
## Holger Maier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527590/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 2000, 15, 101-124.                                         | 4.5 | 1,876     |
| 2  | Methods used for the development of neural networks for the prediction of water resource<br>variables in river systems: Current status and future directions. Environmental Modelling and<br>Software, 2010, 25, 891-909.        | 4.5 | 690       |
| 3  | Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling and Software, 2013, 47, 159-181.                                                                | 4.5 | 578       |
| 4  | Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environmental Modelling and Software, 2014, 62, 271-299.                                         | 4.5 | 477       |
| 5  | Input determination for neural network models in water resources applications. Part 1—background and methodology. Journal of Hydrology, 2005, 301, 75-92.                                                                        | 5.4 | 446       |
| 6  | The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resources Research, 1996, 32, 1013-1022.                                                                                             | 4.2 | 415       |
| 7  | Ant Colony Optimization for Design of Water Distribution Systems. Journal of Water Resources<br>Planning and Management - ASCE, 2003, 129, 200-209.                                                                              | 2.6 | 387       |
| 8  | Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling, 2008, 219, 383-399.                                                                           | 2.5 | 369       |
| 9  | An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together?. Environmental Modelling and Software, 2016, 81, 154-164.                                                                 | 4.5 | 299       |
| 10 | Data Division for Developing Neural Networks Applied to Geotechnical Engineering. Journal of<br>Computing in Civil Engineering, 2004, 18, 105-114.                                                                               | 4.7 | 262       |
| 11 | Optimal division of data for neural network models in water resources applications. Water Resources Research, 2002, 38, 2-1-2-11.                                                                                                | 4.2 | 257       |
| 12 | Predicting Settlement of Shallow Foundations using Neural Networks. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2002, 128, 785-793.                                                                         | 3.0 | 244       |
| 13 | Non-linear variable selection for artificial neural networks using partial mutual information.<br>Environmental Modelling and Software, 2008, 23, 1312-1326.                                                                     | 4.5 | 241       |
| 14 | Protocol for developing ANN models and its application to the assessment of the quality of the ANN<br>model development process in drinking water quality modelling. Environmental Modelling and<br>Software, 2014, 54, 108-127. | 4.5 | 229       |
| 15 | The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support.<br>Environmental Modelling and Software, 2021, 137, 104954.                                                                 | 4.5 | 209       |
| 16 | The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling and Software, 1998, 13, 193-209.                                              | 4.5 | 189       |
| 17 | Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks, 2010, 23, 283-294.                                                                                                           | 5.9 | 188       |
| 18 | Input determination for neural network models in water resources applications. Part 2. Case study:<br>forecasting salinity in a river. Journal of Hydrology, 2005, 301, 93-107.                                                  | 5.4 | 181       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a<br>Bayesian artificial neural network. Journal of Hydrology, 2016, 540, 623-640.                              | 5.4  | 178       |
| 20 | Genetic Algorithms for Reliability-Based Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2004, 130, 63-72.                                                | 2.6  | 177       |
| 21 | Introductory overview: Optimization using evolutionary algorithms and other metaheuristics.<br>Environmental Modelling and Software, 2019, 114, 195-213.                                                         | 4.5  | 169       |
| 22 | Review of Input Variable Selection Methods for Artificial Neural Networks. , 0, , .                                                                                                                              |      | 168       |
| 23 | Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling and Software, 2004, 19, 485-494.                                               | 4.5  | 163       |
| 24 | An evaluation framework for input variable selection algorithms for environmental data-driven models. Environmental Modelling and Software, 2014, 62, 33-51.                                                     | 4.5  | 163       |
| 25 | Neural network based modelling of environmental variables: A systematic approach. Mathematical and<br>Computer Modelling, 2001, 33, 669-682.                                                                     | 2.0  | 149       |
| 26 | Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling and Software, 2008, 23, 1289-1299.                       | 4.5  | 147       |
| 27 | Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray,<br>South Australia. Ecological Modelling, 1998, 105, 257-272.                                                   | 2.5  | 143       |
| 28 | Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. Journal of Hydrology, 2009, 367, 165-176.                                       | 5.4  | 143       |
| 29 | Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give<br>Different Results?. Earth's Future, 2018, 6, 169-191.                                                              | 6.3  | 142       |
| 30 | Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE<br>Transactions on Evolutionary Computation, 2005, 9, 175-191.                                                     | 10.0 | 138       |
| 31 | Application of two ant colony optimisation algorithms to water distribution system optimisation.<br>Mathematical and Computer Modelling, 2006, 44, 451-468.                                                      | 2.0  | 137       |
