
David W Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lucky, times ten: A career in Texas science. Journal of Biological Chemistry, 2018, 293, 18804-18827.	3.4	4
2	Thoracoscopic Anterior Instrumentation and Fusion as a Treatment for Adolescent Idiopathic Scoliosis: A Systematic Review of the Literature. Spine Deformity, 2018, 6, 384-390.	1.5	18
3	Low Testosterone Levels Result in Decreased Periurethral Vascularity via an Androgen Receptor-mediated Process: Pilot Study in Urethral Stricture Tissue. Urology, 2017, 105, 175-180.	1.0	22
4	Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation. Cell, 2017, 171, 1057-1071.e11.	28.9	230
5	Reprint of "Steroid 5α-reductase 2 deficiency― Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 95-100.	2.5	9
6	Steroid 5α-reductase 2 deficiency. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 206-211.	2.5	123
7	Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. Journal of Lipid Research, 2015, 56, 722-736.	4.2	264
8	Steroid 5α-Reductase 2 Deficiency. , 2014, , 199-214.		2
9	Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4006-14.	7.1	72
10	25-Hydroxycholesterol suppresses interleukin-1–driven inflammation downstream of type I interferon. Science, 2014, 345, 679-684.	12.6	379
11	The role of palliative colorectal stents in gynaecologic malignancy. Gynecologic Oncology, 2014, 134, 566-569.	1.4	6
12	A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nature Genetics, 2013, 45, 1013-1020.	21.4	190
13	Genetic Defects in Bile Acid Conjugation Cause Fat-Soluble Vitamin Deficiency. Gastroenterology, 2013, 144, 945-955.e6.	1.3	97
14	25-Hydroxycholesterol Activates the Integrated Stress Response to Reprogram Transcription and Translation in Macrophages. Journal of Biological Chemistry, 2013, 288, 35812-35823.	3.4	64
15	Christian Raetz: Scientist and Friend Extraordinaire. Annual Review of Biochemistry, 2013, 82, 1-24.	11.1	9
16	Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. Journal of Lipid Research, 2013, 54, 2525-2542.	4.2	41
17	Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in C <i>yp7a1</i> ^{â^²/â^²} mice fed low levels of cholic acid. American Journal of Physiology - Renal Physiology, 2012, 303, G263-G274.	3.4	17
18	A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. Journal of Lipid Research, 2012, 53, 1399-1409.	4.2	185

#	Article	IF	CITATIONS
19	Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. Cell, 2012, 151, 138-152.	28.9	487
20	Oxysterol Gradient Generation by Lymphoid Stromal Cells Guides Activated B Cell Movement during Humoral Responses. Immunity, 2012, 37, 535-548.	14.3	185
21	Mutation of the <i>CYP2R1</i> Vitamin D 25-Hydroxylase in a Saudi Arabian Family with Severe Vitamin D Deficiency. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E2022-E2025.	3.6	76
22	Differential diagnosis in patients with suspected bile acid synthesis defects. World Journal of Gastroenterology, 2012, 18, 1067.	3.3	38
23	Genetic determinants of human serum sterol levels. FASEB Journal, 2012, 26, .	0.5	0
24	Detecting oxysterols in the human circulation. Nature Immunology, 2011, 12, 577-577.	14.5	10
25	Massâ€6pec Identification of Human Genetic Disease. FASEB Journal, 2011, 25, 938.4.	0.5	0
26	A Mouse Macrophage Lipidome. Journal of Biological Chemistry, 2010, 285, 39976-39985.	3.4	260
27	Editorial: 25-Hydroxycholesterol: a new life in immunology. Journal of Leukocyte Biology, 2010, 88, 1071-1072.	3.3	62
28	Subcellular organelle lipidomics in TLR-4-activated macrophages. Journal of Lipid Research, 2010, 51, 2785-2797.	4.2	180
