
Min Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lattice-matched in-situ construction of 2D/2D T-SrTiO3/CsPbBr3 heterostructure for efficient photocatalysis of CO2 reduction. Chinese Chemical Letters, 2023, 34, 107682.	9.0	11
2	Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction. Nano Research, 2022, 15, 1845-1852.	10.4	27
3	In-situ growth of PbI2 on ligand-free FAPbBr3 nanocrystals to significantly ameliorate the stability of CO2 photoreduction. Chinese Chemical Letters, 2022, 33, 3039-3042.	9.0	11
4	Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. Journal of Energy Chemistry, 2022, 69, 348-355.	12.9	32
5	Glycineâ€Functionalized CsPbBr ₃ Nanocrystals for Efficient Visibleâ€Light Photocatalysis of CO ₂ Reduction. Chemistry - A European Journal, 2021, 27, 2305-2309.	3.3	32
6	In Situ Construction of Leadâ€Free Perovskite Direct Zâ€Scheme Heterojunction Cs ₃ Bi ₂ I ₉ /Bi ₂ WO ₆ for Efficient Photocatalysis of CO ₂ Reduction. Solar Rrl, 2021, 5, 2000691.	5.8	74
7	Stand-Alone CdS Nanocrystals for Photocatalytic CO ₂ Reduction with High Efficiency and Selectivity. ACS Applied Materials & amp; Interfaces, 2021, 13, 26573-26580.	8.0	37
8	Twoâ€Dimensional Metal Halide Perovskite Nanosheets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2100263.	5.8	36
9	Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr ₃ /α-Fe ₂ O ₃ for Boosting Photocatalysis of CO ₂ Reduction Coupled with Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 22314-22322.	8.0	59
10	In Situ Coating CsPbBr ₃ Nanocrystals with Graphdiyne to Boost the Activity and Stability of Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 50464-50471.	8.0	81
11	Ultrathin and Smallâ€Size Graphene Oxide as an Electron Mediator for Perovskiteâ€Based Zâ€Scheme System to Significantly Enhance Photocatalytic CO ₂ Reduction. Small, 2020, 16, e2002140.	10.0	73
12	A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO ₂ reduction and methanol oxidation. Chemical Communications, 2020, 56, 4664-4667.	4.1	47
13	β-Cyclodextrin Decorated CdS Nanocrystals Boosting the Photocatalytic Conversion of Alcohols. CCS Chemistry, 2020, 2, 81-88.	7.8	20
14	Waterâ€Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visibleâ€Lightâ€Driven CO ₂ Reduction in Pure Water. ChemSusChem, 2019, 12, 4769-4774.	6.8	89
15	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, 9591-9595.	2.0	53
16	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 9491-9495.	13.8	503
17	Engineering a CsPbBr ₃ -based nanocomposite for efficient photocatalytic CO ₂ reduction: improved charge separation concomitant with increased activity sites. RSC Advances, 2019, 9, 34342-34348.	3.6	49
18	FeCl ₃ as a low-cost and efficient p-type dopant of Spiro-OMeTAD for high performance perovskite solar cells. RSC Advances, 2018, 8, 9409-9413.	3.6	42