| 32 | Water Distribution System Optimization Using Metamodels. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 172-180.                                                                          | 2.6  | 127       |
| 33 | An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems. IEEE Transactions on Evolutionary Computation, 2017, 21, 773-791. | 10.0 | 114       |
| 34 | Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environmental Modelling and Software, 2015, 69, 370-381.                                          | 4.5  | 113       |
| 35 | Evaluation of outputs from automated baseflow separation methods against simulated baseflow from<br>a physically based, surface water-groundwater flow model. Journal of Hydrology, 2012, 458-459, 28-39.        | 5.4  | 111       |
| 36 | First-order reliability method for estimating reliability, vulnerability, and resilience. Water Resources<br>Research, 2001, 37, 779-790.                                                                        | 4.2  | 109       |

| #  | Article                                                                                                                                                                                                   | lF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Accounting for Greenhouse Gas Emissions in Multiobjective Genetic Algorithm Optimization of Water<br>Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 146-155. | 2.6  | 105       |
| 38 | Incorporating uncertainty in the PROMETHEE MCDA method. Journal of Multi-Criteria Decision Analysis, 2003, 12, 245-259.                                                                                   | 1.9  | 100       |
| 39 | Ant Colony Optimization Applied to Water Distribution System Design: Comparative Study of Five Algorithms. Journal of Water Resources Planning and Management - ASCE, 2007, 133, 87-92.                   | 2.6  | 96        |
| 40 | Hybrid discrete dynamically dimensioned search (HDâ€DDS) algorithm for water distribution system design optimization. Water Resources Research, 2009, 45, .                                               | 4.2  | 96        |
| 41 | Battle of the Water Networks II. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .                                                                                                  | 2.6  | 92        |
| 42 | Understanding the behaviour and optimising the performance of back-propagation neural networks:<br>an empirical study. Environmental Modelling and Software, 1998, 13, 179-191.                           | 4.5  | 91        |
| 43 | A distance-based uncertainty analysis approach to multi-criteria decision analysis for water resource<br>decision making. Journal of Environmental Management, 2005, 77, 278-290.                         | 7.8  | 90        |
| 44 | Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future<br>Directions. Reviews of Geophysics, 2018, 56, 698-740.                                                    | 23.0 | 90        |
| 45 | Bayesian training of artificial neural networks used for water resources modeling. Water Resources<br>Research, 2005, 41, .                                                                               | 4.2  | 89        |
| 46 | Adaptive, multiobjective optimal sequencing approach for urban water supply augmentation under deep uncertainty. Water Resources Research, 2015, 51, 1529-1551.                                           | 4.2  | 89        |
| 47 | Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances in Artificial Neural Systems, 2009, 2009, 1-9.                                     | 1.0  | 84        |
| 48 | A bottomâ€up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate. Water Resources Research, 2016, 52, 6751-6768.                            | 4.2  | 83        |
| 49 | An R package for modelling actual, potential and reference evapotranspiration. Environmental<br>Modelling and Software, 2016, 78, 216-224.                                                                | 4.5  | 83        |
| 50 | Reliability-Based Approach to Multicriteria Decision Analysis for Water Resources. Journal of Water<br>Resources Planning and Management - ASCE, 2004, 130, 429-438.                                      | 2.6  | 82        |
| 51 | Review of literature on decision support systems for natural hazard risk reduction: Current status and future research directions. Environmental Modelling and Software, 2017, 96, 378-409.               | 4.5  | 81        |
| 52 | Determining Inputs for Neural Network Models of Multivariate Time Series. Computer-Aided Civil and<br>Infrastructure Engineering, 1997, 12, 353-368.                                                      | 9.8  | 80        |
| 53 | Distance-based and stochastic uncertainty analysis for multi-criteria decision analysis in Excel using<br>Visual Basic for Applications. Environmental Modelling and Software, 2006, 21, 1695-1710.       | 4.5  | 79        |
| 54 | Optimal Operation of Complex Water Distribution Systems Using Metamodels. Journal of Water<br>Resources Planning and Management - ASCE, 2010, 136, 433-443.                                               | 2.6  | 79        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Forecasting chlorine residuals in a water distribution system using a general regression neural network. Mathematical and Computer Modelling, 2006, 44, 469-484.                                                                  | 2.0 | 78        |
| 56 | Robust optimization of water infrastructure planning under deep uncertainty using metamodels.<br>Environmental Modelling and Software, 2017, 93, 92-105.                                                                          | 4.5 | 78        |
| 57 | Integrating modelling and smart sensors for environmental and human health. Environmental<br>Modelling and Software, 2015, 74, 238-246.                                                                                           | 4.5 | 77        |
| 58 | A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks. Water Resources Research, 2013, 49, 7598-7614.                                             | 4.2 | 76        |
| 59 | Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrology and Earth System Sciences, 2017, 21, 2107-2126.                                                    | 4.9 | 76        |
