
Willem M De Vos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2525514/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Toxicological safety evaluation of live <i>Anaerobutyricum soehngenii</i> strain CH106. Journal of Applied Toxicology, 2022, 42, 244-257.	2.8	7
2	Comparative genomics and proteomics of <i>Eubacterium maltosivorans</i> : functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environmental Microbiology, 2022, 24, 517-534.	3.8	8
3	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	12.1	661
4	Before the heart attack. Nature Medicine, 2022, 28, 237-238.	30.7	1
5	Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites, 2022, 12, 301.	2.9	7
6	Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. Npj Biofilms and Microbiomes, 2022, 8, 21.	6.4	26
7	Peptidoglycan from <i>Akkermansia muciniphila</i> MucT: chemical structure and immunostimulatory properties of muropeptides. Glycobiology, 2022, 32, 712-719.	2.5	2
8	The gut fungal and bacterial microbiota in pediatric patients with inflammatory bowel disease introduced to treatment with anti-tumor necrosis factor-α. Scientific Reports, 2022, 12, 6654.	3.3	5
9	The Effect of Antibiotics on the Infant Gut Fungal Microbiota. Journal of Fungi (Basel, Switzerland), 2022, 8, 328.	3.5	11
10	Dried chicory root improves bowel function, benefits intestinal microbial trophic chains and increases faecal and circulating short chain fatty acids in subjects at risk for type 2 diabetes. Gut Microbiome, 2022, 3, .	3.2	5
11	A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. International Journal of Molecular Sciences, 2022, 23, 5328.	4.1	13
12	Gut microbiota predicts body fat change following a low-energy diet: a PREVIEW intervention study. Genome Medicine, 2022, 14, .	8.2	32
13	Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 625-637.	17.8	239
14	Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME Journal, 2022, 16, 2144-2159.	9.8	16
15	Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection: a Prospective Case–Control Study. Translational Stroke Research, 2021, 12, 581-592.	4.2	75
16	Toxicological safety evaluation of pasteurized <i>Akkermansia muciniphila</i> . Journal of Applied Toxicology, 2021, 41, 276-290.	2.8	30
17	Roadmap to functional characterization of the human intestinal microbiota in its interaction with the host. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113751.	2.8	9
18	Correlations between microbiota and metabolites after faecal microbiota transfer in irritable bowel syndrome. Beneficial Microbes, 2021, 12, 17-30.	2.4	4

#	Article	IF	CITATIONS
19	Beneficial Effects of Akkermansia muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells, 2021, 10, 185.	4.1	43
20	Gut bacteriophage dynamics during fecal microbial transplantation in subjects with metabolic syndrome. Gut Microbes, 2021, 13, 1-15.	9.8	24
21	Protocol for oral transplantation of maternal fecal microbiota to newborn infants born by cesarean section. STAR Protocols, 2021, 2, 100271.	1.2	7
22	Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness. MSystems, 2021, 6, .	3.8	35
23	Fecal Microbiota Transplantation from Overweight or Obese Donors in Cachectic Patients with Advanced Gastroesophageal Cancer: A Randomized, Double-blind, Placebo-Controlled, Phase II Study. Clinical Cancer Research, 2021, 27, 3784-3792.	7.0	30
24	Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101504.	4.7	16
25	DOP71 Fungal and bacterial gut microbiota in paediatric onset Inflammatory Bowel Disease introduced to infliximab. Journal of Crohn's and Colitis, 2021, 15, S105-S105.	1.3	0
26	A novel technique capable of taking â€~protected' biopsies for reliable assessment of the distribution of microbiota along the colonic mucosa. Journal of Microbiological Methods, 2021, 185, 106204.	1.6	1
27	Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future?. Cell Metabolism, 2021, 33, 1098-1110.	16.2	93
28	A Continuous Battle for Host-Derived Glycans Between a Mucus Specialist and a Glycan Generalist in vitro and in vivo. Frontiers in Microbiology, 2021, 12, 632454.	3.5	15
29	Does Day-to-Day Variability in Stool Consistency Link to the Fecal Microbiota Composition?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639667.	3.9	11
30	Early-life gut microbiota and its connection to metabolic health in children: Perspective on ecological drivers and need for quantitative approach. EBioMedicine, 2021, 69, 103475.	6.1	47
31	Fecal Bacteria Implicated in Biofilm Production Are Enriched and Associate to Gastrointestinal Symptoms in Patients With APECED – A Pilot Study. Frontiers in Immunology, 2021, 12, 668219.	4.8	6
32	Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biology, 2021, 22, 209.	8.8	65
33	Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nature Communications, 2021, 12, 4798.	12.8	76
34	Authors' Response: " <scp><i>Akkermansia muciniphila</i></scp> reduces <scp><i>Porphyromonas gingivalis</i></scp> induced inflammation and periodontal bone destruction― Journal of Clinical Periodontology, 2021, 48, 1493-1494.	4.9	1
35	The CRCbiome study: a large prospective cohort study examining the role of lifestyle and the gut microbiome in colorectal cancer screening participants. BMC Cancer, 2021, 21, 930.	2.6	22
36	Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Research International, 2021, 147, 110547.	6.2	41