29	Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research, 2010, 51, 3299-3305.	4.2	1,071
30	SRD5A3: A Surprising Role in Glycosylation. Cell, 2010, 142, 196-198.	28.9	47
31	Oxysterols: Cholesterol Metabolites of Diverse Function in Mice and Men. FASEB Journal, 2010, 24, 77.1.	0.5	0
32	CYP7B1: One Cytochrome P450, Two Human Genetic Diseases, and Multiple Physiological Functions. Journal of Biological Chemistry, 2009, 284, 28485-28489.	3.4	106
33	Reduction of cholesterol synthesis in the mouse brain does not affect amyloid formation in Alzheimer's disease, but does extend lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3502-3506.	7.1	66
34	Fifty years of advances in bile acid synthesis and metabolism. Journal of Lipid Research, 2009, 50, S120-S125.	4.2	284
35	25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16764-16769.	7.1	289
36	Cholesterol 24-Hydroxylase: An Enzyme of Cholesterol Turnover in the Brain. Annual Review of Biochemistry, 2009, 78, 1017-1040.	11.1	255

#	Article	IF	CITATIONS
37	Neuronal expression and subcellular localization of cholesterol 24â€hydroxylase in the mouse brain. Journal of Comparative Neurology, 2008, 507, 1676-1693.	1.6	155
38	Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11394-11399.	7.1	66
39	Analysis of HSD3B7 knockout mice reveals that a 3Â-hydroxyl stereochemistry is required for bile acid function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11526-11533.	7.1	36
40	Enzymatic Reduction of Oxysterols Impairs LXR Signaling in Cultured Cells and the Livers of Mice. Cell Metabolism, 2007, 5, 73-79.	16.2	276
41	Extraction and Analysis of Sterols in Biological Matrices by High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Methods in Enzymology, 2007, 432, 145-170.	1.0	131
42	LMSD: LIPID MAPS structure database. Nucleic Acids Research, 2007, 35, D527-D532.	14.5	998
43	Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3869-3874.	7.1	228
44	Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility. Journal of Clinical Investigation, 2006, 116, 2985-2994.	8.2	193
45	Mechanism and Function of Cholesterol Turnover in the Brain. FASEB Journal, 2006, 20, .	0.5	0
46	Brain cholesterol metabolism is important for learning. FASEB Journal, 2006, 20, A85.	0.5	0
47	A comprehensive classification system for lipids. Journal of Lipid Research, 2005, 46, 839-861.	4.2	1,348
48	A comprehensive classification system for lipids. European Journal of Lipid Science and Technology, 2005, 107, 337-364.	1.5	94
49	The LIPID MAPS Approach to Lipidomics. , 2005, , 1-16.		12
50	Mammalian Wax Biosynthesis. Journal of Biological Chemistry, 2004, 279, 37789-37797.	3.4	210
51	Mammalian Wax Biosynthesis. Journal of Biological Chemistry, 2004, 279, 37798-37807.	3.4	112
52	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715.	7.1	630
53	DIHYDROTESTOSTERONE AND THE PROSTATE: THE SCIENTIFIC RATIONALE FOR 51±-REDUCTASE INHIBITORS IN THE TREATMENT OF BENIGN PROSTATIC HYPERPLASIA. Journal of Urology, 2004, 172, 1399-1403.	0.4	232
54	The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annual Review of Biochemistry, 2003, 72, 137-174.	11.1	1,610

#	Article	IF	CITATIONS
55	Knockout of the Cholesterol 24-Hydroxylase Gene in Mice Reveals a Brain-specific Mechanism of Cholesterol Turnover. Journal of Biological Chemistry, 2003, 278, 22980-22988.	3.4	348
56	Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. Journal of Lipid Research, 2003, 44, 1780-1789.	4.2	136
57	De-orphanization of Cytochrome P450 2R1. Journal of Biological Chemistry, 2003, 278, 38084-38093.	3.4	343
