David W Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527460/publications.pdf

Version: 2024-02-01

134 papers 29,080 citations

81 h-index 123 g-index

135 all docs

135 docs citations

135 times ranked 24736 citing authors

#	Article	IF	CITATIONS
1	The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annual Review of Biochemistry, 2003, 72, 137-174.	5.0	1,610
2	Receptor-Mediated Endocytosis: Concepts Emerging from the LDL Receptor System. Annual Review of Cell Biology, 1985, 1, 1-39.	26.0	1,549
3	The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell, 1984, 39, 27-38.	13.5	1,459
4	A comprehensive classification system for lipids. Journal of Lipid Research, 2005, 46, 839-861.	2.0	1,348
5	Clinical importance of the cytochromes P450. Lancet, The, 2002, 360, 1155-1162.	6.3	1,190
6	Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research, 2010, 51, 3299-3305.	2.0	1,071
7	Steroid 5alpha-Reductase: Two Genes/Two Enzymes. Annual Review of Biochemistry, 1994, 63, 25-61.	5.0	1,052
8	LMSD: LIPID MAPS structure database. Nucleic Acids Research, 2007, 35, D527-D532.	6.5	998
9	Bile acid biosynthesis. Biochemistry, 1992, 31, 4737-4749.	1.2	74 3
10	Deletion of steroid 5α-reductase 2 gene in male pseudohermaphroditism. Nature, 1991, 354, 159-161.	13.7	662
10	Deletion of steroid 5α-reductase 2 gene in male pseudohermaphroditism. Nature, 1991, 354, 159-161. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715.	3.3	630
	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the		
11	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth	3.3	630
11 12	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell, 1992, 69, 1051-1061. Male pseudohermaphroditism caused by mutations of testicular $17\hat{1}^2\hat{a}$ "hydroxysteroid dehydrogenase 3.	3.3 13.5	630 565
11 12 13	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell, 1992, 69, 1051-1061. Male pseudohermaphroditism caused by mutations of testicular 17β–hydroxysteroid dehydrogenase 3. Nature Genetics, 1994, 7, 34-39. Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory	3.3 13.5 9.4	630 565 547
11 12 13	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell, 1992, 69, 1051-1061. Male pseudohermaphroditism caused by mutations of testicular 17β–hydroxysteroid dehydrogenase 3. Nature Genetics, 1994, 7, 34-39. Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. Cell, 2012, 151, 138-152.	3.3 13.5 9.4 13.5	630565547487
11 12 13 14	Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7711-7715. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell, 1992, 69, 1051-1061. Male pseudohermaphroditism caused by mutations of testicular 17βâ€"hydroxysteroid dehydrogenase 3. Nature Genetics, 1994, 7, 34-39. Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. Cell, 2012, 151, 138-152. Steroid Sα-Reductase 2 Deficiency*. Endocrine Reviews, 1993, 14, 577-593. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor	3.3 13.5 9.4 13.5	630565547487462

#	Article	IF	CITATIONS
19	The J. D. mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell, 1986, 45, 15-24.	13.5	376
20	Knockout of the Cholesterol 24-Hydroxylase Gene in Mice Reveals a Brain-specific Mechanism of Cholesterol Turnover. Journal of Biological Chemistry, 2003, 278, 22980-22988.	1.6	348
21	De-orphanization of Cytochrome P450 2R1. Journal of Biological Chemistry, 2003, 278, 38084-38093.	1.6	343
22	Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell, 1987, 48, 827-835.	13.5	310
23	Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell, 1985, 41, 735-743.	13.5	309
24	Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis. Developmental Cell, 2002, 2, 713-720.	3.1	306
25	cDNA Cloning of Mouse and Human Cholesterol 25-Hydroxylases, Polytopic Membrane Proteins That Synthesize a Potent Oxysterol Regulator of Lipid Metabolism. Journal of Biological Chemistry, 1998, 273, 34316-34327.	1.6	290
26	25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16764-16769.	3.3	289
27	Fifty years of advances in bile acid synthesis and metabolism. Journal of Lipid Research, 2009, 50, S120-S125.	2.0	284
28	Enzymatic Reduction of Oxysterols Impairs LXR Signaling in Cultured Cells and the Livers of Mice. Cell Metabolism, 2007, 5, 73-79.	7.2	276
29	Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature, 1984, 308, 613-617.	13.7	275
30	Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. Journal of Lipid Research, 2015, 56, 722-736.	2.0	264
31	A Mouse Macrophage Lipidome. Journal of Biological Chemistry, 2010, 285, 39976-39985.	1.6	260
32	Cholesterol 24-Hydroxylase: An Enzyme of Cholesterol Turnover in the Brain. Annual Review of Biochemistry, 2009, 78, 1017-1040.	5.0	255
33	DIHYDROTESTOSTERONE AND THE PROSTATE: THE SCIENTIFIC RATIONALE FOR 5α-REDUCTASE INHIBITORS IN THE TREATMENT OF BENIGN PROSTATIC HYPERPLASIA. Journal of Urology, 2004, 172, 1399-1403.	0.2	232
34	Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation. Cell, 2017, 171, 1057-1071.e11.	13.5	230
35	42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell, 1987, 48, 1061-1069.	13.5	229
36	Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3869-3874.	3.3	228

