Carlos Cruchaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526934/publications.pdf

Version: 2024-02-01

6613 3732 38,081 305 79 179 citations h-index g-index papers 389 389 389 33590 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697
3	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	27.0	2,385
4	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
5	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
6	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
7	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
8	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
9	Human apoE Isoforms Differentially Regulate Brain Amyloid- \hat{l}^2 Peptide Clearance. Science Translational Medicine, 2011, 3, 89ra57.	12.4	924
10	ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature, 2017, 549, 523-527.	27.8	852
11	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
12	Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nature Medicine, 2019, 25, 277-283.	30.7	610
13	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	27.8	425
14	Alzheimer's Disease Genetics: From the Bench to the Clinic. Neuron, 2014, 83, 11-26.	8.1	396
15	Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain, 2015, 138, 3673-3684.	7.6	359
16	A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer's disease. Nature Medicine, 2020, 26, 398-407.	30.7	351
17	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	2.5	347
18	GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer's Disease. Neuron, 2013, 78, 256-268.	8.1	344

#	Article	IF	CITATIONS
19	A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nature Neuroscience, 2017, 20, 1052-1061.	14.8	330
20	Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nature Genetics, 2012, 44, 1349-1354.	21.4	303
21	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
22	Expression of Novel Alzheimer's Disease Risk Genes in Control and Alzheimer's Disease Brains. PLoS ONE, 2012, 7, e50976.	2.5	278
23	Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families. PLoS ONE, 2012, 7, e31039.	2.5	270
24	Coding variants in TREM2 increase risk for Alzheimer's disease. Human Molecular Genetics, 2014, 23, 5838-5846.	2.9	263
25	Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathologica, 2016, 131, 925-933.	7.7	262
26	A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics, 2019, 51, 568-576.	21.4	262
27	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	7.9	260
28	Early increase of CSF sTREM2 in Alzheimerâ \in TM s disease is associated with tau related-neurodegeneration but not with amyloid- \hat{l}^2 pathology. Molecular Neurodegeneration, 2019, 14, 1.	10.8	253
29	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	12.8	246
30	An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nature Neuroscience, 2019, 22, 1903-1912.	14.8	242
31	Assessment of Racial Disparities in Biomarkers for Alzheimer Disease. JAMA Neurology, 2019, 76, 264.	9.0	227
32	<i>TREM2</i> Variant p.R47H as a Risk Factor for Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 449.	9.0	221
33	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	10.2	217
34	Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers. Acta Neuropathologica, 2017, 133, 839-856.	7.7	199
35	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	2.9	198
36	Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Molecular Psychiatry, 2009, 14, 501-510.	7.9	196

#	Article	IF	Citations
37	Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease. Human Molecular Genetics, 2012, 21, 4558-4571.	2.9	196
38	Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease. Science Translational Medicine, 2019, 11, .	12.4	192
39	Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Molecular Psychiatry, 2020, 25, 1859-1875.	7.9	191
40	TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathologica, 2020, 140, 513-534.	7.7	186
41	A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. Nature Medicine, 2021, 27, 1187-1196.	30.7	182
42	Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Human Molecular Genetics, 2009, 18, 3125-3135.	2.9	180
43	Meningeal lymphatics affect microglia responses and anti-A \hat{l}^2 immunotherapy. Nature, 2021, 593, 255-260.	27.8	179
44	<i>TREM2</i> and Neurodegenerative Disease. New England Journal of Medicine, 2013, 369, 1564-1570.	27.0	174
45	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	3.1	174
46	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
47	The <i>MS4A</i> gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk. Science Translational Medicine, 2019, 11, .	12.4	170
48	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
49	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166
50	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
51	Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity. PLoS ONE, 2014, 9, e111899.	2.5	151
52	Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurology, 2016, 73, 691.	9.0	151
53	Association of TMEM106B Gene Polymorphism With Age at Onset in Granulin Mutation Carriers and Plasma Granulin Protein Levels. Archives of Neurology, 2011, 68, 581-6.	4.5	148
54	Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. ELife, 2016, 5, .	6.0	145

#	Article	IF	Citations
55	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.1	144
56	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
57	TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathologica, 2009, 118, 633-645.	7.7	139
58	A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain. Alzheimer's Research and Therapy, 2019, 11, 71.	6.2	131
59	TREM2 is associated with the risk of Alzheimer's disease in Spanish population. Neurobiology of Aging, 2013, 34, 1711.e15-1711.e17.	3.1	130
60	TREM2 is associated with increased risk for Alzheimer's disease in African Americans. Molecular Neurodegeneration, 2015, 10, 19.	10.8	130
61	A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death. Nature Medicine, 2014, 20, 1452-1457.	30.7	116
62	SNPs Associated with Cerebrospinal Fluid Phospho-Tau Levels Influence Rate of Decline in Alzheimer's Disease. PLoS Genetics, 2010, 6, e1001101.	3.5	111
63	Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Human Molecular Genetics, 2014, 23, 5271-5282.	2.9	111
64	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	30.7	111
65	Missense variant in TREML2 protects against Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1510.e19-1510.e26.	3.1	110
66	Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation. PLoS Genetics, 2014, 10, e1004758.	3.5	109
67	Polygenic risk score of sporadic lateâ€onset Alzheimer's disease reveals a shared architecture with the familial and earlyâ€onset forms. Alzheimer's and Dementia, 2018, 14, 205-214.	0.8	109
68	Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiology of Aging, 2016, 37, 209.e1-209.e7.	3.1	106
69	Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nature Neuroscience, 2021, 24, 1302-1312.	14.8	105
70	Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer's disease Ibero-American cohort. Alzheimer's Research and Therapy, 2012, 4, 34.	6.2	103
71	<i>APOE</i> genotype regulates pathology and disease progression in synucleinopathy. Science Translational Medicine, 2020, 12, .	12.4	102
72	Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis. PLoS ONE, 2011, 6, e26741.	2.5	101

