in <scp><i>F</i></scp> <i>usarium fujikuroi</i> . Environmental Microbiology, 2015, 17, 2690-2708.	3.8	26
35	The Genome Sequence of the Highly Acetic Acid-Tolerant Zygosaccharomyces bailii-Derived Interspecies Hybrid Strain ISA1307, Isolated From a Sparkling Wine Plant. DNA Research, 2014, 21, 299-313.	3.4	62
36	The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer. PLoS ONE, 2014, 9, e110311.	2.5	124

#	Article	IF	CITATIONS
37	Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway. Chemistry and Biology, 2013, 20, 1055-1066.	6.0	107
38	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	4.7	406
39	Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323.	3.5	344
40	Genome Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species-Specific Presence of Transposable Elements. Plant Cell, 2012, 24, 1733-1745.	6.6	159
41	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
42	Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica. PLoS Pathogens, 2011, 7, e1002290.	4.7	361
43	FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Research, 2011, 39, D637-D639.	14.5	81
44	Transcriptome analysis of nitrate assimilation in <i>Aspergillus nidulans</i> reveals connections to nitric oxide metabolism. Molecular Microbiology, 2010, 78, 720-738.	2.5	78
45	Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison. Science, 2010, 330, 1546-1548.	12.6	301
46	PEDANT covers all complete RefSeq genomes. Nucleic Acids Research, 2009, 37, D408-D411.	14.5	97
47	Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genetics and Biology, 2008, 45, 389-399.	2.1	180
48	Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium) Tj ETQq0 0 0 rgB 44, 1146-1156.	T /Overloc 2.1	k 10 Tf 50 3 103
49	The <i>Fusarium graminearum</i> Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization. Science, 2007, 317, 1400-1402.	12.6	837
50	Gene Disruption in the Budding Yeast <i> Saccharomyces cerevisiae</i> . , 2006, 313, 129-144.		28
51	Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genetics and Biology, 2006, 43, 316-325.	2.1	164
52	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	27.8	1,113
53	FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. Nucleic Acids Research, 2006, 34, D456-D458.	14.5	77
54	MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research, 2006, 34, D436-D441.	14.5	305

#	Article	IF	CITATIONS
55	The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 5539-5545.	14.5	988
56	Characterization of the Saccharomyces cerevisiae Fol1 Protein: Starvation for C1 Carrier Induces Pseudohyphal Growth. Molecular Biology of the Cell, 2004, 15, 3811-3828.	2.1	39
57	MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 41D-44.	14.5	522
58	CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Research, 2004, 33, D364-D368.	14.5	288
59	Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Research, 2003, 31, 1121-1135.	14.5	118
60	A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 2002, 30, 23e-23.	14.5	855
61	MIPS: a database for genomes and protein sequences. Nucleic Acids Research, 2002, 30, 31-34.	14.5	724
62	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
63	Molecular Analysis of the Saccharomyces cerevisiae YHR076w Gene. IUBMB Life, 2000, 50, 371-377.	3.4	9
64	Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Molecular Genetics and Genomics, 1999, 262, 683-702.	2.4	143
65	A fast method to diagnose chromosome and plasmid loss inSaccharomyces cerevisiae strains. , 1999, 15, 1009-1019.		19
66	Systematic analysis ofS. cerevisiae chromosome VIII genes. Yeast, 1999, 15, 1775-1796.	1.7	42
67	The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature, 1997, 387, 93-98.	27.8	65
68	Sequence Analysis of the 33 kb Long Region BetweenORC5 andSUI1 from the Left Arm of Chromosome XIV fromSaccharomyces cerevisiae. , 1997, 13, 849-860.		9
69	A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Research, 1996, 24, 2519-2524.	14.5	1,512