#	Article	IF	CITATIONS
37	Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized placebo-controlled trial in adults with type 2 diabetes. Diabetes and Metabolism, 2021, 47, 101223.	2.9	25
38	Remarkable Metabolic Versatility of the Commensal Bacteria Eubacterium hallii and Intestinimonas butyriciproducens: Potential Next-Generation Therapeutic Microbes. Microorganisms for Sustainability, 2021, , 139-151.	0.7	5
39	Selection and characterization of a SpaCBA pilus-secreting food-grade derivative of Lacticaseibacillus rhamnosus GG. Applied Microbiology and Biotechnology, 2021, 105, 1123-1131.	3.6	4
40	Duodenal <i>Anaerobutyricum soehngenii</i> infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut, 2021, , gutjnl-2020-323297.	12.1	16
41	Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiology, 2021, 21, 298.	3.3	10
42	Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes, 2021, 13, 1993513.	9.8	25
43	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	4.1	20
44	Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Scientific Reports, 2021, 11, 23297.	3.3	31
45	Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes, 2021, 13, 1994270.	9.8	24
46	Molecular ecology of the yet uncultured bacterial Ct85-cluster in the mammalian gut. Anaerobe, 2020, 62, 102104.	2.1	1
47	<i>Akkermansia muciniphila</i> Exerts Lipidâ€Lowering and Immunomodulatory Effects without Affecting Neointima Formation in Hyperlipidemic APOE*3â€Leiden.CETP Mice. Molecular Nutrition and Food Research, 2020, 64, e1900732.	3.3	39
48	<i>Akkermansia muciniphila</i> reduces <i>Porphyromonas gingivalis</i> â€induced inflammation and periodontal bone destruction. Journal of Clinical Periodontology, 2020, 47, 202-212.	4.9	78
49	Unravelling lactateâ€acetate and sugar conversion into butyrate by intestinal <i>Anaerobutyricum</i> and <i>Anaerostipes</i> species by comparative proteogenomics. Environmental Microbiology, 2020, 22, 4863-4875.	3.8	36
50	Characterization of Highly Mucus-Adherent Non-GMO Derivatives of Lacticaseibacillus rhamnosus GG. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1024.	4.1	9
51	Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly Restores Normal Gut Microbial Development: A Proof-of-Concept Study. Cell, 2020, 183, 324-334.e5.	28.9	188
52	Does entry to center-based childcare affect gut microbial colonization in young infants?. Scientific Reports, 2020, 10, 10235.	3.3	11
53	Associations between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults: The NU-AGE Study. Nutrients, 2020, 12, 3471.	4.1	42
54	Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Scientific Reports, 2020, 10, 14330.	3.3	96

#	Article	lF	CITATIONS
55	Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. Journal of Functional Foods, 2020, 70, 103974.	3.4	47
56	Bridging Bacteria and the Gut: Functional Aspects of Type IV Pili. Trends in Microbiology, 2020, 28, 340-348.	7.7	50
57	Back to the Roots: Revisiting the Use of the Fiber-Rich CichoriumÂintybusÂL. Taproots. Advances in Nutrition, 2020, 11, 878-890.	6.4	22
58	Pasteurized <i>Akkermansia muciniphila</i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	9.8	134
59	Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69, 1218-1228.	12.1	465
60	Pasteurized <i>Akkermansia muciniphila</i> protects from fat mass gain but not from bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E480-E491.	3.5	27
61	Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial Microbes, 2020, 11, 101-129.	2.4	48
62	Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. Npj Biofilms and Microbiomes, 2020, 6, 16.	6.4	53
63	Gut dysbacteriosis and intestinal disease: mechanism and treatment. Journal of Applied Microbiology, 2020, 129, 787-805.	3.1	55
64	Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity. Veterinary Sciences, 2020, 7, 44.	1.7	13
65	Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery. PeerJ, 2020, 8, e10442.	2.0	4
66	Development of omicsâ€based protocols for the microbiological characterization of multiâ€strain formulations marketed as probiotics: the case of VSL#3. Microbial Biotechnology, 2019, 12, 1371-1386.	4.2	30
67	Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiology, 2019, 19, 167.	3.3	5
68	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	30.7	1,281
69	Cohort profile: Finnish Health and Early Life Microbiota (HELMi) longitudinal birth cohort. BMJ Open, 2019, 9, e028500.	1.9	25
70	Allogenic Faecal Microbiota Transfer Induces Immune-Related Gene Sets in the Colon Mucosa of Patients with Irritable Bowel Syndrome. Biomolecules, 2019, 9, 586.	4.0	5
71	Mutual Metabolic Interactions in Co-cultures of the Intestinal Anaerostipes rhamnosivorans With an Acetogen, Methanogen, or Pectin-Degrader Affecting Butyrate Production. Frontiers in Microbiology, 2019, 10, 2449.	3.5	43
72	The Gut Microbiota in the First Decade of Life. Trends in Microbiology, 2019, 27, 997-1010.	7.7	368