#	Article	IF	CITATIONS
73	The epigenetic landscape of Alzheimer's disease. Nature Neuroscience, 2014, 17, 1138-1140.	14.8	101
74	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	12.4	100
75	Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE ε4 genotype. Brain, 2018, 141, 1828-1839.	7.6	99
76	<i>Chi3l1</i> /YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer's disease pathogenesis. Science Translational Medicine, 2020, 12, .	12.4	98
77	Association and Expression Analyses With Single-Nucleotide Polymorphisms in <emph type="ital">TOMM40</emph> in Alzheimer Disease. Archives of Neurology, 2011, 68, 1013.	4.5	97
78	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
79	Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain, 2020, 143, 2561-2575.	7.6	93
80	C9orf72 Hexanucleotide Repeat Expansions in Clinical Alzheimer Disease. JAMA Neurology, 2013, 70, 736.	9.0	92
81	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
82	Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathologica, 2018, 136, 857-872.	7.7	87
83	Variation in <i>MAPT</i> is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8050-8054.	7.1	84
84	TREM2 and neurodegenerative disease. New England Journal of Medicine, 2013, 369, 1567-8.	27.0	81
85	Pathogenic cysteine mutations affect progranulin function and production of mature granulins. Journal of Neurochemistry, 2010, 112, 1305-1315.	3.9	76
86	Genetic Predisposition to Increased Blood Cholesterol and Triglyceride Lipid Levels and Risk of Alzheimer Disease: A Mendelian Randomization Analysis. PLoS Medicine, 2014, 11, e1001713.	8.4	75
87	Higher CSF sTREM2 and microglia activation are associated with slower rates of betaâ€amyloid accumulation. EMBO Molecular Medicine, 2020, 12, e12308.	6.9	73
88	Phosphorylated Tau-Aβ42 Ratio as a Continuous Trait for Biomarker Discovery for Early-Stage Alzheimer's Disease in Multiplex Immunoassay Panels of Cerebrospinal Fluid. Biological Psychiatry, 2014, 75, 723-731.	1.3	72
89	Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 655-665.	0.8	72
90	Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study. Lancet Neurology, The, 2022, 21, 329-341.	10.2	72

#	Article	IF	Citations
91	<i>BDNF</i> Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease. Brain, 2016, 139, 2766-2777.	7.6	70
92	Resequencing analysis of five Mendelian genes andÂthe top genes from genome-wide association studies in Parkinson's Disease. Molecular Neurodegeneration, 2016, 11, 29.	10.8	70
93	Polygenic risk and hazard scores for Alzheimer's disease prediction. Annals of Clinical and Translational Neurology, 2019, 6, 456-465.	3.7	70
94	TYROBP genetic variants in early-onset Alzheimer's disease. Neurobiology of Aging, 2016, 48, 222.e9-222.e15.	3.1	69
95	Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Medicine, 2017, 9, 100.	8.2	67
96	Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Translational Psychiatry, 2013, 3, e256-e256.	4.8	66
97	Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease. Brain, 2021, 144, 2176-2185.	7.6	66
98	A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Human Molecular Genetics, 2016, 25, 202-209.	2.9	65
99	Sex differences in the genetic predictors of Alzheimer's pathology. Brain, 2019, 142, 2581-2589.	7.6	65
100	Fine Mapping of Genetic Variants in BIN1, CLU, CR1 and PICALM for Association with Cerebrospinal Fluid Biomarkers for Alzheimer's Disease. PLoS ONE, 2011, 6, e15918.	2.5	64
101	<scp>CSF</scp> progranulin increases in the course of Alzheimer's disease and is associated with <scp>sTREM</scp> 2, neurodegeneration and cognitive decline. EMBO Molecular Medicine, 2018, 10, .	6.9	64
102	Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Medicine, 2018, 10, 43.	8.2	62
103	Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathologica, 2017, 133, 955-966.	7.7	60
104	Rs5848 Variant Influences GRN mRNA Levels in Brain and Peripheral Mononuclear Cells in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 603-612.	2.6	59
105	Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2234.e13-2234.e19.	3.1	59
106	Polygenic risk scores in familial Alzheimer disease. Neurology, 2017, 88, 1180-1186.	1.1	59
107	A missense variant in SLC39A8 is associated with severe idiopathic scoliosis. Nature Communications, 2018, 9, 4171.	12.8	59
108	TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Molecular Neurodegeneration, 2019, 14, 18.	10.8	58