| 60 | Comparison of the Searching Behavior of NSCA-II, SAMODE, and Borg MOEAs Applied to Water<br>Distribution System Design Problems. Journal of Water Resources Planning and Management - ASCE,<br>2016, 142, .                       | 2.6 | 74        |
| 61 | On Lack of Robustness in Hydrological Model Development Due to Absence of Guidelines for Selecting<br>Calibration and Evaluation Data: Demonstration for Dataâ€Driven Models. Water Resources Research,<br>2018, 54, 1013-1030.   | 4.2 | 71        |
| 62 | Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Mathematical and Computer Modelling, 2006, 44, 485-498.                                                   | 2.0 | 70        |
| 63 | Flow management strategies to control blooms of the cyanobacterium,Anabaena circinalis, in the<br>River Murray at Morgan, South Australia. River Research and Applications, 2001, 17, 637-650.                                    | 0.8 | 66        |
| 64 | Calibration and validation of neural networks to ensure physically plausible hydrological modeling.<br>Journal of Hydrology, 2005, 314, 158-176.                                                                                  | 5.4 | 65        |
| 65 | Empirical comparison of various methods for training feed-Forward neural networks for salinity forecasting. Water Resources Research, 1999, 35, 2591-2596.                                                                        | 4.2 | 64        |
| 66 | Single-Objective versus Multiobjective Optimization of Water Distribution Systems Accounting for<br>Greenhouse Gas Emissions by Carbon Pricing. Journal of Water Resources Planning and Management -<br>ASCE, 2010, 136, 555-565. | 2.6 | 64        |
| 67 | Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions. Water Resources Research, 2013, 49, 1211-1225.                                       | 4.2 | 61        |
| 68 | Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply<br>security for the southern Adelaide water supply system. Water Resources Research, 2013, 49, 1643-1667.                       | 4.2 | 61        |
| 69 | Integrated framework for assessing urban water supply security of systems with non-traditional sources under climate change. Environmental Modelling and Software, 2014, 60, 302-319.                                             | 4.5 | 59        |
| 70 | Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental Modelling and Software, 2017, 97, 32-45.                                                                   | 4.5 | 58        |
| 71 | Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of<br>a riparian wetland and catchment. Water Resources Research, 2013, 49, 5501-5519.                                               | 4.2 | 56        |
| 72 | Incorporation of Variable-Speed Pumping in Multiobjective Genetic Algorithm Optimization of the<br>Design of Water Transmission Systems. Journal of Water Resources Planning and Management - ASCE,<br>2012, 138, 543-552.        | 2.6 | 54        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improved PMI-based input variable selection approach for artificial neural network and other data<br>driven environmental and water resource models. Environmental Modelling and Software, 2015, 65,<br>15-29.                         | 4.5 | 54        |
| 74 | A hydraulic mixing-cell method to quantify the groundwater component of streamflow within<br>spatially distributed fully integrated surface water–groundwater flow models. Environmental<br>Modelling and Software, 2011, 26, 886-898. | 4.5 | 53        |
| 75 | Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data. Water<br>Resources Research, 2019, 55, 9315-9333.                                                                                                      | 4.2 | 53        |
| 76 | Realâ€ŧime deployment of artificial neural network forecasting models: Understanding the range of applicability. Water Resources Research, 2012, 48, .                                                                                 | 4.2 | 52        |
| 77 | Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks.<br>Mathematics and Computers in Simulation, 1997, 43, 377-386.                                                                        | 4.4 | 51        |
| 78 | Including adaptation and mitigation responses to climate change in a multiobjective evolutionary<br>algorithm framework for urban water supply systems incorporating GHG emissions. Water Resources<br>Research, 2014, 50, 6285-6304.  | 4.2 | 51        |
| 79 | Best practices for conceptual modelling in environmental planning and management. Environmental<br>Modelling and Software, 2016, 80, 113-121.                                                                                          | 4.5 | 51        |
| 80 | Optimal sequencing of water supply options at the regional scale incorporating alternative water supply sources and multiple objectives. Environmental Modelling and Software, 2014, 53, 137-153.                                      | 4.5 | 50        |
| 81 | Selection of smoothing parameter estimators for general regression neural networks – Applications<br>to hydrological and water resources modelling. Environmental Modelling and Software, 2014, 59,<br>162-186.                        | 4.5 | 49        |
| 82 | Improved validation framework and R-package for artificial neural network models. Environmental<br>Modelling and Software, 2017, 92, 82-106.                                                                                           | 4.5 | 49        |
| 83 | Multiobjective optimization of clusterâ€scale urban water systems investigating alternative water sources and level of decentralization. Water Resources Research, 2014, 50, 7915-7938.                                                | 4.2 | 48        |
| 84 | Impact of evapotranspiration process representation on runoff projections from conceptual rainfallâ€runoff models. Water Resources Research, 2017, 53, 435-454.                                                                        | 4.2 | 48        |
| 85 | Temperature stratification in the lower River Murray, Australia: implication for cyanobacterial bloom<br>development. Marine and Freshwater Research, 1997, 48, 647.                                                                   | 1.3 | 47        |
| 86 | Data-driven modelling approaches for socio-hydrology: opportunities and challenges within the<br>Panta Rhei Science Plan. Hydrological Sciences Journal, 0, , 1-17.                                                                    | 2.6 | 47        |