58	Familial Hyperestrogenism in Both Sexes: Clinical, Hormonal, and Molecular Studies of Two Siblings. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3027-3034.	3.6	52
59	Male Pseudohermaphroditism Due to 5α-Reductase 2 Deficiency: Outcome of a Brazilian Cohort. , 2003, 13, 201-204.		29
60	Molecular Genetics of 3β-Hydroxy-Δ5-C27-Steroid Oxidoreductase Deficiency in 16 Patients with Loss of Bile Acid Synthesis and Liver Disease. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1833-1841.	3.6	96
61	Human Osteoblast-Like Cells Express Predominantly Steroid 5α-Reductase Type 1. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5401-5407.	3.6	63
62	Clinical importance of the cytochromes P450. Lancet, The, 2002, 360, 1155-1162.	13.7	1,190
63	Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis. Developmental Cell, 2002, 2, 713-720.	7.0	306
64	Expression of the androgen receptor and 5α-reductase typeÂ2 in the developing human fetal penis and urethra. Cell and Tissue Research, 2002, 307, 145-153.	2.9	106
65	Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. Journal of Clinical Investigation, 2002, 110, 1191-1200.	8.2	194
66	Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. Journal of Clinical Investigation, 2002, 110, 1191-1200.	8.2	132
67	On the turnover of brain cholesterol in patients with Alzheimer's disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neuroscience Letters, 2001, 314, 45-48.	2.1	188
68	The Hypocholesterolemic Agent LY295427 Reverses Suppression of Sterol Regulatory Element-binding Protein Processing Mediated by Oxysterols. Journal of Biological Chemistry, 2001, 276, 45408-45416.	3.4	55
69	Unexpected Virilization in Male Mice Lacking Steroid 5α-Reductase Enzymes. Endocrinology, 2001, 142, 4652-4662.	2.8	117
70	Genetic analysis of intestinal cholesterol absorption in inbred mice. Journal of Lipid Research, 2001, 42, 1801-1811.	4.2	41
71	Genetic analysis of cholesterol accumulation in inbred mice. Journal of Lipid Research, 2001, 42, 1812-1819.	4.2	32
72	Alternate pathways of bile acid synthesis in the cholesterol 7α-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. Journal of Lipid Research, 2001, 42, 1594-1603.	4.2	125

#	Article	IF	CITATIONS
73	Unexpected Virilization in Male Mice Lacking Steroid 5Â-Reductase Enzymes. Endocrinology, 2001, 142, 4652-4662.	2.8	41
74	Expression Cloning of an Oxysterol 7α-Hydroxylase Selective for 24-Hydroxycholesterol. Journal of Biological Chemistry, 2000, 275, 16543-16549.	3.4	158
75	Disruption of the Sterol 27-Hydroxylase Gene in Mice Results in Hepatomegaly and Hypertriglyceridemia. Journal of Biological Chemistry, 2000, 275, 39685-39692.	3.4	181
76	Disruption of the Oxysterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 2000, 275, 16536-16542.	3.4	181
77	The bile acid synthetic gene 3β-hydroxy-Δ5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. Journal of Clinical Investigation, 2000, 106, 1175-1184.	8.2	91
78	17β-Hydroxysteroid Dehydrogenase 3 Deficiency in Women ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 802-804.	3.6	39
79	Nuclear Orphan Receptors Control Cholesterol Catabolism. Cell, 1999, 97, 539-542.	28.9	198
80	5 α-REDUCTASE TYPE 2 MUTATIONS ARE PRESENT IN SOME BOYS WITH ISOLATED HYPOSPADIAS. Journal of Urology, 1999, 162, 1142-1145.	0.4	93
81	The Parturition Defect in Steroid 5α-Reductase Type 1 Knockout Mice Is Due to Impaired Cervical Ripening. Molecular Endocrinology, 1999, 13, 981-992.	3.7	194