#	Article	IF	CITATIONS
109	Association of Rare Coding Mutations With Alzheimer Disease and Other Dementias Among Adults of European Ancestry. JAMA Network Open, 2019, 2, e191350.	5.9	58
110	Palmitoylation-induced Aggregation of Cysteine-string Protein Mutants That Cause Neuronal Ceroid Lipofuscinosis. Journal of Biological Chemistry, 2012, 287, 37330-37339.	3.4	57
111	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	5. 3	56
112	The PSEN1, p.E318G Variant Increases the Risk of Alzheimer's Disease in APOE- $\hat{l}\mu4$ Carriers. PLoS Genetics, 2013, 9, e1003685.	3 . 5	55
113	Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurology, 2017, 17, 198.	1.8	55
114	The Role of Variation at $\hat{Al^2}PP$, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	2.6	53
115	The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathologica, 2020, 139, 45-61.	7.7	51
116	The Role of Cardiovascular Risk Factors and Stroke in Familial Alzheimer Disease. JAMA Neurology, 2016, 73, 1231.	9.0	49
117	<i>PATJ</i> Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome. Circulation Research, 2019, 124, 114-120.	4.5	49
118	Characterizing the Role of Brain Derived Neurotrophic Factor Genetic Variation in Alzheimer's Disease Neurodegeneration. PLoS ONE, 2013, 8, e76001.	2.5	48
119	Cortical Atrophy and Language Network Reorganization Associated with a Novel Progranulin Mutation. Cerebral Cortex, 2009, 19, 1751-1760.	2.9	47
120	Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 955-959.	1.7	47
121	Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Translational Psychiatry, 2018, 8, 265.	4.8	47
122	Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Molecular Psychiatry, 2021, 26, 309-321.	7.9	47
123	SUCLG2 identified as both a determinator of CSF Aβ1–42 levels and an attenuator of cognitive decline in Alzheimer's disease. Human Molecular Genetics, 2014, 23, 6644-6658.	2.9	45
124	Assessment of the Genetic Architecture of Alzheimer's Disease Risk in Rate of Memory Decline. Journal of Alzheimer's Disease, 2018, 62, 745-756.	2.6	45
125	Parkinson disease is not associated with C9ORF72 repeat expansions. Neurobiology of Aging, 2013, 34, 1519.e1-1519.e2.	3.1	44
126	A potential endophenotype for Alzheimer's disease: cerebrospinal fluid clusterin. Neurobiology of Aging, 2016, 37, 208.e1-208.e9.	3.1	44

#	Article	IF	Citations
127	A Common Variant of IL-6R is Associated with Elevated IL-6 Pathway Activity in Alzheimer's Disease Brains. Journal of Alzheimer's Disease, 2017, 56, 1037-1054.	2.6	44
128	Accelerated functional brain aging in pre-clinical familial Alzheimer's disease. Nature Communications, 2021, 12, 5346.	12.8	43
129	Validating predicted biological effects of Alzheimer's disease associated SNPs using CSF biomarker levels. Journal of Alzheimer's Disease, 2010, 21, 833-42.	2.6	43
130	Socioeconomic Status Mediates Racial Differences Seen Using the <scp>AT(N)</scp> Framework. Annals of Neurology, 2021, 89, 254-265.	5.3	42
131	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	9.0	41
132	Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer's disease. Neurolmage: Clinical, 2019, 22, 101767.	2.7	41
133	Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease. PLoS Genetics, 2017, 13, e1007045.	3.5	40
134	Frontobasal gray matter loss is associated with the TREM2 p.R47H variant. Neurobiology of Aging, 2014, 35, 2681-2690.	3.1	39
135	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
136	Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS ONE, 2017, 12, e0185777.	2.5	38
137	ABCA7 p.G215S as potential protective factor for Alzheimer's disease. Neurobiology of Aging, 2016, 46, 235.e1-235.e9.	3.1	37
138	Alzheimer's disease alters oligodendrocytic glycolytic and ketolytic gene expression. Alzheimer's and Dementia, 2021, 17, 1474-1486.	0.8	37
139	Variants in <i>PPP3R1</i> and <i>MAPT</i> are associated with more rapid functional decline in Alzheimer's disease: The Cache County Dementia Progression Study. Alzheimer's and Dementia, 2014, 10, 366-371.	0.8	36
140	Effect of apolipoprotein E4 on clinical, neuroimaging, and biomarker measures in noncarrier participants in the Dominantly Inherited Alzheimer Network. Neurobiology of Aging, 2019, 75, 42-50.	3.1	36
141	Early Neurological Change After Ischemic Stroke Is Associated With 90-Day Outcome. Stroke, 2021, 52, 132-141.	2.0	36
142	Sequence of Alzheimer disease biomarker changes in cognitively normal adults. Neurology, 2020, 95, e3104-e3116.	1.1	35
143	Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease. PLoS ONE, 2016, 11, e0150079.	2.5	34
144	Variant-dependent heterogeneity in amyloid \hat{I}^2 burden in autosomal dominant Alzheimer's disease: cross-sectional and longitudinal analyses of an observational study. Lancet Neurology, The, 2022, 21, 140-152.	10.2	34