#	Article	IF	CITATIONS
73	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	12.8	100
74	The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. International Journal of Molecular Sciences, 2019, 20, 433.	4.1	105
75	Bicistronic Design-Based Continuous and High-Level Membrane Protein Production in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 1685-1690.	3.8	23
76	Enhanced nutrient supply and intestinal microbiota development in very low birth weight infants. Pediatric Research, 2019, 86, 323-332.	2.3	5
77	Anaerobic Degradation of <i>N</i> -ε-Carboxymethyllysine, a Major Glycation End-Product, by Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 2019, 67, 6594-6602.	5.2	40
78	Gender-Specific Associations Between Saliva Microbiota and Body Size. Frontiers in Microbiology, 2019, 10, 767.	3.5	51
79	Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1â^/Ĵ"7 mice. Immunity and Ageing, 2019, 16, 6.	4.2	130
80	The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	56
81	Biotechnology of health-promoting bacteria. Biotechnology Advances, 2019, 37, 107369.	11.7	53
82	Reconstructing functional networks in the human intestinal tract using synthetic microbiomes. Current Opinion in Biotechnology, 2019, 58, 146-154.	6.6	27
83	Dynamics of the Gut Microbiota in Children Receiving Selective or Total Gut Decontamination Treatment during Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, 1164-1171.	2.0	18
84	Metabolic improvement in obese patients after duodenal–jejunal exclusion is associated with intestinal microbiota composition changes. International Journal of Obesity, 2019, 43, 2509-2517.	3.4	19
85	The Effect of Allogenic Versus Autologous Fecal Microbiota Transfer on Symptoms, Visceral Perception and Fecal and Mucosal Microbiota in Irritable Bowel Syndrome: A Randomized Controlled Study. Clinical and Translational Gastroenterology, 2019, 10, e00034.	2.5	70
86	Bowel Biofilms: Tipping Points between a Healthy and Compromised Gut?. Trends in Microbiology, 2019, 27, 17-25.	7.7	97
87	Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. Journal of Antimicrobial Chemotherapy, 2019, 74, 782-786.	3.0	78
88	A Bifidobacterial pilusâ€associated protein promotes colonic epithelial proliferation. Molecular Microbiology, 2019, 111, 287-301.	2.5	62
89	Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek, 2018, 111, 859-873.	1.7	90
90	Modelâ€driven design of a minimal medium for <i>Akkermansia muciniphila</i> confirms mucus adaptation. Microbial Biotechnology, 2018, 11, 476-485.	4.2	57

#	Article	IF	CITATIONS
91	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
92	<i>Akkermansia muciniphila</i> induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut, 2018, 67, 1445-1453.	12.1	270
93	Effect of Vegan Fecal Microbiota Transplantation on Carnitine―and Cholineâ€Derived Trimethylamineâ€Nâ€Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. Journal of the American Heart Association, 2018, 7, .	3.7	164
94	Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. Journal of Microbiological Methods, 2018, 147, 76-86.	1.6	30
95	Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences, 2018, 75, 81-82.	5.4	19
96	Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes, 2018, 9, 93-101.	9.8	142
97	Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 2018, 75, 149-160.	5.4	380
98	Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome, 2018, 6, 182.	11.1	160
99	Fucosylated oligosaccharides in mother's milk alleviate the effects of caesarean birth on infant gut microbiota. Scientific Reports, 2018, 8, 13757.	3.3	86
100	A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS ONE, 2018, 13, e0201410.	2.5	74
101	Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. Frontiers in Physiology, 2018, 9, 888.	2.8	44
102	Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How?. Microorganisms, 2018, 6, 75.	3.6	286
103	Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows. Biotechnology for Biofuels, 2018, 11, 13.	6.2	30
104	Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Research Notes, 2018, 11, 190.	1.4	76
105	Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Translational Psychiatry, 2018, 8, 96.	4.8	92
106	Early life colonization of the human gut: microbes matter everywhere. Current Opinion in Microbiology, 2018, 44, 70-78.	5.1	141
107	Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS ONE, 2018, 13, e0192452.	2.5	33
108	Romboutsia hominis sp. nov., the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3479-3486.	1.7	37

