Masaki Mogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive Deficit in Amyloid-β–Injected Mice Was Improved by Pretreatment With a Low Dose of Telmisartan Partly Because of Peroxisome Proliferator-Activated Receptor-γ Activation. Hypertension, 2009, 54, 782-787.	2.7	176
2	Aldosterone and Angiotensin II Synergistically Induce Mitogenic Response in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 434-442.	4.5	156
3	Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertension Research, 2020, 43, 1028-1046.	2.7	131
4	Deletion of Angiotensin II Type 2 Receptor Exaggerated Atherosclerosis in Apolipoprotein E–Null Mice. Circulation, 2005, 112, 1636-1643.	1.6	128
5	Clinical Interaction between Brain and Kidney in Small Vessel Disease. Cardiology Research and Practice, 2011, 2011, 1-5.	1.1	125
6	Telmisartan prevented cognitive decline partly due to PPAR-Î ³ activation. Biochemical and Biophysical Research Communications, 2008, 375, 446-449.	2.1	124
7	Eplerenone With Valsartan Effectively Reduces Atherosclerotic Lesion by Attenuation of Oxidative Stress and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 917-921.	2.4	112
8	Inhibitory Effects of AT ₁ Receptor Blocker, Olmesartan, and Estrogen on Atherosclerosis Via Anti-Oxidative Stress. Hypertension, 2005, 45, 545-551.	2.7	108
9	Neurovascular Coupling in Cognitive Impairment Associated With Diabetes Mellitus. Circulation Journal, 2011, 75, 1042-1048.	1.6	107
10	Continuous Activation of Renin-Angiotensin System Impairs Cognitive Function in Renin/Angiotensinogen Transgenic Mice. Hypertension, 2009, 53, 356-362.	2.7	101
11	Angiotensin II Type-2 Receptor Stimulation Prevents Neural Damage by Transcriptional Activation of Methyl Methanesulfonate Sensitive 2. Hypertension, 2006, 48, 141-148.	2.7	100
12	Cross-talk between aldosterone and angiotensin II in vascular smooth muscle cell senescence. Cardiovascular Research, 2007, 76, 506-516.	3.8	95
13	Peroxisome Proliferator-Activated Receptor-Î ³ Activation With Angiotensin II Type 1 Receptor Blockade Is Pivotal for the Prevention of Blood-Brain Barrier Impairment and Cognitive Decline in Type 2 Diabetic Mice. Hypertension, 2012, 59, 1079-1088.	2.7	91
14	Angiotensin II-Induced Neural Differentiation via Angiotensin II Type 2 (AT2) Receptor-MMS2 Cascade Involving Interaction between AT2Receptor-Interacting Protein and Src Homology 2 Domain-Containing Protein-Tyrosine Phosphatase 1. Molecular Endocrinology, 2007, 21, 499-511.	3.7	88
15	Direct Stimulation of Angiotensin II Type 2 Receptor Enhances Spatial Memory. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 248-255.	4.3	87
16	Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Research Reviews, 2009, 8, 113-121.	10.9	78
17	Emerging Concepts of Regulation of Angiotensin II Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2532-2539	2.4	74
18	Possible Role of Angiotensin-Converting Enzyme 2 and Activation of Angiotensin II Type 2 Receptor by Angiotensin-(1–7) in Improvement of Vascular Remodeling by Angiotensin II Type 1 Receptor Blockade. Hypertension, 2014, 63, e53-9.	2.7	71