#	Article	IF	CITATIONS
145	Alzheimer's disease: rare variants with large effect sizes. Current Opinion in Genetics and Development, 2015, 33, 49-55.	3.3	33
146	Different MAPT haplotypes are associated with Parkinson's disease and progressive supranuclear palsy. Neurobiology of Aging, 2011, 32, 547.e11-547.e16.	3.1	32
147	Mendelian adult-onset leukodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neurobiology of Aging, 2018, 66, 179.e17-179.e29.	3.1	32
148	Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by <i>APOE</i> JAMA Neurology, 2019, 76, 1099.	9.0	32
149	Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease. Neurobiology of Disease, 2020, 142, 104960.	4.4	31
150	Identification of rare variants in Alzheimerââ,¬â"¢s disease. Frontiers in Genetics, 2014, 5, 369.	2.3	30
151	Discovery and validation of autosomal dominant Alzheimer's disease mutations. Alzheimer's Research and Therapy, 2018, 10, 67.	6.2	29
152	Prospective natural history study of <i>C9orf72</i> ALS clinical characteristics and biomarkers. Neurology, 2019, 93, e1605-e1617.	1.1	29
153	Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase Inhibit Phosphorolysis and Resensitize the 3′-Azido-3′-deoxythymidine (AZT)-resistant Polymerase to AZT-5′-triphosphate. Journal of Biological Chemistry, 2003, 278, 42710-42716.	3.4	28
154	Genomeâ€wide association study of rate of cognitive decline in Alzheimer's disease patients identifies novel genes and pathways. Alzheimer's and Dementia, 2020, 16, 1134-1145.	0.8	28
155	The association of genetic variants in interleukin-1 genes with cognition: Findings from the cardiovascular health study. Experimental Gerontology, 2011, 46, 1010-1019.	2.8	27
156	The influence of genetic variants in SORL1 gene on the manifestation of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 1605.e13-1605.e20.	3.1	27
157	Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?. Expert Opinion on Therapeutic Targets, 2018, 22, 587-598.	3.4	27
158	Biphasic cortical macro―and microstructural changes in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 618-628.	0.8	27
159	African Americans Have Differences in CSF Soluble TREM2 and Associated Genetic Variants. Neurology: Genetics, 2021, 7, e571.	1.9	27
160	Clinical Variables and Genetic Risk Factors Associated with the Acute Outcome of Ischemic Stroke: A Systematic Review. Journal of Stroke, 2019, 21, 276-289.	3.2	27
161	Predicting brain age from functional connectivity in symptomatic and preclinical Alzheimer disease. Neurolmage, 2022, 256, 119228.	4.2	27
162	Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke, 2020, 51, 2454-2463.	2.0	26

#	Article	IF	Citations
163	Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain, 2022, 145, 2541-2554.	7.6	26
164	Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits. Scientific Reports, 2016, 6, .	3.3	25
165	Effect of <i>BDNF</i> Val66Met on disease markers in dominantly inherited Alzheimer's disease. Annals of Neurology, 2018, 84, 424-435.	5.3	25
166	CCL23: A Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 1585-1595.	2.6	25
167	Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Reports, 2021, 36, 109399.	6.4	25
168	5′-upstream variants of CRHR1 and MAPT genes associated with age at onset in progressive supranuclear palsy and cortical basal degeneration. Neurobiology of Disease, 2009, 33, 164-170.	4.4	24
169	TMEM106B: a strong FTLD disease modifier. Acta Neuropathologica, 2014, 127, 419-422.	7.7	24
170	Role of ABCA7 loss-of-function variant in Alzheimer's disease: a replication study in European–Americans. Alzheimer's Research and Therapy, 2015, 7, 73.	6.2	24
171	Inhibition of Phosphorolysis Catalyzed by HIV-1 Reverse Transcriptase Is Responsible for the Synergy Found in Combinations of 3â€~-Azido-3â€~-deoxythymidine with Nonnucleoside Inhibitorsâ€. Biochemistry, 2005, 44, 3535-3546.	2.5	23
172	Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease. PLoS ONE, 2019, 14, e0218111.	2.5	23
173	Higher Body Mass Index Is Associated with Lower Cortical Amyloid-Î ² Burden in Cognitively Normal Individuals in Late-Life. Journal of Alzheimer's Disease, 2019, 69, 817-827.	2.6	23
174	Overlapping genetic architecture between Parkinson disease and melanoma. Acta Neuropathologica, 2020, 139, 347-364.	7.7	23
175	Genetic Variation in Genes Underlying Diverse Dementias May Explain a Small Proportion of Cases in the Alzheimer's Disease Sequencing Project. Dementia and Geriatric Cognitive Disorders, 2018, 45, 1-17.	1.5	22
176	Human fibroblast and stem cell resource from the Dominantly Inherited Alzheimer Network. Alzheimer's Research and Therapy, 2018, 10, 69.	6.2	22
177	Sharper in the morning: Cognitive time of day effects revealed with high-frequency smartphone testing. Journal of Clinical and Experimental Neuropsychology, 2021, 43, 825-837.	1.3	22
178	Selective Excision of Chain-terminating Nucleotides by HIV-1 Reverse Transcriptase with Phosphonoformate as Substrate. Journal of Biological Chemistry, 2006, 281, 27744-27752.	3.4	21
179	ldentification of plexin A4 as a novel clusterin receptor links two Alzheimer's disease risk genes. Human Molecular Genetics, 2016, 25, 3467-3475.	2.9	21
180	Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease. Frontiers in Neuroscience, 2018, 12, 209.	2.8	21