#	Article	IF	CITATIONS
109	Eubacterium maltosivorans sp. nov., a novel human intestinal acetogenic and butyrogenic bacterium with a versatile metabolism. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3546-3550.	1.7	11
110	Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3741-3746.	1.7	77
111	Faecal and serum metabolomics in paediatric inflammatory bowel disease. Journal of Crohn's and Colitis, 2017, 11, jjw158.	1.3	104
112	Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatricâ€Onset Intestinal Failure. Journal of Parenteral and Enteral Nutrition, 2017, 41, 238-248.	2.6	75
113	Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 2017, 106, 171-181.	2.9	775
114	Effects of plant stanol ester consumption on fasting plasma oxy(phyto)sterol concentrations as related to fecal microbiota characteristics. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 46-53.	2.5	27
115	Complete Genome Sequence of Akkermansia glycaniphila Strain Pyt ^T , a Mucin-Degrading Specialist of the Reticulated Python Gut. Genome Announcements, 2017, 5, .	0.8	16
116	Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology - Renal Physiology, 2017, 312, G171-G193.	3.4	408
117	European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66, 569-580.	12.1	793
118	Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome, 2017, 5, 26.	11.1	99
119	Microbiome yarns: microbiomology of curly and straight hair. Microbial Biotechnology, 2017, 10, 231-237.	4.2	1
120	Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME Journal, 2017, 11, 1877-1889.	9.8	157
121	Enrichment of sulfidogenic bacteria from the human intestinal tract. FEMS Microbiology Letters, 2017, 364, .	1.8	25
122	Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut, 2017, 66, 1623-1630.	12.1	69
123	Complete Genome Sequence of Eubacterium hallii Strain L2-7. Genome Announcements, 2017, 5, .	0.8	17
124	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	17.5	581
125	Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 2017, 26, 611-619.e6.	16.2	689
126	Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions. Beneficial Microbes, 2017, 8, 163-169.	2.4	28

#	Article	IF	CITATIONS
127	Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 637-642.	2.4	191
128	Anti-Infective Effect of Adhesive Probiotic Lactobacillus in Fish is Correlated With Their Spatial Distribution in the Intestinal Tissue. Scientific Reports, 2017, 7, 13195.	3.3	53
129	<i>C4B</i> gene influences intestinal microbiota through complement activation in patients with paediatric-onset inflammatory bowel disease. Clinical and Experimental Immunology, 2017, 190, 394-405.	2.6	20
130	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	4.2	73
131	Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions. Food Research International, 2017, 102, 372-379.	6.2	56
132	Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Applied Microbiology and Biotechnology, 2017, 101, 7663-7674.	3.6	34
133	Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B ₁₂ Production by Intestinal Symbionts. MBio, 2017, 8, .	4.1	269
134	In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes, 2017, 8, 81-96.	2.4	80
135	More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome, 2017, 5, 78.	11.1	54
136	Genome-Scale Model and Omics Analysis of Metabolic Capacities of <i>Akkermansia muciniphila</i> Reveal a Preferential Mucin-Degrading Lifestyle. Applied and Environmental Microbiology, 2017, 83, .	3.1	170
137	Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12. BMC Biotechnology, 2017, 17, 44.	3.3	15
138	An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Applied and Environmental Microbiology, 2017, 83, .	3.1	43
139	Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Medicine, 2017, 43, 59-68.	8.2	183
140	Significant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana. Journal of Infectious Diseases, 2017, 215, 34-41.	4.0	227
141	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	30.7	1,451
142	Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 2017, 41, 182-199.	8.6	182
143	Bacteriological and Immunological Profiling of Meconium and Fecal Samples from Preterm Infants: A Two-Year Follow-Up Study. Nutrients, 2017, 9, 1293.	4.1	18
144	Effects of Soluble Corn Fiber Alone or in Synbiotic Combination with Lactobacillus rhamnosus GG and the Pilus-Deficient Derivative GG-PB12 on Fecal Microbiota, Metabolism, and Markers of Immune Function: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Elderly (Saimes Study). Frontiers in Immunology, 2017, 8, 1443.	4.8	67