Masaki Mogi

#	Article	IF	CITATIONS
19	Roles of Brain Angiotensin II in Cognitive Function and Dementia. International Journal of Hypertension, 2012, 2012, 1-7.	1.3	64
20	Direct Angiotensin II Type 2 Receptor Stimulation Ameliorates Insulin Resistance in Type 2 Diabetes Mice with PPARI ³ Activation. PLoS ONE, 2012, 7, e48387.	2.5	64
21	Direct Stimulation of Angiotensin II Type 2 Receptor Initiated After Stroke Ameliorates Ischemic Brain Damage. American Journal of Hypertension, 2014, 27, 1036-1044.	2.0	60
22	Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. Npj Aging and Mechanisms of Disease, 2016, 2, 16024.	4.5	60
23	Sex Difference in Vascular Injury and the Vasoprotective Effect of Valsartan Are Related to Differential AT 2 Receptor Expression. Hypertension, 2005, 46, 577-583.	2.7	58
24	Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice. PLoS ONE, 2017, 12, e0171515.	2.5	55
25	Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-Î ³ activation in diabetic mice. Journal of Hypertension, 2010, 28, 1730-1737.	0.5	54
26	Effect of angiotensin ll type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatrics and Gerontology International, 2013, 13, 13-18.	1.5	54
27	Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia, 2015, 58, 2885-2898.	6.3	49
28	Management of morning hypertension: a consensus statement of an Asian expert panel. Journal of Clinical Hypertension, 2018, 20, 39-44.	2.0	49
29	Attenuation of Inflammatory Vascular Remodeling by Angiotensin II Type 1 Receptor–Associated Protein. Hypertension, 2006, 48, 671-676.	2.7	48
30	Effects of angiotensin II receptor blockers on dementia. Hypertension Research, 2009, 32, 738-740.	2.7	48
31	Exaggeration of Focal Cerebral Ischemia in Transgenic Mice Carrying Human Renin and Human Angiotensinogen Genes. Stroke, 2009, 40, 597-603.	2.0	47
32	Sex-different effect of angiotensin II type 2 receptor on ischemic brain injury and cognitive function. Brain Research, 2009, 1300, 14-23.	2.2	47
33	Comparison of inhibitory action of candesartan and enalapril on brain ischemia through inhibition of oxidative stress. Neuropharmacology, 2006, 51, 822-828.	4.1	46
34	Diabetes-Associated Cognitive Impairment Is Improved by a Calcium Channel Blocker, Nifedipine. Hypertension, 2008, 51, 528-533.	2.7	46
35	Temporary Pretreatment With the Angiotensin II Type 1 Receptor Blocker, Valsartan, Prevents Ischemic Brain Damage Through an Increase in Capillary Density. Stroke, 2008, 39, 2029-2036.	2.0	43
36	Role of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis in the hypotensive effect of azilsartan. Hypertension Research, 2014, 37, 616-620.	2.7	42