#	Article	IF	Citations
181	Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease. Frontiers in Neuroscience, 2018, 12, 230.	2.8	21
182	SORL1 variants across Alzheimer's disease European American cohorts. European Journal of Human Genetics, 2016, 24, 1828-1830.	2.8	20
183	Plasma amyloid β levels are driven by genetic variants near <i>APOE, BACE1, APP, PSEN2</i> : A genomeâ€wide association study in over 12,000 nonâ€demented participants. Alzheimer's and Dementia, 2021, 17, 1663-1674.	0.8	20
184	Autosomal dominant and sporadic late onset Alzheimer's disease share a common <i>in vivo</i> pathophysiology. Brain, 2022, 145, 3594-3607.	7.6	20
185	Genetic variation of the retromer subunits VPS26A/B-VPS29 in Parkinson's disease. Neurobiology of Aging, 2014, 35, 1958.e1-1958.e2.	3.1	19
186	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	12.8	19
187	Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-beta 42, tau, and p-tau levels. Alzheimer's Research and Therapy, 2018, 10, 86.	6.2	18
188	Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD Through Multiple Phenotypes. Journal of Alzheimer's Disease, 2020, 77, 1469-1482.	2.6	18
189	Causal Effect of MMP-1 (Matrix Metalloproteinase-1), MMP-8, and MMP-12 Levels on Ischemic Stroke. Stroke, 2021, 52, e316-e320.	2.0	18
190	Clinically early-stage $CSP\hat{l}\pm$ mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathologica Communications, 2015, 3, 73.	5.2	17
191	Phenotypic Similarities Between Late-Onset Autosomal Dominant and Sporadic Alzheimer Disease. JAMA Neurology, 2016, 73, 1125.	9.0	17
192	Overlap in the Genetic Architecture of Stroke Risk, Early Neurological Changes, and Cardiovascular Risk Factors. Stroke, 2019, 50, 1339-1345.	2.0	17
193	Autosomal dominantly inherited alzheimer disease: Analysis of genetic subgroups by machine learning. Information Fusion, 2020, 58, 153-167.	19.1	17
194	Rare and de novo coding variants in chromodomain genes in Chiari I malformation. American Journal of Human Genetics, 2021, 108, 100-114.	6.2	17
195	Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Science Translational Medicine, 2022, 14, eabk0135.	12.4	17
196	The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Frontiers in Neurology, 2021, 12, 660909.	2.4	16
197	Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease. Neurology, 2021, 96, e1632-e1645.	1.1	16
198	Baseline Microglial Activation Correlates With Brain Amyloidosis and Longitudinal Cognitive Decline in Alzheimer Disease. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	16

#	Article	IF	Citations
199	Remote cognitive assessment approaches in the Dominantly Inherited Alzheimer Network (DIAN). Alzheimer's and Dementia, 2020, 16, e038144.	0.8	15
200	Comparing amyloid- \hat{l}^2 plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease. Acta Neuropathologica, 2021, 142, 689-706.	7.7	15
201	Association of <i>BDNF </i> Val66Met With Tau Hyperphosphorylation and Cognition in Dominantly Inherited Alzheimer Disease. JAMA Neurology, 2022, 79, 261.	9.0	15
202	Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain, 2022, 145, 2394-2406.	7.6	15
203	Genetic high throughput screening in Retinitis Pigmentosa based on high resolution melting (HRM) analysis. Experimental Eye Research, 2013, 116, 386-394.	2.6	14
204	Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 669-677.	2.4	14
205	Physical Exercise and Longitudinal Trajectories in Alzheimer Disease Biomarkers and Cognitive Functioning. Alzheimer Disease and Associated Disorders, 2020, 34, 212-219.	1.3	14
206	Genome-Wide Association Study of White Blood Cell Counts in Patients With Ischemic Stroke. Stroke, 2019, 50, 3618-3621.	2.0	13
207	Awareness of genetic risk in the Dominantly Inherited Alzheimer Network (DIAN). Alzheimer's and Dementia, 2020, 16, 219-228.	0.8	13
208	Chitinase-3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40. BMC Neurology, 2016, 16, 217.	1.8	12
209	An APOE -independent cis -eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk. Neurobiology of Aging, 2018, 66, 178.e1-178.e8.	3.1	12
210	Exome sequencing revealed <i>PDE11A</i> as a novel candidate gene for early-onset Alzheimer's disease. Human Molecular Genetics, 2021, 30, 811-822.	2.9	12
211	Modeling autosomal dominant Alzheimer's disease with machine learning. Alzheimer's and Dementia, 2021, 17, 1005-1016.	0.8	12
212	Multiâ€phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. Journal of Thrombosis and Haemostasis, 2022, 20, 1331-1349.	3.8	12
213	Association of Acquired and Heritable Factors With Intergenerational Differences in Age at Symptomatic Onset of Alzheimer Disease Between Offspring and Parents With Dementia. JAMA Network Open, 2019, 2, e1913491.	5.9	11
214	Single-subject grey matter network trajectories over the disease course of autosomal dominant Alzheimer's disease. Brain Communications, 2020, 2, fcaa102.	3.3	11
215	Exome-wide rare variant analysis in familial essential tremor. Parkinsonism and Related Disorders, 2021, 82, 109-116.	2.2	11
216	Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 29.	5.2	11