#	Article	IF	CITATIONS
145	Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Frontiers in Microbiology, 2017, 8, 1725.	3.5	125
146	Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Frontiers in Microbiology, 2017, 8, 1765.	3.5	713
147	Feasibility of Metatranscriptome Analysis from Infant Gut Microbiota: Adaptation to Solid Foods Results in Increased Activity of Firmicutes at Six Months. International Journal of Microbiology, 2017, 2017, 1-9.	2.3	11
148	Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE, 2017, 12, e0188475.	2.5	163
149	Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 2017, 12, e0173004.	2.5	340
150	Draft Genome Sequences of the Aerobic Strains Lactobacillus gasseri AL3 and AL5. Genome Announcements, 2017, 5, .	0.8	5
151	Streptococcus caviae sp. nov., isolated from guinea pig faecal samples. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1551-1556.	1.7	10
152	Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology (United Kingdom), 2017, 163, 646-648.	1.8	107
153	Genotypic and phenotypic diversity of Lactobacillus rhamnosus clinical isolates, their comparison with strain GG and their recognition by complement system. PLoS ONE, 2017, 12, e0176739.	2.5	21
154	Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE, 2017, 12, e0181693.	2.5	53
155	Genomic and functional analysis of <i>Romboutsia ilealis</i> CRIB ^T reveals adaptation to the small intestine. PeerJ, 2017, 5, e3698.	2.0	88
156	Antibiotic use in childhood alters the gut microbiota and predisposes to overweight. Microbial Cell, 2016, 3, 296-298.	3.2	58
157	Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Frontiers in Microbiology, 2016, 7, 1157.	3.5	106
158	Lactobacillus rhamnosus GG Intake Modifies Preschool Children's Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use. PLoS ONE, 2016, 11, e0154012.	2.5	62
159	Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults. PLoS ONE, 2016, 11, e0153294.	2.5	70
160	Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy. PLoS ONE, 2016, 11, e0157851.	2.5	9
161	<i>Lactobacillus plantarum </i> <scp>WCFS</scp> 1 and its host interaction: a dozen years after the genome. Microbial Biotechnology, 2016, 9, 452-465.	4.2	115
162	The Variable Regions of <i>Lactobacillus rhamnosus</i> Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires. Genome Biology and Evolution, 2016, 8, 1889-1905.	2.5	53

#	Article	IF	CITATIONS
163	Genome and proteome analysis of <scp><i>P</i></scp> <i>seudomonas chloritidismutans</i> â€ <scp>AW</scp> â€l <scp>^T</scp> that grows on <i>n</i> â€decane with chlorate or oxygen as electron acceptor. Environmental Microbiology, 2016, 18, 3247-3257.	3.8	21
164	Complete Genome Sequence of Enterococcus faecium Commensal Isolate E1002. Genome Announcements, 2016, 4, .	0.8	2
165	Sugar Coating the Envelope: Glycoconjugates for Microbe–Host Crosstalk. Trends in Microbiology, 2016, 24, 853-861.	7.7	44
166	Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. Npj Biofilms and Microbiomes, 2016, 2, 16009.	6.4	159
167	Polymorphisms, Chromosomal Rearrangements, and Mutator Phenotype Development during Experimental Evolution of Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2016, 82, 3783-3792.	3.1	27
168	Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 2016, 352, 586-589.	12.6	461
169	How to Manipulate the Microbiota: Fecal Microbiota Transplantation. Advances in Experimental Medicine and Biology, 2016, 902, 143-153.	1.6	25
170	Adaptation of Akkermansia muciniphila to the Oxic-Anoxic Interface of the Mucus Layer. Applied and Environmental Microbiology, 2016, 82, 6983-6993.	3.1	101
171	Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili: Evidence for a Novel and Heterospecific Probiotic Mechanism. Applied and Environmental Microbiology, 2016, 82, 5756-5762.	3.1	93
172	Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection. BMC Medicine, 2016, 14, 155.	5.5	86
173	Harnessing the power of microbial autotrophy. Nature Reviews Microbiology, 2016, 14, 692-706.	28.6	189
174	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	6.5	142
175	Healthy human gut phageome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10400-10405.	7.1	439
176	Antibiotic-Induced Gut Microbiota Disruption Decreases TNF-α Release by Mononuclear Cells in Healthy Adults. Clinical and Translational Gastroenterology, 2016, 7, e186.	2.5	18
177	Comparative genomics and physiology of the butyrateâ€producing bacterium <i>Intestinimonas butyriciproducens</i> . Environmental Microbiology Reports, 2016, 8, 1024-1037.	2.4	104
178	Isolation of a genetically accessible thermophilic xylan degrading bacterium from compost. Biotechnology for Biofuels, 2016, 9, 210.	6.2	20
179	Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response. Beneficial Microbes, 2016, 7, 275-287.	2.4	10
180	Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T. Standards in Genomic Sciences, 2016, 11, 52.	1.5	13