Masaki Mogi

#	Article	IF	CITATIONS
37	Amelioration of Cognitive Impairment in the Type-2 Diabetic Mouse by the Angiotensin II Type-1 Receptor Blocker Candesartan. Hypertension, 2007, 50, 1099-1105.	2.7	41
38	Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan. Neuropharmacology, 2007, 53, 899-905.	4.1	36
39	Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia. Journal of the American Society of Hypertension, 2015, 9, 250-256.	2.3	36
40	Attenuation of Cuff-Induced Neointimal Formation by Overexpression of Angiotensin II Type 2 Receptor-Interacting Protein 1. Hypertension, 2009, 53, 688-693.	2.7	35
41	Irbesartan attenuates ischemic brain damage by inhibition of MCP-1/CCR2 signaling pathway beyond AT1 receptor blockade. Biochemical and Biophysical Research Communications, 2011, 409, 275-279.	2.1	34
42	Angiotensin II Type 2 Receptor Deletion Enhances Vascular Senescence by Methyl Methanesulfonate Sensitive 2 Inhibition. Hypertension, 2008, 51, 1339-1344.	2.7	33
43	Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network. PLoS ONE, 2018, 13, e0197003.	2.5	33
44	AT2 receptor stimulation inhibits phosphate-induced vascular calcification. Kidney International, 2019, 95, 138-148.	5.2	32
45	Effect of renin–angiotensin system on senescence. Geriatrics and Gerontology International, 2020, 20, 520-525.	1.5	30
46	Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clinical Science, 2019, 133, 2005-2018.	4.3	29
47	New insights into the regulation of angiotensin receptors. Current Opinion in Nephrology and Hypertension, 2009, 18, 138-143.	2.0	28
48	Diabetic mice exhibited a peculiar alteration in body composition with exaggerated ectopic fat deposition after muscle injury due to anomalous cell differentiation. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 213-224.	7.3	28
49	Possible synergistic effect of direct angiotensin II type 2 receptor stimulation by compound 21 with memantine on prevention of cognitive decline in type 2 diabetic mice. European Journal of Pharmacology, 2014, 724, 9-15.	3.5	27
50	Low-Protein Diet-Induced Fetal Growth Restriction Leads to Exaggerated Proliferative Response to Vascular Injury in Postnatal Life. American Journal of Hypertension, 2016, 29, 54-62.	2.0	26
51	Therapeutic Approach for Neuronal Disease by Regulating Reninangiotensin System. Current Hypertension Reviews, 2013, 9, 99-107.	0.9	26
52	Attenuation of Focal Brain Ischemia by Telmisartan, an Angiotensin II Type 1 Receptor Blocker, in Atherosclerotic Apolipoprotein E-Deficient Mice. Hypertension Research, 2008, 31, 161-168.	2.7	25
53	The calcium-channel blocker, azelnidipine, enhances the inhibitory action of AT1 receptor blockade on ischemic brain damage. Journal of Hypertension, 2006, 24, 2023-2031.	0.5	22
54	Deletion of Angiotensin II Type 2 Receptor Attenuates Protective Effects of Bone Marrow Stromal Cell Treatment on Ischemia–Reperfusion Brain Injury in Mice. Stroke, 2008, 39, 2554-2559.	2.0	22

#	Article	IF	CITATIONS
55	Serum levels of renin-angiotensin system components in acute stroke patients. Geriatrics and Gerontology International, 2014, 14, 793-798.	1.5	21
56	Angiotensin II type 2 receptor-interacting protein prevents vascular senescence. Journal of the American Society of Hypertension, 2012, 6, 179-184.	2.3	20
57	Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage. European Journal of Pharmacology, 2015, 762, 293-298.	3.5	20
58	Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade. PLoS ONE, 2016, 11, e0167704.	2.5	20
59	Temporal expression profiling of DAMPs-related genes revealed the biphasic post-ischemic inflammation in the experimental stroke model. Molecular Brain, 2020, 13, 57.	2.6	18
60	Effect of Angiotensin II Type 2 Receptor-Interacting Protein on Adipose Tissue Function via Modulation of Macrophage Polarization. PLoS ONE, 2013, 8, e60067.	2.5	17
61	Angiotensin II Type 2 Receptor Inhibits Vascular Intimal Proliferation With Activation of PPARÎ ³ . American Journal of Hypertension, 2016, 29, 727-736.	2.0	17
62	Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy. Journal of the American Society of Hypertension, 2012, 6, 324-330.	2.3	16
63	Predicting outcome of Morris water maze test in vascular dementia mouse model with deep learning. PLoS ONE, 2018, 13, e0191708.	2.5	16
64	Latest hypertension research to inform clinical practice in Asia. Hypertension Research, 2022, 45, 555-572.	2.7	16
65	Attenuation of stroke damage by angiotensin II type 2 receptor stimulation via peroxisome proliferator-activated receptor-gamma activation. Hypertension Research, 2018, 41, 839-848.	2.7	15
66	Zoledronate modulates intracellular vesicle trafficking in mast cells via disturbing the interaction of myosinVa/Rab3a and sytaxin4/VAMP7. Biochemical Pharmacology, 2018, 151, 18-25.	4.4	14
67	Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice. Hypertension Research, 2020, 43, 296-304.	2.7	14
68	Effect of Angiotensin II Type 2 Receptor Deletion in Hematopoietic Cells on Brain Ischemia-Reperfusion Injury. Hypertension, 2011, 58, 404-409.	2.7	13
69	The results of a survey of physicians about the Japanese Society of Hypertension Guidelines for the Management of Hypertension 2014 and its clinical use. Hypertension Research, 2016, 39, 660-663.	2.7	13
70	Angiotensin II type 2 receptor signaling affects dopamine levels in the brain and prevents binge eating disorder. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 749-757.	1.7	11
71	Identification of the Mtus1 Splice Variant as a Novel Inhibitory Factor Against Cardiac Hypertrophy. Journal of the American Heart Association, 2016, 5, .	3.7	10
72	Beneficial Effect of Mas Receptor Deficiency on Vascular Cognitive Impairment in the Presence of Angiotensin II Type 2 Receptor. Journal of the American Heart Association, 2018, 7, .	3.7	10