#	Article	IF	CITATIONS
217	Genetic Discoveries in AD Using CSF Amyloid and Tau. Current Genetic Medicine Reports, 2014, 2, 23-29.	1.9	10
218	Validation of a clinical-genetics score to predict hemorrhagic transformations after rtPA. Neurology, 2019, 93, e851-e863.	1.1	10
219	Single nucleotide variations in <i>ZBTB46</i> are associated with post-thrombolytic parenchymal haematoma. Brain, 2021, 144, 2416-2426.	7.6	10
220	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
221	TMEM230 in Parkinson's disease. Neurobiology of Aging, 2017, 56, 212.e1-212.e3.	3.1	9
222	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	3.3	9
223	Relationships between bigâ€five personality factors and Alzheimer's disease pathology in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12038.	2.4	9
224	Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes, 2021, 12, 1247.	2.4	9
225	Regional Age-Related Atrophy After Screening for Preclinical Alzheimer Disease. Neurobiology of Aging, 2021, 109, 43-51.	3.1	9
226	Murine roseolovirus does not accelerate amyloid- \hat{l}^2 pathology and human roseoloviruses are not over-represented in Alzheimer disease brains. Molecular Neurodegeneration, 2022, 17, 10.	10.8	9
227	The National Institute on Aging Lateâ€Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimer's and Dementia, 2022, 18, 1889-1897.	0.8	9
228	Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk. PLoS ONE, 2022, 17, e0267298.	2.5	9
229	Cruchaga &	27.8	8
230	CpGâ€related SNPs in the MS4A region have a doseâ€dependent effect on risk of late–onset Alzheimer disease. Aging Cell, 2019, 18, e12964.	6.7	8
231	Functional genomic analyses uncover APOE-mediated regulationÂofÂbrain and cerebrospinal fluid beta-amyloid levels in Parkinson disease. Acta Neuropathologica Communications, 2020, 8, 196.	5.2	8
232	Undetected Neurodegenerative Disease Biases Estimates of Cognitive Change in Older Adults. Psychological Science, 2021, 32, 849-860.	3.3	8
233	Proteinopathy and Longitudinal Cognitive Decline in Parkinson Disease. Neurology, 2022, 99, .	1.1	8
234	CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN. Experimental Gerontology, 2017, 90, 83-89.	2.8	7

#	Article	IF	Citations
235	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.1	7
236	Network dysfunction in cognitively normal <i>APOE</i> $\hat{l}\mu4$ carriers is related to subclinical tau. Alzheimer's and Dementia, 2022, 18, 116-126.	0.8	7
237	Cognitively normal APOE ε4 carriers have specific elevation of CSF SNAP-25. Neurobiology of Aging, 2021, 102, 64-72.	3.1	7
238	Novel progranulin variants do not disrupt progranulin secretion and cleavage. Neurobiology of Aging, 2013, 34, 2538-2540.	3.1	6
239	Whole exome sequencing analysis reveals TRPV3 as a risk factor for cardioembolic stroke/subtitle. Thrombosis and Haemostasis, 2016, 116, 1165-1771.	3.4	6
240	Paving the road for the study of epigenetics in neurodegenerative diseases. Acta Neuropathologica, 2016, 132, 483-485.	7.7	6
241	Pooled-DNA target sequencing of Parkinson genes reveals novel phenotypic associations in Spanish population. Neurobiology of Aging, 2018, 70, 325.e1-325.e5.	3.1	6
242	Long runs of homozygosity are associated with Alzheimer's disease. Translational Psychiatry, 2021, 11, 142.	4.8	6
243	RP11-362K2.2:RP11-767I20.1 Genetic Variation Is Associated with Post-Reperfusion Therapy Parenchymal Hematoma. A GWAS Meta-Analysis. Journal of Clinical Medicine, 2021, 10, 3137.	2.4	6
244	A Multiâ€center Genomeâ€wide Association Study of Cervical Dystonia. Movement Disorders, 2021, 36, 2795-2801.	3.9	5
245	O1â€04â€03: COMPARING SMARTPHONEâ€ADMINISTERED COGNITIVE ASSESSMENTS WITH CONVENTIONAL T AND BIOMARKERS IN SPORADIC AND DOMINANTLY INHERITED ALZHEIMER DISEASE. Alzheimer's and Dementia, 2018, 14, P224.	ESTS 0.8	4
246	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
247	Overview of dominantly inherited AD and topâ€line DIANâ€TU results of solanezumab and gantenerumab. Alzheimer's and Dementia, 2020, 16, e041129.	0.8	4
248	A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template–primer. Biochemical Journal, 2007, 405, 165-171.	3.7	3
249	Cruchaga & Goate reply. Nature, 2015, 520, E10-E10.	27.8	3
250	Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 299-314.	0.9	3
251	Solanezumab inâ€depth outcomes. Alzheimer's and Dementia, 2020, 16, e038028.	0.8	3
252	Lack of evidence supporting a role for DPP6 sequence variants in Alzheimer's disease in the European American population. Acta Neuropathologica, 2021, 141, 623-624.	7.7	3