#	Article	IF	CITATIONS
37	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18024-18031.	1.6	227
38	Marked reduction in bile acid synthesis in cholesterol 7α-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. Journal of Lipid Research, 1998, 39, 1833-1843.	2.0	223
39	Expression Cloning and Characterization of Oxidative $17\hat{1}^2$ - and $3\hat{1}$ ±-Hydroxysteroid Dehydrogenases from Rat and Human Prostate. Journal of Biological Chemistry, 1997, 272, 15959-15966.	1.6	213
40	Mammalian Wax Biosynthesis. Journal of Biological Chemistry, 2004, 279, 37789-37797.	1.6	210
41	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18017-18023.	1.6	203
42	Nuclear Orphan Receptors Control Cholesterol Catabolism. Cell, 1999, 97, 539-542.	13.5	198
43	cDNA cloning and expression of the peptide-binding \hat{l}^2 subunit of rat p21rasfarnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell, 1991, 66, 327-334.	13.5	194
44	The Parturition Defect in Steroid 5î±-Reductase Type 1 Knockout Mice Is Due to Impaired Cervical Ripening. Molecular Endocrinology, 1999, 13, 981-992.	3.7	194
45	Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. Journal of Clinical Investigation, 2002, 110, 1191-1200.	3.9	194
46	Mutation of \hat{l}^2 -glucosidase 2 causes glycolipid storage disease and impaired male fertility. Journal of Clinical Investigation, 2006, 116, 2985-2994.	3.9	193
47	A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nature Genetics, 2013, 45, 1013-1020.	9.4	190
48	On the turnover of brain cholesterol in patients with Alzheimer's disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neuroscience Letters, 2001, 314, 45-48.	1.0	188
49	A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. Journal of Lipid Research, 2012, 53, 1399-1409.	2.0	185
50	Oxysterol Gradient Generation by Lymphoid Stromal Cells Guides Activated B Cell Movement during Humoral Responses. Immunity, 2012, 37, 535-548.	6.6	185
51	Disruption of the Sterol 27-Hydroxylase Gene in Mice Results in Hepatomegaly and Hypertriglyceridemia. Journal of Biological Chemistry, 2000, 275, 39685-39692.	1.6	181
52	Disruption of the Oxysterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 2000, 275, 16536-16542.	1.6	181
53	Subcellular organelle lipidomics in TLR-4-activated macrophages. Journal of Lipid Research, 2010, 51, 2785-2797.	2.0	180
54	Natural Mutagenesis Study of the Human Steroid 5.alphaReductase 2 Isoenzyme. Biochemistry, 1994, 33, 1265-1270.	1.2	166