#	Article	IF	CITATIONS
73	Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. PLoS ONE, 2020, 15, e0227582.	2.5	10
74	Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion—possible amelioration of cognitive function by AT2 receptor activation. Journal of Neuroinflammation, 2020, 17, 106.	7.2	10
75	Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model. PLoS ONE, 2015, 10, e0117616.	2.5	9
76	Aldosterone breakthrough from a pharmacological perspective. Hypertension Research, 2022, , .	2.7	9
77	Evaluation of neurobehavioral impairment in methylmercuryâ€ŧreated KKâ€Ay mice by dynamic weightâ€bearing test. Journal of Applied Toxicology, 2019, 39, 221-230.	2.8	8
78	Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3. Inflammation Research, 2020, 69, 289-298.	4.0	8
79	High-throughput screening system for dynamic monitoring of exocytotic vesicle trafficking in mast cells. PLoS ONE, 2018, 13, e0198785.	2.5	7
80	Could Management of Blood Pressure Prevent Dementia in the elderly?. Clinical Hypertension, 2019, 25, 27.	2.0	7
81	Annual reports on hypertension research 2020. Hypertension Research, 2022, 45, 15-31.	2.7	7
82	Remote control of brain angiotensin II levels by angiotensin receptor blockers. Hypertension Research, 2010, 33, 116-117.	2.7	6
83	Inhibition of MCP-1/CCR2 signaling pathway is involved in synergistic inhibitory effects of irbesartan with rosuvastatin on vascular remodeling. Journal of the American Society of Hypertension, 2012, 6, 375-384.	2.3	6
84	Synergistic Inhibitory Effect of Rosuvastatin and Angiotensin II Type 2 Receptor Agonist on Vascular Remodeling. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 352-358.	2.5	6
85	Interferon regulatory factor 1 attenuates vascular remodeling; roles of angiotensin II type 2 receptor. Journal of the American Society of Hypertension, 2016, 10, 811-818.	2.3	6
86	Deletion of interferon-regulatory factor-1 results in cognitive impairment. Hypertension Research, 2018, 41, 809-816.	2.7	6
87	Roles of angiotensin II type 2 receptor in mice with fetal growth restriction. Hypertension Research, 2018, 41, 157-164.	2.7	5
88	Angiotensin II and Amyloid-β Synergistically Induce Brain Vascular Smooth Muscle Cell Senescence. American Journal of Hypertension, 2021, 34, 552-562.	2.0	5
89	Long-term impact of maternal dietary intervention on metabolic homeostasis in male offspring in mice. Journal of Nutritional Biochemistry, 2022, 104, 108971.	4.2	5
90	Correlation between the 24-h urinary angiotensinogen or aldosterone level and muscle mass: Japan shimanami health promoting program study. Hypertension Research, 2018, 41, 326-333.	2.7	4