82	cDNA Cloning of Mouse and Human Cholesterol 25-Hydroxylases, Polytopic Membrane Proteins That Synthesize a Potent Oxysterol Regulator of Lipid Metabolism. Journal of Biological Chemistry, 1998, 273, 34316-34327.	3.4	290
83	Marked reduction in bile acid synthesis in cholesterol 7α-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. Journal of Lipid Research, 1998, 39, 1833-1843.	4.2	223
84	Two 7αâ€hydroxylase enzymes in bile acid biosynthesis. Current Opinion in Lipidology, 1998, 9, 113-118.	2.7	98
85	Fetal Death in Mice Lacking 5α-Reductase Type 1 Caused by Estrogen Excess. Molecular Endocrinology, 1997, 11, 917-927.	3.7	128
86	Expression Cloning and Characterization of Oxidative 17β- and 3α-Hydroxysteroid Dehydrogenases from Rat and Human Prostate. Journal of Biological Chemistry, 1997, 272, 15959-15966.	3.4	213
87	Identification and Characterization of a Mouse Oxysterol 7α-Hydroxylase cDNA. Journal of Biological Chemistry, 1997, 272, 23995-24001.	3.4	143
88	Expression and regulation of steroid 5α-reductase in the genital tubercle of the fetal rat. , 1997, 209, 117-126.		22
89	Increased Expression of Early Growth Response-1 Messenger Ribonucleic Acid in Prostatic Adenocarcinoma. Journal of Urology, 1996, 155, 975-981.	0.4	52
90	17β-Hydroxysteroid dehydrogenase 3 deficiency. Trends in Endocrinology and Metabolism, 1996, 7, 121-126.	7.1	60

#	Article	IF	CITATIONS
91	Male Pseudohermaphroditism Due to Steroid 5α-Reductase 2 Deficiency Diagnosis, Psychological Evaluation, and Management. Medicine (United States), 1996, 75, 64-76.	1.0	123
92	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18017-18023.	3.4	203
93	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18024-18031.	3.4	227
94	Male pseudohermaphroditism caused by mutations of testicular 17β–hydroxysteroid dehydrogenase 3. Nature Genetics, 1994, 7, 34-39.	21.4	547
95	STEROID 5α-REDUCTASE: TWO GENES/TWO ENZYMES. Annual Review of Biochemistry, 1994, 63, 25-61.	11.1	1,052
96	Natural Mutagenesis Study of the Human Steroid 5.alphaReductase 2 Isoenzyme. Biochemistry, 1994, 33, 1265-1270.	2.5	166
97	Expression and Regulation of Steroid 5α-Reductase 2 in Prostate Disease. Journal of Urology, 1994, 152, 433-437.	0.4	83
98	Cell Type Specific Expression of Steroid 5α-Reductase 2. Journal of Urology, 1994, 152, 438-442.	0.4	96
99	The Molecular Genetics of Steroid 5α-Reductases. , 1994, 49, 275-284.		47
100	Steroid 5α-Reductase 2 Deficiency*. Endocrine Reviews, 1993, 14, 577-593.	20.1	462
101	The Molecular Basis of Steroid 5α-Reductase Deficiency in a Large Dominican Kindred. New England Journal of Medicine, 1992, 327, 1216-1219.	27.0	120
102	Cloning of the human cholesterol 7α-hydroxylase gene (CYP7) and localization to chromosome 8q11–q12. Genomics, 1992, 14, 153-161.	2.9	102
103	Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell, 1992, 69, 1051-1061.	28.9	565
104	Bile acid biosynthesis. Biochemistry, 1992, 31, 4737-4749.	2.5	743
105	The localization, partial purification and regulation of PEA plastid HMG-CoA reductase. Biochemical and Biophysical Research Communications, 1992, 184, 530-537.	2.1	9
106	Cholesterol biosynthesis and metabolism. Cardiovascular Drugs and Therapy, 1992, 6, 103-110.	2.6	154
107	Characterization and chromosomal mapping of a human steroid 5î±-reductase gene and pseudogene and mapping of the mouse homologue. Genomics, 1991, 11, 1102-1112.	2.9	151
108	cDNA cloning and expression of the peptide-binding β subunit of rat p21rasfarnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell, 1991, 66, 327-334.	28.9	194