#	Article	IF	CITATIONS
181	Akkermansia muciniphila: a novel functional microbe with probiotic properties. Beneficial Microbes, 2016, 7, 571-584.	2.4	104
182	Association of Early-Life Antibiotic Use and Protective Effects of Breastfeeding. JAMA Pediatrics, 2016, 170, 750.	6.2	76
183	Unravelling the oneâ€carbon metabolism of the acetogen <scp><i>S</i></scp> <i>poromusa</i> strain <scp>A</scp> n4 by genome and proteome analysis. Environmental Microbiology, 2016, 18, 2843-2855.	3.8	25
184	Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nature Communications, 2016, 7, 10410.	12.8	557
185	Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit. Trends in Biotechnology, 2016, 34, 575-587.	9.3	113
186	Isolation and whole genome sequencing of a Ruminococcus-like bacterium, associated with irritable bowel syndrome. Anaerobe, 2016, 39, 60-67.	2.1	24
187	Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME Journal, 2016, 10, 1002-1014.	9.8	104
188	The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65, 575-583.	12.1	601
189	Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4614-4620.	1.7	68
190	Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLoS ONE, 2016, 11, e0151824.	2.5	62
191	The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS ONE, 2016, 11, e0153373.	2.5	8
192	In tribute to Bernard Witholt. Microbial Biotechnology, 2015, 8, 621-621.	4.2	0
193	Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nature Communications, 2015, 6, 10062.	12.8	199
194	Microbial biofilms and the human intestinal microbiome. Npj Biofilms and Microbiomes, 2015, 1, 15005.	6.4	127
195	Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota. Beneficial Microbes, 2015, 6, 271-276.	2.4	3
196	Improved taxonomic assignment of human intestinal 16S rRNA sequences by a dedicated reference database. BMC Genomics, 2015, 16, 1056.	2.8	127
197	Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Microbial Cell Factories, 2015, 14, 99.	4.0	18
198	The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Alimentary Pharmacology and Therapeutics, 2015, 42, 1211-1221.	3.7	117

#	Article	IF	CITATIONS
199	Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics, 2015, 15, 3544-3552.	2.2	70
200	Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World Journal of Gastroenterology, 2015, 21, 5359.	3.3	204
201	Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS ONE, 2015, 10, e0137347.	2.5	84
202	Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology, 2015, 25, 56-66.	5.1	345
203	Fecal Microbiota in Pediatric Inflammatory Bowel Disease and Its Relation to Inflammation. American Journal of Gastroenterology, 2015, 110, 921-930.	0.4	193
204	A novel consortium of Lactobacillus rhamnosus and Streptococcus thermophilus for increased access to functional fermented foods. Microbial Cell Factories, 2015, 14, 195.	4.0	58
205	Isolation and Screening of Thermophilic Bacilli from Compost for Electrotransformation and Fermentation: Characterization of Bacillus smithii ET 138 as a New Biocatalyst. Applied and Environmental Microbiology, 2015, 81, 1874-1883.	3.1	42
206	Altered faecal and mucosal microbial composition in postâ€infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Alimentary Pharmacology and Therapeutics, 2015, 41, 342-351.	3.7	125
207	Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?. American Journal of Gastroenterology, 2015, 110, 278-287.	0.4	283
208	Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 241-244.	5.7	194
209	Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 2015, 53, 233-245.	2.7	359
210	Genomic, Proteomic, and Biochemical Analysis of the Organohalide Respiratory Pathway in Desulfitobacterium dehalogenans. Journal of Bacteriology, 2015, 197, 893-904.	2.2	43
211	Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatric Research, 2015, 77, 528-535.	2.3	52
212	The Mucosa-associated Microbiota of PSC Patients is Characterized by Low Diversity and Low Abundance of Uncultured Clostridiales II. Journal of Crohn's and Colitis, 2015, 9, 342-348.	1.3	106
213	Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Scientific Reports, 2015, 5, 11981.	3.3	50
214	Fat, fibre and cancer risk in African Americans and rural Africans. Nature Communications, 2015, 6, 6342.	12.8	761
215	Versatile (Bio)Functionalization of Bromo-Terminated Phosphonate-Modified Porous Aluminum Oxide. Langmuir, 2015, 31, 5633-5644.	3.5	10
216	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	3.8	95

#	Article	IF	CITATIONS
217	Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology, 2015, 149, 110-118.e4.	1.3	769
218	Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Applied and Environmental Microbiology, 2015, 81, 3655-3662.	3.1	437
219	Navigating through metaproteomics data: A logbook of database searching. Proteomics, 2015, 15, 3439-3453.	2.2	128
220	Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial <scp>C</scp> rabtree effect?. Molecular Microbiology, 2015, 97, 77-92.	2.5	57
221	Microbial signatures in post-infectious irritable bowel syndrome – toward patient stratification for improved diagnostics and treatment. Gut Microbes, 2015, 6, 364-369.	9.8	51
222	<i>Akkermansia muciniphila</i> and <i>Helicobacter typhlonius</i> modulate intestinal tumor development in mice. Carcinogenesis, 2015, 36, 1388-1396.	2.8	87
223	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	12.8	488
224	Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nature Communications, 2015, 6, 7624.	12.8	143
225	Effects of bowel cleansing on the intestinal microbiota. Gut, 2015, 64, 1562-1568.	12.1	201
226	Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. Journal of Microbiological Methods, 2015, 108, 36-44.	1.6	47
227	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	5.0	220
228	The gut microbiota in internal medicine: implications for health and disease. Netherlands Journal of Medicine, 2015, 73, 61-8.	0.5	46
229	Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLoS ONE, 2014, 9, e90702.	2.5	163
230	Tipping elements in the human intestinal ecosystem. Nature Communications, 2014, 5, 4344.	12.8	217
231	Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 787-793.	1.7	62
232	The Salivary Scavenger and Agglutinin in Early Life: Diverse Roles in Amniotic Fluid and in the Infant Intestine. Journal of Immunology, 2014, 193, 5240-5248.	0.8	21
233	Functional Identification of Conserved Residues Involved in Lactobacillus rhamnosus Strain GG Sortase Specificity and Pilus Biogenesis. Journal of Biological Chemistry, 2014, 289, 15764-15775.	3.4	25
234	Fecal Transplantation Treatment of Antibiotic-Induced, Noninfectious Colitis and Long-Term Microbiota Follow-Up. Case Reports in Medicine, 2014, 2014, 1-7.	0.7	37