| 87 | Achieving Water Quality System Reliability Using Genetic Algorithms. Journal of Environmental<br>Engineering, ASCE, 2000, 126, 954-962.                                                                                                | 1.4 | 46        |
| 88 | A genetic algorithm calibration method based on convergence due to genetic drift. Information Sciences, 2008, 178, 2857-2869.                                                                                                          | 6.9 | 44        |
| 89 | Multi-objective optimisation framework for calibration of Cellular Automata land-use models.<br>Environmental Modelling and Software, 2018, 100, 175-200.                                                                              | 4.5 | 44        |
| 90 | Scenario driven optimal sequencing under deep uncertainty. Environmental Modelling and Software, 2015, 68, 181-195.                                                                                                                    | 4.5 | 43        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid<br>islands. Applied Energy, 2019, 250, 605-616.                                                                                    | 10.1 | 43        |
| 92  | Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models.<br>Computers and Geotechnics, 2003, 30, 637-647.                                                                                    | 4.7  | 42        |
| 93  | Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environmental Modelling and Software, 2014, 54, 39-52.                  | 4.5  | 42        |
| 94  | Ant colony optimization for power plant maintenance scheduling optimization—a five-station hydropower system. Annals of Operations Research, 2008, 159, 433-450.                                                                     | 4.1  | 41        |
| 95  | An inverse approach to perturb historical rainfall data for scenario-neutral climate impact studies.<br>Journal of Hydrology, 2018, 556, 877-890.                                                                                    | 5.4  | 39        |
| 96  | Anthropocene flooding: Challenges for science and society. Hydrological Processes, 2020, 34, 1996-2000.                                                                                                                              | 2.6  | 39        |
| 97  | A framework for using ant colony optimization to schedule environmental flow management alternatives for rivers, wetlands, and floodplains. Water Resources Research, 2012, 48, .                                                    | 4.2  | 37        |
| 98  | A Comprehensive Framework to Evaluate Hydraulic and Water Quality Impacts of Pipe Breaks on Water<br>Distribution Systems. Water Resources Research, 2018, 54, 8174-8195.                                                            | 4.2  | 37        |
| 99  | A multiobjective ant colony optimization approach for scheduling environmental flow management alternatives with application to the River Murray, Australia. Water Resources Research, 2013, 49, 6393-6411.                          | 4.2  | 36        |
| 100 | Many-objective portfolio optimization approach for stormwater management project selection encouraging decision maker buy-in. Environmental Modelling and Software, 2019, 111, 340-355.                                              | 4.5  | 36        |
| 101 | Controlling rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms. Environmental Modelling and Software, 2019, 111, 34-41.                                                        | 4.5  | 36        |
| 102 | A generic framework for regression regionalization in ungauged catchments. Environmental<br>Modelling and Software, 2012, 27-28, 1-14.                                                                                               | 4.5  | 35        |
| 103 | Including stakeholder input in formulating and solving real-world optimisation problems: Generic framework and case study. Environmental Modelling and Software, 2016, 79, 197-213.                                                  | 4.5  | 35        |
| 104 | Water quality modeling in sewer networks: Review and future research directions. Water Research, 2021, 202, 117419.                                                                                                                  | 11.3 | 35        |
| 105 | Improved understanding of the searching behavior of ant colony optimization algorithms applied to the water distribution design problem. Water Resources Research, 2012, 48, .                                                       | 4.2  | 34        |
| 106 | Sensitivity of Optimal Tradeoffs between Cost and Greenhouse Gas Emissions for Water Distribution<br>Systems to Electricity Tariff and Generation. Journal of Water Resources Planning and Management -<br>ASCE, 2012, 138, 182-186. | 2.6  | 34        |
| 107 | Management Option Rank Equivalence (MORE) – A new method of sensitivity analysis for<br>decision-making. Environmental Modelling and Software, 2010, 25, 171-181.                                                                    | 4.5  | 33        |
| 108 | An adaptive ant colony optimization framework for scheduling environmental flow management<br>alternatives under varied environmental water availability conditions. Water Resources Research,<br>2014, 50, 7606-7625.               | 4.2  | 33        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems. Hydrology and Earth System Sciences, 2018, 22, 2987-3006.                  | 4.9 | 33        |
| 110 | Bayesian model selection applied to artificial neural networks used for water resources modeling.<br>Water Resources Research, 2008, 44, .                                                                           | 4.2 | 32        |
| 111 | Power plant maintenance scheduling using ant colony optimization: an improved formulation.<br>Engineering Optimization, 2008, 40, 309-329.                                                                           | 2.6 | 32        |
| 112 | A systematic approach to determining metamodel scope for risk-based optimization and its application to water distribution system design. Environmental Modelling and Software, 2015, 69, 382-395.                   | 4.5 | 32        |
| 113 | Multiobjective Optimization of Distributed Stormwater Harvesting Systems. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .                                                                    | 2.6 | 31        |
