
Shouji Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2528648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct and Efficient Production of Ethanol from Cellulosic Material with a Yeast Strain Displaying Cellulolytic Enzymes. Applied and Environmental Microbiology, 2002, 68, 5136-5141.	3.1	215
2	Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 1998, 86, 164-168.	0.9	63
3	Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 307-314.	1.6	53
4	N-Methyl-d-glutamate and N-methyl-l-glutamate in Scapharca broughtonii (Mollusca) and other invertebrates. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 79-87.	1.6	50
5	Isolation and Identification of Persistent Chlorinated Organophosphorus Flame Retardant-Degrading Bacteria. Applied and Environmental Microbiology, 2010, 76, 5292-5296.	3.1	40
6	Bacterial d-amino acid oxidases: Recent findings and future perspectives. Bioengineered, 2015, 6, 237-241.	3.2	37
7	Cloning and Expression of the Pyridoxal 5′-Phosphate–Dependent Aspartate Racemase Gene from the Bivalve Mollusk Scapharca broughtonii and Characterization of the Recombinant Enzyme. Journal of Biochemistry, 2006, 139, 235-244.	1.7	36
8	Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 113-124.	1.8	33
9	Enrichment and characterization of chlorinated organophosphate ester-degrading mixed bacterial cultures. Journal of Bioscience and Bioengineering, 2008, 106, 27-32.	2.2	33
10	Haloalkylphosphorus Hydrolases Purified from Sphingomonas sp. Strain TDK1 and Sphingobium sp. Strain TCM1. Applied and Environmental Microbiology, 2014, 80, 5866-5873.	3.1	33
11	A Highly Stable <scp>d</scp> -Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus. Applied and Environmental Microbiology, 2014, 80, 7219-7229.	3.1	31
12	Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Applied Microbiology and Biotechnology, 2017, 101, 2153-2162.	3.6	31
13	Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 167-173.	1.8	25
14	Cloning and Expression in Escherichia coli of the D-Aspartate Oxidase Gene from the Yeast Cryptococcus humicola and Characterization of the Recombinant Enzyme. Journal of Biochemistry, 2004, 135, 533-540.	1.7	25
15	Occurrence of N-methyl-l-aspartate in bivalves and its distribution compared with that of N-methyl-d-aspartate and d,l-aspartate. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 130, 493-500.	1.6	23
16	Physiological role ofD-aspartate oxidase in the assimilation and detoxification ofD-aspartate in the yeastCryptococcus humicola. Yeast, 2005, 22, 1203-1212.	1.7	20
17	Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. Applied Biochemistry and Microbiology, 2014, 50, 624-628.	0.9	18
18	Nucleotides modulate the activity of aspartate racemase of Scapharca broughtonii. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 713-719.	1.6	15