#	Article	IF	Citations
253	Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiology of Disease, 2021, 151, 105247.	4.4	3
254	Gantenerumab inâ€depth outcomes. Alzheimer's and Dementia, 2020, 16, e038049.	0.8	2
255	Biomarker clustering in autosomal dominant Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 274-284.	0.8	2
256	O4-01-01: Association of genetic variants with cerebrospinal fluid protein levels of ACE, MMP3 and other proteins and risk for Alzheimer's disease., 2013, 9, P677-P678.		1
257	P1-045: EXOME ARRAY ANALYSIS IDENTIFIES NOVEL RISK VARIANTS FOR ALZHEIMER'S DISEASE WITH ONSET BEFORE 65 YEARS. , 2014, 10, P319-P319.		1
258	P1-055: Exome-sequencing in a large dataset of late-onset families with Alzheimer's disease. , 2015, 11, P359-P359.		1
259	Protective genetic variants in the MS4A gene cluster modulate microglial activity. Alzheimer's and Dementia, 2020, 16, e039431.	0.8	1
260	Alzheimer's Disease Alters Oligodendrocytic Glycolytic and Ketolytic Gene Expression. FASEB Journal, 2021, 35, .	0.5	1
261	F2-01-03: A rare coding variant in PLD3 confers high risk for Alzheimer's disease. , 2013, 9, P312-P312.		0
262	O2-12-04: ALZHEIMER'S DISEASE RISK VARIANTS IN PHOSPHOLIPASE D3 ALTER APP METABOLISM BY GAMMA-DEPENDENT AND GAMMA-INDEPENDENT MECHANISMS. , 2014, 10, P192-P192.		0
263	O1-04-02: EXOME-SEQUENCING IN LATE-ONSET FAMILIES IDENTIFIED ADDITIONAL CANDIDATES GENES FOR ALZHEIMER'S DISEASE. , 2014, 10, P135-P135.		0
264	O1-04-05: NOVEL CODING VARIANTS IN TREM2 INCREASE RISK FOR ALZHEIMER'S DISEASE., 2014, 10, P136-P13	36.	0
265	IC-P-051: Amyloid load increase and cerebral microbleed prevalence differ as a function of the position of the mutation within the PSEN1 coding sequence. , 2015, 11, P41-P41.		0
266	O2-01-03: Amyloid load increase and cerebral microbleed prevalence differ as a function of the position of the mutation within the PSEN1 coding sequence., 2015, 11, P172-P172.		0
267	P1-221: Dynamic Relationships Between "Big Five―Personality Traits, Alzheimer's Disease Biomarkers, and Cognition in Autosomal Dominant Alzheimer's Disease. , 2016, 12, P491-P492.		0
268	F1â€01â€02: Alzheimer's Disease Sequencing Project: Search for Alzheimer's Disease Resilience Genes That May Modify Disease Susceptibility in Specific Apoe Genotype Backgrounds. Alzheimer's and Dementia, 2016, 12, P162.	0.8	0
269	P3â€097: <i>SORL1</i> Variants Across Alzheimer's Disease Cohorts in European Americans. Alzheimer's and Dementia, 2016, 12, P857.	0.8	0
270	O2â€10â€05: Cerebrospinal Fluid Levels of Amyloid Beta and Tau as Endophenotypes Reveal Novel Variants Potentially Informative for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P252.	0.8	0

#	Article	IF	CITATIONS
271	[ICâ€Pâ€057]: CLINICAL RISK RELATED TO CEREBRAL MICROHEMORRHAGES IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE: LONGITUDINAL RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P47.	0.8	0
272	[P2–372]: UTILITY OF PERFUSION PET MODELS AS MEASURES OF NEURODEGENERATION IN AN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE POPULATION: REPORT FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P768.	0.8	0
273	[P3–094]: RESOURCE OF MULTIPLEX AFRICAN AMERICAN FAMILIES FOR WHOLEâ€GENOME SEQUENCING. Alzheimer's and Dementia, 2017, 13, P970.	0.8	O
274	[P3–257]: DECODING VARIABILITY IN AGEâ€ATâ€SYMPTOMATICâ€ONSET BETWEEN PARENTS AND CHILDREN SPORADIC ALZHEIMER DISEASE DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1041.	WITH	0
275	[ICâ€Pâ€061]: APOE4 EFFECT ON LONGITUDINAL VOLUMETRICS AND PIB ACCUMULATION IN PRECLINICAL ALZHEIMER DISEASE. Alzheimer's and Dementia, 2017, 13, P50.	0.8	0
276	[ICâ€Pâ€166]: UTILITY OF PERFUSION PET MODELS AS MEASURE OF NEURODEGENERATION IN AN AUTOSOMAL DOMINANT ALZHEIMER's DISEASE POPULATION: REPORT FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P125.	0.8	O
277	[P2–345]: APOE4 EFFECT ON LONGITUDINAL VOLUMETRICS AND PIB ACCUMULATION IN PRECLINICAL ALZHEIMER DISEASE. Alzheimer's and Dementia, 2017, 13, P754.	0.8	O
278	[O1–11–03]: CEREBROSPINAL FLUID ENDOPHENOTYPES PROVIDE INSIGHT INTO BIOLOGY UNDERLYING ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P218.	0.8	0
279	[O2–08–05]: NOVEL CANDIDATE VARIANTS IN LOAD DETECTED BY THE FAMILIAL ALZHEIMER SEQUENCING (FASE) PROJECT. Alzheimer's and Dementia, 2017, 13, P572.	0.8	O
280	[O2–18–02]: PHOSPHOLIPASE D3 CONTRIBUTES TO ALZHEIMER'S DISEASE RISK VIA DISRUPTION OF Aβ CLEARANCE THROUGH THE LYSOSOME. Alzheimer's and Dementia, 2017, 13, P602.	0.8	0
281	[O1â€"02â€"04]: CLINICAL RISK RELATED TO CEREBRAL MICROHEMORRHAGES IN AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE: LONGITUDINAL RESULTS FROM THE DIAN STUDY. Alzheimer's and Dementia, 2017, 13, P186.	0.8	O
282	P1‶73: BRAIN TRANSCRIPTOMICS STUDY REVEALS DIFFERENTIAL EXPRESSION OF THE THREE <i>TRANSCRIPT IN AD AND <i>TREM2</i>MUTATION CARRIERS. Alzheimer's and Dementia, 2018, 14, P345.</i>	0.8	0
283	P3â€494: EXAMINING THE INFLUENCE OF UNDETECTED ATN NEUROPATHOLOGY ON COGNITIVE AGING TRAJECTORIES. Alzheimer's and Dementia, 2018, 14, P1311.	0.8	O
284	P2â€105: NOMINATION OF NOVEL CANDIDATE GENES FOR FAMILIAL LATE ONSET ALZHEIMER DISEASE AFTER EVALUATION OF GENEâ€BASED FAMILYâ€BASED METHODS. Alzheimer's and Dementia, 2018, 14, P709.	0.8	0
285	O4â€01â€04: CIRCULAR RNAS IN ALZHEIMER'S DISEASE BRAIN TISSUES. Alzheimer's and Dementia, 2018, 14, P1	40.B.	O
286	P1â€139: THE CONTRIBUTION OF SEXâ€SPECIFIC ASSOCIATIONS IN GENETIC STUDIES OF ALZHEIMER'S DISEASE PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P327.	0.8	0
287	S1-02-01: REVIEW OF GWAS GENES AND POLYGENIC RISK SCORES. , 2018, 14, P198-P198.		O
288	P2â€295: QUANTIFYING THE CONTRIBUTIONS OF HERITABLE AND NONâ€HERITABLE FACTORS TO AGEâ€ATâ€ON ALZHEIMER DEMENTIA IN ADULT CHILDREN OF AFFECTED PARENTS. Alzheimer's and Dementia, 2018, 14, P794.	NSET OF 0.8	0