#	Article	IF	Citations
55	Expression Cloning of an Oxysterol 7î±-Hydroxylase Selective for 24-Hydroxycholesterol. Journal of Biological Chemistry, 2000, 275, 16543-16549.	1.6	158
56	Neuronal expression and subcellular localization of cholesterol 24â€hydroxylase in the mouse brain. Journal of Comparative Neurology, 2008, 507, 1676-1693.	0.9	155
57	Cholesterol biosynthesis and metabolism. Cardiovascular Drugs and Therapy, 1992, 6, 103-110.	1.3	154
58	Characterization and chromosomal mapping of a human steroid $5\hat{l}_{\pm}$ -reductase gene and pseudogene and mapping of the mouse homologue. Genomics, 1991, 11, 1102-1112.	1.3	151
59	Identification and Characterization of a Mouse Oxysterol 7α-Hydroxylase cDNA. Journal of Biological Chemistry, 1997, 272, 23995-24001.	1.6	143
60	Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. Journal of Lipid Research, 2003, 44, 1780-1789.	2.0	136
61	Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. Journal of Clinical Investigation, 2002, 110, 1191-1200.	3.9	132
62	Extraction and Analysis of Sterols in Biological Matrices by High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Methods in Enzymology, 2007, 432, 145-170.	0.4	131
63	Fetal Death in Mice Lacking 5α-Reductase Type 1 Caused by Estrogen Excess. Molecular Endocrinology, 1997, 11, 917-927.	3.7	128
64	Alternate pathways of bile acid synthesis in the cholesterol $7\hat{l}_{\pm}$ -hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. Journal of Lipid Research, 2001, 42, 1594-1603.	2.0	125
65	Male Pseudohermaphroditism Due to Steroid 5î±-Reductase 2 Deficiency Diagnosis, Psychological Evaluation, and Management. Medicine (United States), 1996, 75, 64-76.	0.4	123
66	Steroid $5l$ ±-reductase 2 deficiency. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 206-211.	1.2	123
67	The Molecular Basis of Steroid 5α-Reductase Deficiency in a Large Dominican Kindred. New England Journal of Medicine, 1992, 327, 1216-1219.	13.9	120
68	Unexpected Virilization in Male Mice Lacking Steroid 5α-Reductase Enzymes. Endocrinology, 2001, 142, 4652-4662.	1.4	117
69	Mammalian Wax Biosynthesis. Journal of Biological Chemistry, 2004, 279, 37798-37807.	1.6	112
70	Expression of the androgen receptor and 5α-reductase typeÂ2 in the developing human fetal penis and urethra. Cell and Tissue Research, 2002, 307, 145-153.	1.5	106
71	CYP7B1: One Cytochrome P450, Two Human Genetic Diseases, and Multiple Physiological Functions. Journal of Biological Chemistry, 2009, 284, 28485-28489.	1.6	106
72	DNA sequences of two yeast promoter-up mutants. Nature, 1983, 304, 652-654.	13.7	104

#	Article	IF	Citations
73	Cloning of the human cholesterol 7α-hydroxylase gene (CYP7) and localization to chromosome 8q11–q12. Genomics, 1992, 14, 153-161.	1.3	102
74	Two 7αâ€hydroxylase enzymes in bile acid biosynthesis. Current Opinion in Lipidology, 1998, 9, 113-118.	1.2	98
75	Genetic Defects in Bile Acid Conjugation Cause Fat-Soluble Vitamin Deficiency. Gastroenterology, 2013, 144, 945-955.e6.	0.6	97
76	Cell Type Specific Expression of Steroid 5î±-Reductase 2. Journal of Urology, 1994, 152, 438-442.	0.2	96
77	Molecular Genetics of $3\hat{l}^2$ -Hydroxy- \hat{l} "5-C27-Steroid Oxidoreductase Deficiency in 16 Patients with Loss of Bile Acid Synthesis and Liver Disease. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1833-1841.	1.8	96
78	A comprehensive classification system for lipids. European Journal of Lipid Science and Technology, 2005, 107, 337-364.	1.0	94
79	5 α-REDUCTASE TYPE 2 MUTATIONS ARE PRESENT IN SOME BOYS WITH ISOLATED HYPOSPADIAS. Journal of Urology, 1999, 162, 1142-1145.	0.2	93
80	The bile acid synthetic gene $3\hat{l}^2$ -hydroxy- \hat{l} "5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. Journal of Clinical Investigation, 2000, 106, 1175-1184.	3.9	91
81	Expression and Regulation of Steroid 5α-Reductase 2 in Prostate Disease. Journal of Urology, 1994, 152, 433-437.	0.2	83
82	Mutation of the <i>CYP2R1 </i> Vitamin D 25-Hydroxylase in a Saudi Arabian Family with Severe Vitamin D Deficiency. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E2022-E2025.	1.8	76
83	Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4006-14.	3.3	72
84	Avall polymorphism in the human LDL receptor gene. Nucleic Acids Research, 1987, 15, 379-379.	6.5	70
85	Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11394-11399.	3.3	66
86	Reduction of cholesterol synthesis in the mouse brain does not affect amyloid formation in Alzheimer's disease, but does extend lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3502-3506.	3.3	66
87	25-Hydroxycholesterol Activates the Integrated Stress Response to Reprogram Transcription and Translation in Macrophages. Journal of Biological Chemistry, 2013, 288, 35812-35823.	1.6	64
88	Structure of the rat gene encoding cholesterol 7.alphahydroxylase. Biochemistry, 1990, 29, 7781-7785.	1.2	63
89	Human Osteoblast-Like Cells Express Predominantly Steroid 5α-Reductase Type 1. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5401-5407.	1.8	63
90	Editorial: 25-Hydroxycholesterol: a new life in immunology. Journal of Leukocyte Biology, 2010, 88, 1071-1072.	1.5	62