| 114 | A computational software tool for the minimization of costs and greenhouse gas emissions<br>associated with water distribution systems. Environmental Modelling and Software, 2015, 69, 452-467.                     | 4.5 | 30        |
| 115 | Using characteristics of the optimisation problem to determine the Genetic Algorithm population size when the number of evaluations is limited. Environmental Modelling and Software, 2015, 69, 226-239.             | 4.5 | 30        |
| 116 | Better Understanding of the Capacity of Pressure Sensor Systems to Detect Pipe Burst within Water<br>Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .                  | 2.6 | 30        |
| 117 | State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application. Hydrology and Earth System Sciences, 2018, 22, 871-887.            | 4.9 | 30        |
| 118 | Data transformation for neural network models in water resources applications. Journal of Hydroinformatics, 2003, 5, 245-258.                                                                                        | 2.4 | 29        |
| 119 | Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter. Environmental Modelling and Software, 2013, 41, 163-175. | 4.5 | 29        |
| 120 | What constitutes a good literature review and why does its quality matter?. Environmental Modelling and Software, 2013, 43, 3-4.                                                                                     | 4.5 | 29        |
| 121 | Framework for computationally efficient optimal crop and water allocation using ant colony optimization. Environmental Modelling and Software, 2016, 76, 37-53.                                                      | 4.5 | 29        |
| 122 | Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment. Journal of Hydrology, 2017, 554, 317-330.                                        | 5.4 | 29        |
| 123 | On the Robustness of Conceptual Rainfallâ€Runoff Models to Calibration and Evaluation Data Set Splits<br>Selection: A Large Sample Investigation. Water Resources Research, 2020, 56, e2019WR026752.                 | 4.2 | 29        |
| 124 | Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline<br>neurofuzzy models. Ecological Modelling, 2001, 146, 85-96.                                                          | 2.5 | 28        |
| 125 | Comparison of Genetic Algorithm Parameter Setting Methods for Chlorine Injection Optimization.<br>Journal of Water Resources Planning and Management - ASCE, 2010, 136, 288-291.                                     | 2.6 | 28        |
| 126 | Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding. Water<br>(Switzerland), 2019, 11, 2428.                                                                                   | 2.7 | 28        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The response of freshwater plants to salinity pulses. Aquatic Botany, 2010, 93, 59-67.                                                                                                                                                          | 1.6 | 27        |
| 128 | A probabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction. Mathematical and Computer Modelling, 2006, 44, 499-512.                                                             | 2.0 | 26        |
| 129 | Relationship between problem characteristics and the optimal number of genetic algorithm generations. Engineering Optimization, 2011, 43, 349-376.                                                                                              | 2.6 | 26        |
| 130 | The changing nature of the water–energy nexus in urban water supply systems: a critical review of changes and responses. Journal of Water and Climate Change, 2020, 11, 1095-1122.                                                              | 2.9 | 26        |
| 131 | Advection, growth and nutrient status of phytoplankton populations in the lower River Murray,<br>South Australia. River Research and Applications, 2000, 16, 327-344.                                                                           | 0.8 | 25        |
| 132 | Risk-based approach for assessing the effectiveness of flow management in controlling cyanobacterial blooms in rivers. River Research and Applications, 2004, 20, 459-471.                                                                      | 1.7 | 25        |
| 133 | Use of Domain Knowledge to Increase the Convergence Rate of Evolutionary Algorithms for<br>Optimizing the Cost and Resilience of Water Distribution Systems. Journal of Water Resources<br>Planning and Management - ASCE, 2016, 142, 04016027. | 2.6 | 25        |
| 134 | A modified Sobol′ sensitivity analysis method for decision-making in environmental problems.<br>Environmental Modelling and Software, 2016, 75, 15-27.                                                                                          | 4.5 | 25        |
| 135 | Impact of Scenario Selection on Robustness. Water Resources Research, 2020, 56, e2019WR026515.                                                                                                                                                  | 4.2 | 25        |
| 136 | Application of Artificial Neural Networks to Forecasting of Surface Water Quality Variables: Issues,<br>Applications and Challenges. Water Science and Technology Library, 2000, , 287-309.                                                     | 0.3 | 25        |
| 137 | An active learning approach for identifying the smallest subset of informative scenarios for robust planning under deep uncertainty. Environmental Modelling and Software, 2020, 127, 104681.                                                   | 4.5 | 24        |
| 138 | Exploratory scenario analysis for disaster risk reduction: Considering alternative pathways in disaster risk assessment. International Journal of Disaster Risk Reduction, 2019, 39, 101230.                                                    | 3.9 | 23        |
| 139 | Neural network based stochastic design charts for settlement prediction. Canadian Geotechnical<br>Journal, 2005, 42, 110-120.                                                                                                                   | 2.8 | 22        |
| 140 | Optimising the design and real-time operation of systems of distributed stormwater storages to reduce urban flooding at the catchment scale. Journal of Hydrology, 2021, 602, 126787.                                                           | 5.4 | 22        |