#	Article	IF	CITATIONS
109	Deletion of steroid 5α-reductase 2 gene in male pseudohermaphroditism. Nature, 1991, 354, 159-161.	27.8	662
110	Structure of the rat gene encoding cholesterol 7.alphahydroxylase. Biochemistry, 1990, 29, 7781-7785.	2.5	63
111	TaqI polymorphism in the LDL receptor gene and a TaqI 1.5-kb band associated with familial hypercholesterolemia. Human Genetics, 1988, 80, 1-5.	3.8	17
112	Taql polymorphism in the human LDL receptor gene. Nucleic Acids Research, 1987, 15, 7659-7659.	14.5	10
113	Avall polymorphism in the human LDL receptor gene. Nucleic Acids Research, 1987, 15, 379-379.	14.5	70
114	Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell, 1987, 48, 827-835.	28.9	310
115	42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell, 1987, 48, 1061-1069.	28.9	229
116	Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature, 1987, 326, 760-765.	27.8	407
117	Protein Domains of the Low Density Lipoprotein Receptor. Acta Medica Scandinavica, 1987, 221, 39-44.	0.0	2
118	The J. D. mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell, 1986, 45, 15-24.	28.9	376
119	[53] Molecular cloning of bovine LDL receptor cDNAs. Methods in Enzymology, 1986, 128, 895-909.	1.0	1
120	[4] 3-Hydroxy-3-methylglutaryl-CoA reductases from pea seedlings. Methods in Enzymology, 1985, 110, 26-40.	1.0	24
121	Receptor-Mediated Endocytosis: Concepts Emerging from the LDL Receptor System. Annual Review of Cell Biology, 1985, 1, 1-39.	26.1	1,549
122	Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell, 1985, 41, 735-743.	28.9	309
123	Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature, 1984, 308, 613-617.	27.8	275
124	Domain map of the LDL receptor: Sequence homology with the epidermal growth factor precursor. Cell, 1984, 37, 577-585.	28.9	386
125	The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell, 1984, 39, 27-38.	28.9	1,459
126	DNA sequences of two yeast promoter-up mutants. Nature, 1983, 304, 652-654.	27.8	104

#	Article	IF	CITATIONS
127	Plastid 3-hydroxy-3-methylglutaryl coenzyme A reductase has distinctive kinetic and regulatory features: Properties of the enzyme and positive phytochrome control of activity in pea seedlings. Archives of Biochemistry and Biophysics, 1982, 216, 631-638.	3.0	59
128	Regulation of cytosolic HMG-CoA reductase activity in pea seedlings: Contrasting responses to different hormones, and hormone-product interaction, suggest hormonal modulation of activity. Biochemical and Biophysical Research Communications, 1982, 104, 1537-1543.	2.1	49
129	Mechanism of action of the wheat germ ribosome dissociation factor: Interaction with the 60 S subunit. Archives of Biochemistry and Biophysics, 1980, 201, 518-526.	3.0	52
130	Purification of eukaryotic cytoplasmic elongation factor 2 and organellar elongation factor G by an affinity binding procedure. Analytical Biochemistry, 1979, 99, 434-440.	2.4	13
131	A rapid and sensitive assay for the detection of eukaryotic ribosome dissociation factors. Analytical Biochemistry, 1979, 93, 238-243.	2.4	4
132	Regulation of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from pea seedlings: Rapid posttranslational phytochrome-mediated decrease in activity and in vivo regulation by isoprenoid products. Archives of Biochemistry and Biophysics, 1979, 198, 323-334.	3.0	52
133	Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings. Archives of Biochemistry and Biophysics, 1975, 167, 723-729.	3.0	58
134	Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum setivum seedlings. Archives of Biochemistry and Biophysics, 1975, 167, 730-737.	3.0	59