#	Article	IF	CITATIONS
235	Stimulation of colonic motility by oral <scp>PEG</scp> electrolyte bowel preparation assessed by <scp>MRI</scp> : comparison of split <i>vs</i> single dose. Neurogastroenterology and Motility, 2014, 26, 1426-1436.	3.0	44
236	Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations. Microbial Cell Factories, 2014, 13, 176.	4.0	25
237	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterology, 2014, 30, 189-195.	2.3	74
238	Intestinal microbiota during early life – impact on health and disease. Proceedings of the Nutrition Society, 2014, 73, 457-469.	1.0	54
239	Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. MBio, 2014, 5, .	4.1	376
240	Metaproteomics of our microbiome — Developing insight in function and activity in man and model systems. Journal of Proteomics, 2014, 97, 3-16.	2.4	97
241	The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 2014, 38, 996-1047.	8.6	923
242	Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology, 2014, 60, 824-831.	3.7	475
243	Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mechanisms of Ageing and Development, 2014, 136-137, 70-75.	4.6	72
244	Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and Technology, 2014, 5, 239-262.	9.9	173
245	Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut, 2014, 63, 1737-1745.	12.1	282
246	Stability of (Bio)Functionalized Porous Aluminum Oxide. Langmuir, 2014, 30, 1311-1320.	3.5	38
247	Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology, 2014, 63, 293-308.	1.8	54
248	Genomic Characterization of Non-Mucus-Adherent Derivatives of Lactobacillus rhamnosus GG Reveals Genes Affecting Pilus Biogenesis. Applied and Environmental Microbiology, 2014, 80, 7001-7009.	3.1	22
249	The microbial eukaryote <i>Blastocystis</i> is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 2014, 90, 326-330.	2.7	208
250	Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent <i>Clostridium difficile</i> infection. ISME Journal, 2014, 8, 1621-1633.	9.8	172
251	Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014, 57, 1569-1577.	6.3	274
252	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	9.8	489

#	Article	IF	CITATIONS
253	Functional genomics of lactic acid bacteria: from food to health. Microbial Cell Factories, 2014, 13, S8.	4.0	132
254	Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status. PLoS ONE, 2014, 9, e94863.	2.5	129
255	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	5.1	62
256	Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiology, 2013, 13, 12.	3.3	127
257	Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterology, 2013, 13, 113.	2.0	124
258	Clycobiome: Bacteria and mucus at the epithelial interface. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 25-38.	2.4	171
259	Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. Journal of Microbiological Methods, 2013, 95, 167-174.	1.6	144
260	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
261	Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods, 2013, 10, 1196-1199.	19.0	442
262	Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms. Trends in Biotechnology, 2013, 31, 633-642.	9.3	23
263	Towards metagenome-scale models for industrial applications—the case of Lactic Acid Bacteria. Current Opinion in Biotechnology, 2013, 24, 200-206.	6.6	43
264	Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Applied Microbiology and Biotechnology, 2013, 97, 8729-8739.	3.6	109
265	Duodenal Infusion of Donor Feces for Recurrent <i>Clostridium difficile</i> . New England Journal of Medicine, 2013, 368, 407-415.	27.0	3,157
266	The intestinal microbiota and host immune interactions in the critically ill. Trends in Microbiology, 2013, 21, 221-229.	7.7	105
267	Adhesion and Nanomechanics of Pili from the Probiotic Lactobacillus rhamnosus GG. ACS Nano, 2013, 7, 3685-3697.	14.6	148
268	Translating the human microbiome. Nature Biotechnology, 2013, 31, 304-308.	17.5	30
269	Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity, 2013, 21, E607-15.	3.0	469
270	Obesity, non-alcoholic fatty liver disease, and atherothrombosis: a role for the intestinal microbiota?. Clinical Microbiology and Infection, 2013, 19, 331-337.	6.0	19