#	Article	IF	Citations
91	17Î ² -Hydroxysteroid dehydrogenase 3 deficiency. Trends in Endocrinology and Metabolism, 1996, 7, 121-126.	3.1	60
92	Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum seedlings. Archives of Biochemistry and Biophysics, 1975, 167, 730-737.	1.4	59
93	Plastid 3-hydroxy-3-methylglutaryl coenzyme A reductase has distinctive kinetic and regulatory features: Properties of the enzyme and positive phytochrome control of activity in pea seedlings. Archives of Biochemistry and Biophysics, 1982, 216, 631-638.	1.4	59
94	Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings. Archives of Biochemistry and Biophysics, 1975, 167, 723-729.	1.4	58
95	The Hypocholesterolemic Agent LY295427 Reverses Suppression of Sterol Regulatory Element-binding Protein Processing Mediated by Oxysterols. Journal of Biological Chemistry, 2001, 276, 45408-45416.	1.6	55
96	Regulation of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from pea seedlings: Rapid posttranslational phytochrome-mediated decrease in activity and in vivo regulation by isoprenoid products. Archives of Biochemistry and Biophysics, 1979, 198, 323-334.	1.4	52
97	Mechanism of action of the wheat germ ribosome dissociation factor: Interaction with the 60 S subunit. Archives of Biochemistry and Biophysics, 1980, 201, 518-526.	1.4	52
98	Increased Expression of Early Growth Response-1 Messenger Ribonucleic Acid in Prostatic Adenocarcinoma. Journal of Urology, 1996, 155, 975-981.	0.2	52
99	Familial Hyperestrogenism in Both Sexes: Clinical, Hormonal, and Molecular Studies of Two Siblings. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3027-3034.	1.8	52
100	Regulation of cytosolic HMG-CoA reductase activity in pea seedlings: Contrasting responses to different hormones, and hormone-product interaction, suggest hormonal modulation of activity. Biochemical and Biophysical Research Communications, 1982, 104, 1537-1543.	1.0	49
101	SRD5A3: A Surprising Role in Glycosylation. Cell, 2010, 142, 196-198.	13.5	47
102	The Molecular Genetics of Steroid 5î±-Reductases. , 1994, 49, 275-284.		47
103	Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. Journal of Lipid Research, 2013, 54, 2525-2542.	2.0	41
104	Genetic analysis of intestinal cholesterol absorption in inbred mice. Journal of Lipid Research, 2001, 42, 1801-1811.	2.0	41
105	Unexpected Virilization in Male Mice Lacking Steroid 5α-Reductase Enzymes. , 0, .		41
106	$17\hat{l}^2\text{-Hydroxysteroid Dehydrogenase 3 Deficiency in Women < sup> 1 < \text{sup}>. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 802-804.$	1.8	39
107	Differential diagnosis in patients with suspected bile acid synthesis defects. World Journal of Gastroenterology, 2012, 18, 1067.	1.4	38
108	Analysis of HSD3B7 knockout mice reveals that a 3Â-hydroxyl stereochemistry is required for bile acid function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11526-11533.	3.3	36