0

#	Article	IF	CITATIONS
91	Double Deletion of Angiotensin II Type 2 and Mas Receptors Accelerates Agingâ€Related Muscle Weakness in Male Mice. Journal of the American Heart Association, 2021, 10, e021030.	3.7	4
92	Dendritic cells as potential initiators of immune-mediated hypertensive disorders. Hypertension Research, 2022, 45, 527-529.	2.7	3
93	Platelet–endothelial cell interaction in brain microvessels of angiotensin II type-2 receptor knockout mice following transient bilateral common carotid artery occlusion. Journal of Thrombosis and Thrombolysis, 2015, 40, 401-405.	2.1	2
94	Calcium-Channel Blockers as Antidementia Drugs. Circulation Journal, 2016, 80, 2291-2292.	1.6	2
95	Morphological and functional analysis of beige (Chèdiak-Higashi syndrome) mouse mast cells with giant granules. International Immunopharmacology, 2019, 69, 202-212.	3.8	2
96	Perinatal lowâ€fat dietary intervention affects glucose metabolism in female adult and aging offspring. Geriatrics and Gerontology International, 2022, , .	1.5	2
97	Hypertension management to prevent dementia. Hypertension Research, 2022, 45, 573-575.	2.7	2
98	ls CKD a surrogate marker for predicting cognitive impairment?. Hypertension Research, 2011, 34, 1251-1252.	2.7	1
99	Does chronic hypertension prevent cancer progression?. Hypertension Research, 2015, 38, 711-712.	2.7	1
100	To overcome two diseases with one pill. Hypertension Research, 2016, 39, 399-400.	2.7	1
101	Toxicokinetics of methylmercury in diabetic KKâ€Ay mice and C57BL/6 mice. Journal of Applied Toxicology, 2021, 41, 928-940.	2.8	1
102	Clinical study on angiotensin II vaccination—the first big step. Hypertension Research, 2021, , .	2.7	1
103	Inhibition of Histamine Release from RBL-2H3 Cells by Zoledronate Did Not Affect Rab27a/Doc2a Interaction. Biological and Pharmaceutical Bulletin, 2021, 44, 1902-1906.	1.4	1
104	Is COVID-19 vaccination beneficial or harmful to endothelial cells?. Hypertension Research, 2022, , .	2.7	1
105	New Editorial Hypertension Research: Looking back to 2021 and perspective to 2022. Hypertension Research, 2022, 45, 181-185.	2.7	1
106	Learning a lesson from the past. Hypertension Research, 2009, 32, 936-937.	2.7	0
107	P2-030: Administration of Bovine Casein-Derived Peptide Prevents Cognitive Decline in Alzheimer's Disease Model Mice. , 2016, 12, P620-P620.		0

108 Diabetes and Sarcopenia. , 2018, , 141-151.

#	Article	IF	CITATIONS
109	Reply to comments on "ls sarcopenia primarily age―or renin–angiotensin systemâ€related disorder?â€ Geriatrics and Gerontology International, 2020, 20, 1000-1000.	1.5	0
110	A disturbance beyond the barrier—chronic kidney disease allows angiotensinogen invasion. Hypertension Research, 2021, 44, 874-876.	2.7	0
111	Cardioprotection by direct factor Xa inhibition in angiotensin II overexpression. Hypertension Research, 2021, 44, 1355-1356.	2.7	0
112	Effect of angiotensin II type 2 receptor on cerebral ischemic injury in mice with fetal growth restriction. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-041.	0.0	0
113	Hesperidin improves vascular remodeling in cuff-induced vascular injury mouse model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-P-071.	0.0	0
114	Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. , 2020, 15, e0227582.		0
115	Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. , 2020, 15, e0227582.		0
116	Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. , 2020, 15, e0227582.		0
117	Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. , 2020, 15, e0227582.		0
118	Preface–special issue on hypertension in Asia: the second story. Hypertension Research, 2022, 45, 747-747.	2.7	0
119	Role of MicroRNAs in acceleration of vascular endothelial senescence. Biochemistry and Biophysics Reports, 2022, 30, 101281.	1.3	Ο