| 141 | Forecasting Cyanobacterial Concentrations Using B-Spline Networks. Journal of Computing in Civil<br>Engineering, 2000, 14, 183-189.                                                                                                             | 4.7 | 21        |
| 142 | Water Distribution System Pumping Operational Greenhouse Gas Emissions Minimization by<br>Considering Time-Dependent Emissions Factors. Journal of Water Resources Planning and Management<br>- ASCE, 2015, 141, .                              | 2.6 | 21        |
| 143 | Identification of Optimal Water Supply Portfolios for a Major City. Journal of Water Resources<br>Planning and Management - ASCE, 2017, 143, .                                                                                                  | 2.6 | 21        |
| 144 | Enhancing the policy relevance of exploratory scenarios: Generic approach and application to disaster risk reduction. Futures, 2018, 99, 1-15.                                                                                                  | 2.5 | 21        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Identifying critical climate conditions for use in scenario-neutral climate impact assessments.<br>Environmental Modelling and Software, 2021, 136, 104948.                                                                                                                  | 4.5 | 21        |
| 146 | Chapter Five Uncertainty in Environmental Decision Making: Issues, Challenges and Future Directions.<br>Developments in Integrated Environmental Assessment, 2008, , 69-85.                                                                                                  | 0.0 | 20        |
| 147 | Sensitivity analysis for decision-making using the MORE method—A Pareto approach. Reliability<br>Engineering and System Safety, 2009, 94, 1229-1237.                                                                                                                         | 8.9 | 20        |
| 148 | Calibration and Optimization of the Pumping and Disinfection of a Real Water Supply System. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 493-501.                                                                                                   | 2.6 | 20        |
| 149 | The cost–greenhouse gas emission nexus for water distribution systems including the consideration of energy generating infrastructure: an integrated conceptual optimization framework and review of literature. Earth Perspectives Transdisciplinarity Enabled, 2014, 1, 9. | 1.4 | 20        |
| 150 | Meeting the challenges of engineering education via online roleplay simulations. Australasian Journal of Engineering Education, 2007, 13, 31-39.                                                                                                                             | 1.4 | 19        |
| 151 | Improving partial mutual information-based input variable selection by consideration of boundary issues associated with bandwidth estimation. Environmental Modelling and Software, 2015, 71, 78-96.                                                                         | 4.5 | 19        |
| 152 | Integrated Approach for Optimizing the Design of Aquifer Storage and Recovery Stormwater<br>Harvesting Schemes Accounting for Externalities and Climate Change. Journal of Water Resources<br>Planning and Management - ASCE, 2016, 142, .                                   | 2.6 | 19        |
| 153 | A multi-stakeholder portfolio optimization framework applied to stormwater best management practice (BMP) selection. Environmental Modelling and Software, 2017, 97, 16-31.                                                                                                  | 4.5 | 19        |
| 154 | Improved Ant Colony Optimization for Optimal Crop and Irrigation Water Allocation by Incorporating<br>Domain Knowledge. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .                                                                              | 2.6 | 18        |
| 155 | Effect of Storage Tank Size on the Minimization of Water Distribution System Cost and Greenhouse<br>Gas Emissions While Considering Time-Dependent Emissions Factors. Journal of Water Resources<br>Planning and Management - ASCE, 2016, 142, .                             | 2.6 | 18        |
| 156 | Generating realistic perturbed hydrometeorological time series to inform scenario-neutral climate impact assessments. Journal of Hydrology, 2019, 576, 111-122.                                                                                                              | 5.4 | 18        |
| 157 | Ant Colony Optimization for the Design of Water Distribution Systems. , 2001, , 1.                                                                                                                                                                                           |     | 17        |
| 158 | Assessment of the internal dynamics of the Australian Water Balance Model under different calibration regimes. Environmental Modelling and Software, 2015, 66, 57-68.                                                                                                        | 4.5 | 16        |
| 159 | Surplus Power Factor as a Resilience Measure for Assessing Hydraulic Reliability in Water<br>Transmission System Optimization. Journal of Water Resources Planning and Management - ASCE, 2011,<br>137, 542-546.                                                             | 2.6 | 15        |
| 160 | Empirically derived method and software for semi-automatic calibration of Cellular Automata<br>land-use models. Environmental Modelling and Software, 2018, 108, 208-239.                                                                                                    | 4.5 | 15        |
| 161 | An integrated framework for selecting and evaluating the performance of stormwater harvesting options to supplement existing water supply systems. Environmental Modelling and Software, 2019, 122, 104554.                                                                  | 4.5 | 15        |
| 162 | Alternative modelling approaches for the estimation of irreducible water saturation: Australian hydrocarbon basins. Journal of Petroleum Science and Engineering, 2007, 57, 60-69.                                                                                           | 4.2 | 14        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The effect of inundation and salinity on the germination of seed banks from wetlands in South<br>Australia. Aquatic Botany, 2011, 94, 102-106.                                                                   | 1.6 | 14        |