#	Article	IF	CITATIONS
109	Genetic analysis of cholesterol accumulation in inbred mice. Journal of Lipid Research, 2001, 42, 1812-1819.	2.0	32
110	Male Pseudohermaphroditism Due to $5\hat{l}$ ±-Reductase 2 Deficiency: Outcome of a Brazilian Cohort., 2003, 13, 201-204.		29
111	[4] 3-Hydroxy-3-methylglutaryl-CoA reductases from pea seedlings. Methods in Enzymology, 1985, 110, 26-40.	0.4	24
112	Expression and regulation of steroid $5\hat{l}_{\pm}$ -reductase in the genital tubercle of the fetal rat., 1997, 209, 117-126.		22
113	Low Testosterone Levels Result in Decreased Periurethral Vascularity via an Androgen Receptor-mediated Process: Pilot Study in Urethral Stricture Tissue. Urology, 2017, 105, 175-180.	0.5	22
114	Thoracoscopic Anterior Instrumentation and Fusion as a Treatment for Adolescent Idiopathic Scoliosis: A Systematic Review of the Literature. Spine Deformity, 2018, 6, 384-390.	0.7	18
115	Taql polymorphism in the LDL receptor gene and a Taql 1.5-kb band associated with familial hypercholesterolemia. Human Genetics, 1988, 80, 1-5.	1.8	17
116	Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in C <i>yp7a1</i> ^{â°'/â°'} mice fed low levels of cholic acid. American Journal of Physiology - Renal Physiology, 2012, 303, G263-G274.	1.6	17
117	Purification of eukaryotic cytoplasmic elongation factor 2 and organellar elongation factor G by an affinity binding procedure. Analytical Biochemistry, 1979, 99, 434-440.	1.1	13
118	The LIPID MAPS Approach to Lipidomics. , 2005, , 1-16.		12
119	Taql polymorphism in the human LDL receptor gene. Nucleic Acids Research, 1987, 15, 7659-7659.	6.5	10
120	Detecting oxysterols in the human circulation. Nature Immunology, 2011, 12, 577-577.	7.0	10
121	The localization, partial purification and regulation of PEA plastid HMG-CoA reductase. Biochemical and Biophysical Research Communications, 1992, 184, 530-537.	1.0	9
122	Christian Raetz: Scientist and Friend Extraordinaire. Annual Review of Biochemistry, 2013, 82, 1-24.	5.0	9
123	Reprint of "Steroid 5α-reductase 2 deficiency― Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 95-100.	1.2	9
124	The role of palliative colorectal stents in gynaecologic malignancy. Gynecologic Oncology, 2014, 134, 566-569.	0.6	6
125	A rapid and sensitive assay for the detection of eukaryotic ribosome dissociation factors. Analytical Biochemistry, 1979, 93, 238-243.	1.1	4
126	Lucky, times ten: A career in Texas science. Journal of Biological Chemistry, 2018, 293, 18804-18827.	1.6	4

#	Article	IF	CITATIONS
127	Protein Domains of the Low Density Lipoprotein Receptor. Acta Medica Scandinavica, 1987, 221, 39-44.	0.0	2
128	Steroid 5α-Reductase 2 Deficiency. , 2014, , 199-214.		2
129	[53] Molecular cloning of bovine LDL receptor cDNAs. Methods in Enzymology, 1986, 128, 895-909.	0.4	1
130	Mechanism and Function of Cholesterol Turnover in the Brain. FASEB Journal, 2006, 20, .	0.2	0
131	Brain cholesterol metabolism is important for learning. FASEB Journal, 2006, 20, A85.	0.2	O
132	Oxysterols: Cholesterol Metabolites of Diverse Function in Mice and Men. FASEB Journal, 2010, 24, 77.1.	0.2	0
133	Massâ€Spec Identification of Human Genetic Disease. FASEB Journal, 2011, 25, 938.4.	0.2	0
134	Genetic determinants of human serum sterol levels. FASEB Journal, 2012, 26, .	0.2	0