#	Article	IF	CITATIONS
289	O5â€04â€03: IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES AND POTENTIALLY NOVEL DRUGS FOR FRONTOTEMPORAL LOBAR DEMENTIA WITH TAU INCLUSIONS BY A DEPENDABLE ANALYSIS APPROACH. Alzheimer's and Dementia, 2018, 14, P1651.	0.8	O
290	P4â€487: BRAIN SOMATIC MOSAICISM IN 17Q21.31 <i>MAPT</i> H1â€ASSOCIATED ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P1499.	0.8	0
291	ICâ€Pâ€023: EARLY RESTINGâ€6TATE NETWORK DYSFUNCTION IN <i>APOE</i> ε4 CARRIERS WITHOUT BIOMAI EVIDENCE OF ALZHEIMER'S DISEASE IS RELATED TO SUBCLINICAL TAU CHANGES. Alzheimer's and Dementia, 2019, 15, P30.	RKER 0.8	O
292	Global system segregation enhances reserve in normal aging and Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e037930.	0.8	0
293	Lateâ€onset Alzheimer's diseaseâ€associated gene, CPAMD8 , increases Bâ€CTF and affects APP processing through regulation of the autophagyâ€lysosome pathway. Alzheimer's and Dementia, 2020, 16, e040559.	0.8	0
294	Alzheimerâ€associated circular RNA circHOMER1 regulates synaptic gene expression and cognition. Alzheimer's and Dementia, 2020, 16, e042335.	0.8	0
295	Orderings of biomarker changes for Alzheimer disease in cognitively normal individuals from 18 to 101 years of age. Alzheimer's and Dementia, 2020, 16, e043187.	0.8	0
296	A comprehensive analysis of dementia cerebrospinal fluid biomarkers using GWAs, polygenic risk scores and Mendelian randomization in Parkinson's disease. Alzheimer's and Dementia, 2020, 16, e043233.	0.8	0
297	Prediction of Alzheimer's disease using plasma RNA sequences. Alzheimer's and Dementia, 2020, 16, e043273.	0.8	0
298	Proteogenomic analysis of cerebrospinal fluid reveals causal role of proteins from the autophagyâ€lysosome pathway in Parkinson's disease. Alzheimer's and Dementia, 2020, 16, e043422.	0.8	0
299	Multiomics approaches reveal a link between the MS4A gene loci, TREM2, and microglia function. Alzheimer's and Dementia, 2020, 16, e043592.	0.8	0
300	Identification of blood eQTLs for AD risk loci. Alzheimer's and Dementia, 2020, 16, e043801.	0.8	0
301	Singleâ€nuclei RNAâ€seq of brains carriers of highâ€risk variants and Mendelian mutations. Alzheimer's and Dementia, 2020, 16, e043125.	0.8	0
302	Replication study of ADâ€essociated rare variants. Alzheimer's and Dementia, 2022, , .	0.8	0
303	Integrating functional genomics with genetics to understand the biology of ALS and FTD. Med, 2022, 3, 226-227.	4.4	O
304	Using amyloid PET as a biomarker to detect progression of early Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
305	Impact of <i>MAPT</i> mutations on transcriptomic signatures of FTLD brains and patientâ€derived pluripotent cell models. Alzheimer's and Dementia, 2021, 17, e058313.	0.8	O