Andrew J Massey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS Journal, 2021, 288, 4507-4540.	4.7	22
2	Structure-Guided Discovery of Potent and Selective DYRK1A Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 6745-6764.	6.4	23
3	Chk1 inhibition induces a DNA damage bystander effect in cocultured tumour cells. DNA Repair, 2021, 101, 103099.	2.8	4
4	Fragment-Derived Selective Inhibitors of Dual-Specificity Kinases DYRK1A and DYRK1B. Journal of Medicinal Chemistry, 2021, 64, 8971-8991.	6.4	26
5	Checkpoint Kinase 1 (Chk1) inhibition fails to activate the Stimulator of Interferon Genes (STING) innate immune signalling in a human coculture cancer system. Molecular Biomedicine, 2021, 2, 19.	4.4	3
6	Targeting DYRK1A/B kinases to modulate p21â€cyclin D1â€p27 signalling and induce antiâ€tumour activity in a model of human glioblastoma. Journal of Cellular and Molecular Medicine, 2021, 25, 10650-10662.	3.6	7
7	Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411. SLAS Discovery, 2018, 23, 144-153.	2.7	2
8	A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells. PLoS ONE, 2018, 13, e0195050.	2.5	22
9	Modification of tumour cell metabolism modulates sensitivity to Chk1 inhibitor-induced DNA damage. Scientific Reports, 2017, 7, 40778.	3.3	12
10	Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase. Journal of Medicinal Chemistry, 2017, 60, 2271-2286.	6.4	22
11	Inhibition of ATR-dependent feedback activation of Chk1 sensitises cancer cells to Chk1 inhibitor monotherapy. Cancer Letters, 2016, 383, 41-52.	7.2	16
12	Tumour growth environment modulates Chk1 signalling pathways and Chk1 inhibitor sensitivity. Scientific Reports, 2016, 6, 35874.	3.3	2
13	mTORC1 and DNAâ€₽Kcs as novel molecular determinants of sensitivity to Chk1 inhibition. Molecular Oncology, 2016, 10, 101-112.	4.6	17
14	Inhibition of Chk1 with the small molecule inhibitor V158411 induces DNA damage and cell death in an unperturbed S-phase. Oncotarget, 2016, 7, 85033-85048.	1.8	16
15	Multiparametric Cell Cycle Analysis Using the Operetta High-Content Imager and Harmony Software with PhenoLOGIC. PLoS ONE, 2015, 10, e0134306.	2.5	33
16	Identification of novel, <i>in vivo</i> active Chk1 inhibitors utilizing structure guided drug design. Oncotarget, 2015, 6, 35797-35812.	1.8	38
17	Î ³ H2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments. BMC Cancer, 2014, 14, 483.	2.6	30
18	Chk1 Inhibition as a novel therapeutic strategy for treating triple-negative breast and ovarian cancers. BMC Cancer, 2014, 14, 570.	2.6	84

ANDREW J MASSEY

#	Article	IF	CITATIONS
19	Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human Leukemia and Lymphoma cells. Molecular Cancer, 2014, 13, 147.	19.2	45
20	Knockdown of PAK4 or PAK1 Inhibits the Proliferation of Mutant KRAS Colon Cancer Cells Independently of RAF/MEK/ERK and PI3K/AKT Signaling. Molecular Cancer Research, 2013, 11, 109-121.	3.4	83
21	Targeting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization. Bioorganic and Medicinal Chemistry, 2012, 20, 6770-6789.	3.0	40
22	Hsp90 Inhibitors and Drugs from Fragment and Virtual Screening. Topics in Current Chemistry, 2011, 317, 61-82.	4.0	29
23	Adenosine-Derived Inhibitors of 78 kDa Glucose Regulated Protein (Grp78) ATPase: Insights into Isoform Selectivity. Journal of Medicinal Chemistry, 2011, 54, 4034-4041.	6.4	94
24	Abstract 4458: Chk1 inhibition as a novel therapeutic strategy for treating triple negative breast and ovarian cancers. , 2011, , .		3
25	A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemotherapy and Pharmacology, 2010, 66, 535-545.	2.3	272
26	Context-Dependent Cell Cycle Checkpoint Abrogation by a Novel Kinase Inhibitor. PLoS ONE, 2010, 5, e13123.	2.5	11
27	Preclinical Antitumor Activity of the Orally Available Heat Shock Protein 90 Inhibitor NVP-BEP800. Molecular Cancer Therapeutics, 2010, 9, 906-919.	4.1	54
28	ATPases as Drug Targets: Insights from Heat Shock Proteins 70 and 90. Journal of Medicinal Chemistry, 2010, 53, 7280-7286.	6.4	67
29	Combining Hit Identification Strategies: Fragment-Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3- <i>d</i>]pyrimidine Inhibitors of the Hsp90 Molecular Chaperone. Journal of Medicinal Chemistry, 2009, 52, 4794-4809.	6.4	157
30	Novel Adenosine-Derived Inhibitors of 70 kDa Heat Shock Protein, Discovered Through Structure-Based Design. Journal of Medicinal Chemistry, 2009, 52, 1510-1513.	6.4	205
31	Abstract A212: A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitorâ€induced apoptosis in HCT116 colon carcinoma cells. , 2009, , .		1
32	Abstract C207: Checkpoint abrogation and potentiation of cytotoxic chemotherapeutics with a novel checkpoint kinase 1 inhibitor. , 2009, , .		0
33	NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Research, 2008, 10, R33.	5.0	191
34	4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. Journal of Medicinal Chemistry, 2008, 51, 196-218.	6.4	386
35	Thiothymidine plus low-dose UVA kills hyperproliferative human skin cells independently of their human papilloma virus status. Molecular Cancer Therapeutics, 2007, 6, 2487-2495.	4.1	22
36	4-Amino derivatives of the Hsp90 inhibitor CCT018159. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2543-2548.	2.2	79

ANDREW J MASSEY

#	Article	IF	CITATIONS
37	Targeting Hsp90 for the treatment of cancer. Current Opinion in Drug Discovery & Development, 2006, 9, 483-95.	1.9	51
38	Structure-based discovery of a new class of Hsp90 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5187-5191.	2.2	87
39	3-(5-chloro-2,4-dihydroxyphenyl)-Pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5197-5201.	2.2	83
40	Novel, Potent Small-Molecule Inhibitors of the Molecular Chaperone Hsp90 Discovered through Structure-Based Design. Journal of Medicinal Chemistry, 2005, 48, 4212-4215.	6.4	232
41	4-Thio-5-bromo-2′-deoxyuridine: chemical synthesis and therapeutic potential of UVA-induced DNA damage. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 995-997.	2.2	24
42	Adenine derived inhibitors of the molecular chaperone HSP90—SAR explained through multiple X-ray structures. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 325-328.	2.2	69
43	DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair, 2003, 2, 73-89.	2.8	33
44	Ambiguous coding is required for the lethal interaction between methylated DNA bases and DNA mismatch repair. DNA Repair, 2002, 1, 275-286.	2.8	26
45	Photoactivation of DNA thiobases as a potential novel therapeutic option. Current Biology, 2001, 11, 1142-1146.	3.9	103