| 164 | Impact of Starting Position and Searching Mechanism on the Evolutionary Algorithm Convergence<br>Rate. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .                                   | 2.6 | 14        |
| 165 | Tomorrow's disasters – Embedding foresight principles into disaster risk assessment and treatment.<br>International Journal of Disaster Risk Reduction, 2020, 45, 101437.                                        | 3.9 | 13        |
| 166 | Optimising the mutual information of ecological data clusters using evolutionary algorithms.<br>Mathematical and Computer Modelling, 2006, 44, 439-450.                                                          | 2.0 | 11        |
| 167 | Influence of wind on water levels and lagoonriver exchange in the River Murray, Australia. Marine and Freshwater Research, 1997, 48, 541.                                                                        | 1.3 | 11        |
| 168 | Ant colony optimization for power plant maintenance scheduling optimization. , 2005, , .                                                                                                                         |     | 10        |
| 169 | A hybrid (semi) automatic calibration method for Cellular Automata land-use models: Combining<br>evolutionary algorithms with process understanding. Environmental Modelling and Software, 2020,<br>134, 104830. | 4.5 | 10        |
| 170 | Guidance framework and software for understanding and achieving system robustness.<br>Environmental Modelling and Software, 2021, 142, 105059.                                                                   | 4.5 | 10        |
| 171 | Minimum Number of Generations Required for Convergence of Genetic Algorithms. , 0, , .                                                                                                                           |     | 9         |
| 172 | Evaluation of parameter setting for two GIS based unit hydrograph models. Journal of Hydrology, 2010, 393, 197-205.                                                                                              | 5.4 | 9         |
| 173 | A modelling framework and R-package for evaluating system performance under hydroclimate variability and change. Environmental Modelling and Software, 2021, 139, 104999.                                        | 4.5 | 8         |
| 174 | Achieving Robust and Transferable Performance for Conservationâ€Based Models of Dynamical Physical Systems. Water Resources Research, 2022, 58, .                                                                | 4.2 | 8         |
| 175 | Water Distribution Network Reliability Estimation Using the First-Order Reliability Method. , 2001, , 1.                                                                                                         |     | 7         |
| 176 | A Metamodeling Approach to Water Distribution System Optimization. , 2004, , 1.                                                                                                                                  |     | 7         |
| 177 | Critical Values of a Kernel Density-based Mutual Information Estimator. , 2006, , .                                                                                                                              |     | 7         |
| 178 | Water Distribution System Optimisation Accounting for a Range of Future Possible Carbon Prices. ,<br>2009, , .                                                                                                   |     | 7         |
| 179 | RAINFALL RUNOFF MODELLING USING NEURAL NETWORKS: STATE-OF-THE-ART AND FUTURE RESEARCH NEEDS. ISH Journal of Hydraulic Engineering, 2009, 15, 52-74.                                                              | 2.1 | 7         |
| 180 | An integrated dynamic modeling framework for investigating the impact of climate change and variability on irrigated agriculture. Water Resources Research, 2011, 47, .                                          | 4.2 | 7         |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Framework for minimising the impact of regional shocks on global food security using multi-objective ant colony optimisation. Environmental Modelling and Software, 2017, 95, 303-319.                                                | 4.5  | 7         |
| 182 | A comparative study of artificial neural network techniques for river stage forecasting. , 0, , .                                                                                                                                     |      | 6         |
| 183 | Increasing student engagement with graduate attributes. Australasian Journal of Engineering Education, 2007, 13, 21-29.                                                                                                               | 1.4  | 6         |
| 184 | Optimal Control of Total Chlorine and Free Ammonia Levels in a Water Transmission Pipeline Using<br>Artificial Neural Networks and Genetic Algorithms. Journal of Water Resources Planning and<br>Management - ASCE, 2015, 141, .     | 2.6  | 6         |
| 185 | Do Existing Multiobjective Evolutionary Algorithms Use a Sufficient Number of Operators? An<br>Empirical Investigation for Water Distribution Design Problems. Water Resources Research, 2020, 56,<br>e2019WR026031.                  | 4.2  | 6         |
| 186 | Assessment of the ability to meet environmental water requirements in the Upper South East of South<br>Australia. Stochastic Environmental Research and Risk Assessment, 2014, 28, 39-56.                                             | 4.0  | 5         |
| 187 | Sustainability Assessment of Housing Developments: A New Methodology. , 2006, , .                                                                                                                                                     |      | 5         |
| 188 | Identification of metrics suitable for determining the features of real-world optimisation problems.<br>Environmental Modelling and Software, 2022, 148, 105281.                                                                      | 4.5  | 5         |
| 189 | Predicting wildfire induced changes to runoff: A review and synthesis of modeling approaches. Wiley<br>Interdisciplinary Reviews: Water, 2022, 9, .                                                                                   | 6.5  | 5         |
