
Jesper Gromada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine, 2011, 17, 1481-1489.	30.7	714
2	Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. New England Journal of Medicine, 2017, 377, 211-221.	27.0	633
3	A Protein-Truncating <i>HSD17B13</i> Variant and Protection from Chronic Liver Disease. New England Journal of Medicine, 2018, 378, 1096-1106.	27.0	556
4	α-Cells of the Endocrine Pancreas: 35 Years of Research but the Enigma Remains. Endocrine Reviews, 2007, 28, 84-116.	20.1	511
5	RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell Metabolism, 2016, 24, 608-615.	16.2	511
6	Inactivating Variants in <i>ANGPTL4</i> and Risk of Coronary Artery Disease. New England Journal of Medicine, 2016, 374, 1123-1133.	27.0	411
7	Endoplasmic reticulum stress and pancreatic β-cell death. Trends in Endocrinology and Metabolism, 2011, 22, 266-74.	7.1	310
8	Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. Journal of Clinical Investigation, 2017, 127, 2904-2915.	8.2	266
9	Hepatic and glucagon-like peptide-1–mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. Journal of Clinical Investigation, 2004, 113, 1571-1581.	8.2	188
10	ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell, 2014, 159, 691-696.	28.9	187
11	ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. Journal of Lipid Research, 2015, 56, 1308-1317.	4.2	165
12	Amino Acid Transporter Slc38a5 Controls Glucagon Receptor Inhibition-Induced Pancreatic α Cell Hyperplasia in Mice. Cell Metabolism, 2017, 25, 1348-1361.e8.	16.2	162
13	Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3293-3298.	7.1	142
14	Pseudotime Ordering of Single Human β-Cells Reveals States of Insulin Production and Unfolded Protein Response. Diabetes, 2018, 67, 1783-1794.	0.6	132
15	The Liver–α-Cell Axis and Type 2 Diabetes. Endocrine Reviews, 2019, 40, 1353-1366.	20.1	110
16	Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11630-11635.	7.1	109
17	The α-cell in diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 694-704.	9.6	103
18	Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nature Communications, 2018, 9, 2252.	12.8	99

Jesper Gromada

#	Article	IF	CITATIONS
19	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	21.4	96
20	Heterogeneity of the Pancreatic Beta Cell. Frontiers in Genetics, 2017, 8, 22.	2.3	81
21	Glucagon Receptor Blockade With a Human Antibody Normalizes Blood Glucose in Diabetic Mice and Monkeys. Endocrinology, 2015, 156, 2781-2794.	2.8	78
22	Insulin and Glucagon: Partners for Life. Endocrinology, 2017, 158, 696-701.	2.8	71
23	Glucagon contributes to liver zonation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4111-E4119.	7.1	65
24	ANGPTL8 Blockade With a Monoclonal Antibody Promotes Triglyceride Clearance, Energy Expenditure, and Weight Loss in Mice. Endocrinology, 2017, 158, 1252-1259.	2.8	59
25	Mice harboring the human <i>SLC30A8</i> R138X loss-of-function mutation have increased insulin secretory capacity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7642-E7649.	7.1	45
26	Heterogeneity of human pancreatic \hat{l}^2 -cells. Molecular Metabolism, 2019, 27, S7-S14.	6.5	38
27	Hepatic Glucagon Signaling Regulates PCSK9 and Low-Density Lipoprotein Cholesterol. Circulation Research, 2019, 124, 38-51.	4.5	37
28	Gene Signature of Proliferating Human Pancreatic α Cells. Endocrinology, 2018, 159, 3177-3186.	2.8	27
29	Discordance between GLP-1R gene and protein expression in mouse pancreatic islet cells. Journal of Biological Chemistry, 2020, 295, 11529-11541.	3.4	25
30	Gene Signature of the Human Pancreatic Î μ Cell. Endocrinology, 2018, 159, 4023-4032.	2.8	22
31	Increased SLC38A4 Amino Acid Transporter Expression in Human Pancreatic α-Cells After Glucagon Receptor Inhibition. Endocrinology, 2019, 160, 979-988.	2.8	19
32	Angptl4 does not control hyperglucagonemia or α-cell hyperplasia following glucagon receptor inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2747-2752.	7.1	17
33	Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology, 2021, 162, .	2.8	5