Shouji Таканазні

#	Article	IF	CITATIONS
19	Cloning and expression of carp acetylcholinesterase gene in Pichia pastoris and characterization of the recombinant enzyme. Protein Expression and Purification, 2009, 64, 205-212.	1.3	15
20	Complete detoxification of tris(2-chloroethyl) phosphate by two bacterial strains: Sphingobium sp. strain TCM1 and Xanthobacter autotrophicus strain GJ10. Journal of Bioscience and Bioengineering, 2012, 114, 306-311.	2.2	15
21	Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 143-149.	1.8	14
22	Complete detoxification of tris(1,3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1. Journal of Bioscience and Bioengineering, 2012, 113, 79-83.	2.2	14
23	D-Amino acid oxidase of Streptomyces coelicolor and the effect of D-amino acids on the bacterium. Annals of Microbiology, 2014, 64, 1167-1177.	2.6	14
24	An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1. Scientific Reports, 2017, 7, 2842.	3.3	14
25	A novel thermostable d-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA. Scientific Reports, 2019, 9, 11948.	3.3	14
26	d-Aspartate oxidase: distribution, functions, properties, and biotechnological applications. Applied Microbiology and Biotechnology, 2020, 104, 2883-2895.	3.6	12
27	Characterization and improvement of substrate-binding affinity of d-aspartate oxidase of the thermophilic fungus Thermomyces dupontii. Applied Microbiology and Biotechnology, 2019, 103, 4053-4064.	3.6	11
28	Occurrence and functions of freeD-aspartate and its metabolizing enzymes. Chemical Record, 2006, 6, 259-266.	5.8	8
29	Draft Genome Sequences of <i>Sphingobium</i> sp. Strain TCM1 and <i>Sphingomonas</i> sp. Strain TDK1, Haloalkyl Phosphate Flame Retardant- and Plasticizer-Degrading Bacteria. Genome Announcements, 2016, 4, .	0.8	8
30	Determination of d-aspartate N-methyltransferase activity in the starfish by direct analysis of N-methyl-d-aspartate with high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3229-3234.	2.3	7
31	Development of an autonomously replicating linear vector of the yeast Cryptococcus humicola by using telomere-like sequence repeats. Applied Microbiology and Biotechnology, 2011, 89, 1213-1221.	3.6	7
32	d-Amino Acid-Induced Expression of d-Amino Acid Oxidase in the Yeast Schizosaccharomyces pombe. Current Microbiology, 2012, 65, 764-769.	2.2	7
33	Effect of the truncation of the C-terminal region of Kex2 endoprotease on processing of the recombinant Rhizopus oryzae lipase precursor in the co-expression system in yeast. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 233-240.	1.8	6
34	Isolation of the Cryptococcus humicolus URA3 gene encoding orotidine-5′-phosphate decarboxylase and its use as a selective marker for transformation. Journal of Bioscience and Bioengineering, 2003, 96, 23-31.	2.2	6
35	Microbial Degradation of Persistent Organophosphorus Flame Retardants. , 0, , .		6
36	An active-site mutation enhances the catalytic activity of the yeast Cryptococcus humicola d-aspartate oxidase. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 235-240.	1.8	5

Shouji Таканазні

#	Article	IF	CITATIONS
37	Possible role of a histidine residue in the substrate specificity of yeast d-aspartate oxidase. Journal of Biochemistry, 2015, 159, mvv108.	1.7	5
38	Draft Genome Sequence of the Yeast Vanrija humicola (Formerly Cryptococcus humicola) Strain UJ1, a Producer of <scp>d</scp> -Aspartate Oxidase. Genome Announcements, 2018, 6, .	0.8	5
39	Development of an enzymatic screening method for d-aspartate-producing lactic acid bacteria. Enzyme and Microbial Technology, 2021, 149, 109835.	3.2	5
40	Crystal structure of a pyridoxal 5′-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 651-656.	0.8	4
41	d-Aspartate N-methyltransferase catalyzes biosynthesis of N-methyl-d-aspartate (NMDA), a well-known selective agonist of the NMDA receptor, in mice. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140527.	2.3	4
42	X-ray structure analysis of a unique <scp>D</scp> -amino-acid oxidase from the thermophilic fungus <i>Rasamsonia emersonii</i> strain YA. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 517-523.	0.8	4
43	Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Bioscience, Biotechnology and Biochemistry, 2020, 84, 95-102.	1.3	3
44	Enzymatic characterization and regulation of gene expression of PhoK alkaline phosphatase in Sphingobium sp. strain TCM1. Applied Microbiology and Biotechnology, 2020, 104, 1125-1134.	3.6	3
45	Identification of an Acidic Amino Acid Permease Involved in d-Aspartate Uptake in the Yeast Cryptococcus humicola. Microorganisms, 2021, 9, 192.	3.6	2
46	Liquid chromatography-electrospray ionization-tandem mass spectrometric assay for d-aspartate N-methyltransferase activity in ark shells. Bioscience, Biotechnology and Biochemistry, 2020, 84, 500-506.	1.3	1
47	Complete Genome Sequence of Latilactobacillus sp. Strain WDN19, a High- d- Aspartate-Producing Lactic Acid Bacterium Isolated from a Japanese Pickle. Microbiology Resource Announcements, 2021, 10, e0056821.	0.6	1
48	Mechanism of high d-aspartate production in the lactic acid bacterium Latilactobacillus sp. strain WDN19. Applied Microbiology and Biotechnology, 2022, 106, 2651-2663.	3.6	1
49	Regulation of d-Aspartate Oxidase Gene Expression by Pyruvate Metabolism in the Yeast Cryptococcus humicola. Microorganisms, 2021, 9, 2444.	3.6	Ο