| 190 | Reply [to "Comment on â€~The use of artificial neural networks for the prediction of water quality parameters' by H. R. Maier and G. C. Dandyâ€]. Water Resources Research, 1997, 33, 2425-2427.                                      | 4.2  | 4         |
| 191 | Closure to "Predicting Settlement of Shallow Foundations Using Neural Networks―by Mohamed A.<br>Shahin, Holger R. Maier, and Mark B. Jaksa. Journal of Geotechnical and Geoenvironmental Engineering<br>- ASCE, 2003, 129, 1175-1177. | 3.0  | 4         |
| 192 | Estimating Risk Measures for Water Distribution Systems Using Metamodels. , 2005, , 1.                                                                                                                                                |      | 4         |
| 193 | A framework for the mitigation and adaptation from heat-related risks to infrastructure. Sustainable<br>Cities and Society, 2022, 81, 103820.                                                                                         | 10.4 | 4         |
| 194 | Optimal Design of Water Distribution Systems including Water Quality and System Uncertainty. , 2008, , .                                                                                                                              |      | 3         |
| 195 | An Evaluation of Methods for the Selection of Inputs for an Artificial Neural Network Based River<br>Model. , 2006, , 275-292.                                                                                                        |      | 3         |
| 196 | Impact of Drought on Adelaide's Water Supply System: Past, Present, and Future. , 2013, , 41-62.                                                                                                                                      |      | 3         |
| 197 | General Regression Neural Networks for Modeling Disinfection Residual in Water Distribution Systems. , 2004, , 1.                                                                                                                     |      | 2         |
| 198 | Ant colony optimization for power plant maintenance scheduling optimization. , 2005, , .                                                                                                                                              |      | 2         |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Forecasting Cyanobacteria with Bayesian and Deterministic Artificial Neural Networks. , 2006, , .                                                                                                                                                                |     | 2         |
| 200 | A New Algorithm for Water Distribution System Optimization: Discrete Dynamically Dimensioned Search. , 2008, , .                                                                                                                                                 |     | 2         |
| 201 | An Evaluation of Methods for the Selection of Inputs for an Artificial Neural Network Based River<br>Model. , 2003, , 215-232.                                                                                                                                   |     | 2         |
| 202 | Selection of Genetic Algorithm Parameters for Water Distribution System Optimization. , 2005, , 1.                                                                                                                                                               |     | 1         |
| 203 | Improving Metamodel-based Optimization of Water Distribution Systems with Local Search. , 0, , .                                                                                                                                                                 |     | 1         |
| 204 | Calibration of Rainfall Runoff Models in Ungauged Catchments: Regionalization Relationships for a<br>Rainfall Runoff Model. , 2008, , .                                                                                                                          |     | 1         |
| 205 | Optimization of WSUD Systems. , 2019, , 303-328.                                                                                                                                                                                                                 |     | 1         |
| 206 | Integrated Modelling: Construction, Selection, Uncertainty. , 2006, , .                                                                                                                                                                                          |     | 1         |
| 207 | Use of exploratory fitness landscape metrics to better understand the impact of model structure on the difficulty of calibrating artificial neural network models. Journal of Hydrology, 2022, 612, 128093.                                                      | 5.4 | 1         |
| 208 | The influence of wind on lagoon-river exchange in the River Murray, Australia. Verhandlungen Der<br>Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association<br>of Theoretical and Applied Limnology, 2000, 27, 468-471. | 0.1 | 0         |
| 209 | Critical Values of a Kernel Density-based Mutual Information Estimator. , 0, , .                                                                                                                                                                                 |     | 0         |
| 210 | Forecasting Cyanobacteria with Bayesian and Deterministic Artificial Neural Networks. , 0, , .                                                                                                                                                                   |     | 0         |
| 211 | Multi-Objective Optimization of Integrated Water Reuse Systems at a Cluster Scale. , 2011, , .                                                                                                                                                                   |     | 0         |
| 212 | Robust Staged Development of Water Supply Systems. Procedia Engineering, 2014, 89, 864-869.                                                                                                                                                                      | 1.2 | 0         |
| 213 | A tribute in memory of Dr. James (Jim) C. Ascough II. Environmental Modelling and Software, 2017, 97, 211-212.                                                                                                                                                   | 4.5 | 0         |