Min Zhang

#	Article	IF	CITATIONS
19	Benzothiadiazole–ethynylthiophenezoic acid as an acceptor of photosensitizer for efficient organic dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 21493-21500.	10.3	17
20	Thienochrysenocarbazoleâ€Based Dyes for Solar Cell: A Theoretical Investigation of the Tetheringâ€Positionâ€Related Influence of Tripleâ€Bond on the Electronic and Optical Properties. ChemistrySelect, 2018, 3, 11579-11584.	1.5	0
21	Evolution of the Excitedâ€State Dynamics of 2 <i>H</i> â€Dinaphthopentacene Based Dyes in Dyeâ€Sensitized Solar Cells: From Chromophoric Core to Ultimate Dye. Solar Rrl, 2018, 2, 1800119.	5.8	3
22	Correlating excited state and charge carrier dynamics with photovoltaic parameters of perylene dye sensitized solar cells: influences of an alkylated carbazole ancillary electron-donor. Physical Chemistry Chemical Physics, 2017, 19, 2549-2556.	2.8	8
23	Judicious engineering of a metal-free perylene dye for high-efficiency dye sensitized solar cells: the control of excited state and charge carrier dynamics. Journal of Materials Chemistry A, 2017, 5, 3514-3522.	10.3	18
24	Theoretical design and characterization of high-efficiency organic dyes with different electron-withdrawing groups based on C275 toward dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 9320-9328.	2.8	18
25	Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[<i>c</i>][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes. ACS Applied Materials & Interfaces, 2016, 8, 18292-18300.	8.0	20
26	Unlocking the effects of ancillary electron-donors on light absorption and charge recombination in phenanthrocarbazole dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 519-528.	10.3	31
27	A Metalâ€Free Nâ€Annulated Thienocyclopentaperylene Dye: Power Conversion Efficiency of 12 % for Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 5994-5998.	13.8	196
28	Exploring the regeneration process of ruthenium(II) dyes by cobalt mediator in dye-sensitized solar cells from first-principle calculations. Journal of Power Sources, 2015, 294, 264-271.	7.8	12
29	Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 3799-3802.	13.7	528
30	Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy and Environmental Science, 2015, 8, 3192-3197.	30.8	269
31	Efficient Triarylamine–Perylene Dye-Sensitized Solar Cells: Influence of Triple-Bond Insertion on Charge Recombination. ACS Applied Materials & Interfaces, 2015, 7, 801-809.	8.0	40
32	Electronâ€Acceptorâ€Dependent Light Absorption, Excitedâ€State Relaxation, and Charge Generation in Triphenylamine Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 97-104.	6.8	16
33	<i>N</i> â€Annulated Perylene as a Coplanar Ï€â€Łinker Alternative to Benzene as a Low Energyâ€Gap, Metalâ€Free Dye in Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400244.	19.5	57
34	Rigidifying the π-Linker to Enhance Light Absorption of Organic Dye-Sensitized Solar Cells and Influences on Charge Transfer Dynamics. Journal of Physical Chemistry C, 2014, 118, 2977-2986.	3.1	44
35	Unraveling the Pivotal Impacts of Electron-Acceptors on Light Absorption and Carrier Photogeneration in Perylene Dye Sensitized Solar Cells. ACS Photonics, 2014, 1, 710-717.	6.6	34
36	Altering the Selfâ€organization of Dyes on Titania with Dyeing Solvents to Tune the Chargeâ€transfer Dynamics of Sensitized Solar Cells. ChemPhysChem, 2014, 15, 1037-1042.	2.1	10

Min Zhang

#	Article	IF	CITATIONS
37	Judicious selection of a pinhole defect filler to generally enhance the performance of organic dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2939.	30.8	53
38	Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy and Environmental Science, 2013, 6, 2944.	30.8	297
39	Improving the Photovoltage of Dithienopyrrole Dyeâ€Sensitized Solar Cells via Attaching the Bulky Bis(octyloxy)biphenyl Moiety to the Conjugated I€â€Linker. Advanced Functional Materials, 2013, 23, 3539-3547.	14.9	70
40	Organic dye-sensitized solar cells with a cobalt redox couple: influences of π-linker rigidification and dye–bath solvent selection. Energy and Environmental Science, 2013, 6, 139-147.	30.8	93
41	Conjugated linker correlated energetics and kinetics in dithienopyrrole dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 1604.	30.8	58
42	Engineering of Pushâ€Pull Thiophene Dyes to Enhance Light Absorption and Modulate Charge Recombination in Mesoscopic Solar Cells. Advanced Functional Materials, 2013, 23, 1846-1854.	14.9	81
43	Lithium-Modulated Conduction Band Edge Shifts and Charge-Transfer Dynamics in Dye-Sensitized Solar Cells Based on a Dicyanamide Ionic Liquid. Langmuir, 2011, 27, 4749-4755.	3.5	73
44	Synchronously Reduced Surface States, Charge Recombination, and Light Absorption Length for High-Performance Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2010, 114, 4461-4464.	2.6	188
45	Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials. 2010. 22. 1915-1925.	6.7	933