#	Article	IF	CITATIONS
271	Butyrate-producing <i>Clostridium</i> cluster XIVa species specifically colonize mucins in an <i>in vi>in vitro</i> gut model. ISME Journal, 2013, 7, 949-961.	9.8	501
272	A gut prediction. Nature, 2013, 498, 48-49.	27.8	66
273	Longâ€ŧerm monitoring of the human intestinal microbiota composition. Environmental Microbiology, 2013, 15, 1146-1159.	3.8	195
274	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	12.1	632
275	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	7.1	3,474
276	Phylogenetic Analysis of Dysbiosis in Ulcerative Colitis During Remission. Inflammatory Bowel Diseases, 2013, 19, 481-488.	1.9	285
277	Microbiota conservation and BMI signatures in adult monozygotic twins. ISME Journal, 2013, 7, 707-717.	9.8	311
278	Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genetics, 2013, 9, e1003683.	3.5	180
279	Intake of Whole-Grain and Fiber-Rich Rye Bread Versus Refined Wheat Bread Does Not Differentiate Intestinal Microbiota Composition in Finnish Adults with Metabolic Syndrome. Journal of Nutrition, 2013, 143, 648-655.	2.9	85
280	Intestinal Microbiota of Infants With Colic: Development and Specific Signatures. Pediatrics, 2013, 131, e550-e558.	2.1	213
281	Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics. Applied and Environmental Microbiology, 2013, 79, 1923-1933.	3.1	108
282	Comparative genome analysis of <i><scp>L</scp>actobacillus casei</i> strains isolated from <scp>A</scp> ctimel and <scp>Y</scp> akult products reveals marked similarities and points to a common origin. Microbial Biotechnology, 2013, 6, 576-587.	4.2	27
283	Fame and future of faecal transplantations – developing nextâ€generation therapies with synthetic microbiomes. Microbial Biotechnology, 2013, 6, 316-325.	4.2	57
284	Crying in infants. Gut Microbes, 2013, 4, 416-421.	9.8	78
285	Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis. PLoS ONE, 2013, 8, e64315.	2.5	196
286	Using Recombinant Lactococci as an Approach to Dissect the Immunomodulating Capacity of Surface Piliation in Probiotic Lactobacillus rhamnosus GG. PLoS ONE, 2013, 8, e64416.	2.5	55
287	Novel Polyfermentor Intestinal Model (PolyFermS) for Controlled Ecological Studies: Validation and Effect of pH. PLoS ONE, 2013, 8, e77772.	2.5	82
288	Associations between the human intestinal microbiota, <i>Lactobacillus rhamnosus</i> GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ, 2013, 1, e32.	2.0	166

#	Article	IF	CITATIONS
289	Characterization of the SpaCBA Pilus Fibers in the Probiotic Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2012, 78, 2337-2344.	3.1	130
290	Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions. Applied and Environmental Microbiology, 2012, 78, 134-143.	3.1	66
291	PS14 - 68. Differential effects of antibiotics on bile acid metabolism, intestinal microbiota composition and insulin resistance in obese humans; a randomised controlled trial. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 147-147.	0.0	Ο
292	PS14 - 70. Intestinal microbiota translocation is associated with inflamed visceral adipose tissue. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 148-148.	0.0	0
293	Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Applied and Environmental Microbiology, 2012, 78, 185-193.	3.1	274
294	Adhesion of microbes to the intestinal surface: lessons from the paradigm probiotic Lactobacillus rhamnosus GG. Japanese Journal of Lactic Acid Bacteria, 2012, 23, 7-13.	0.1	0
295	The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME Journal, 2012, 6, 1415-1426.	9.8	544
296	Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition Reviews, 2012, 70, S45-S56.	5.8	333
297	Metagenome analysis reveals yet unexplored reductive dechlorinating potential of <i><scp>D</scp>ehalobacter</i> sp. <scp>E</scp> 1 growing in coâ€culture with <i><scp>S</scp>edimentibacter</i> sp Environmental Microbiology Reports, 2012, 4, 604-616.	2.4	57
298	Where bio meets nano: The many uses for nanoporous aluminum oxide in biotechnology. Biotechnology Advances, 2012, 30, 1089-1099.	11.7	99
299	The adult intestinal core microbiota is determined by analysis depth and health status. Clinical Microbiology and Infection, 2012, 18, 16-20.	6.0	95
300	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	3.9	352
301	CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3. Molecular Cell, 2012, 46, 595-605.	9.7	475
302	Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG. PLoS ONE, 2012, 7, e31588.	2.5	77
303	Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology, 2012, 143, 913-916.e7.	1.3	2,287
304	Thermal Stabilization of an Endoglucanase by Cyclization. Applied Biochemistry and Biotechnology, 2012, 167, 2039-2053.	2.9	16
305	Comparative Metaproteomics and Diversity Analysis of Human Intestinal Microbiota Testifies for Its Temporal Stability and Expression of Core Functions. PLoS ONE, 2012, 7, e29913.	2.5	183
306	The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG. Microbial Cell Factories, 2012, 11, 15.	4.0	72

#	Article	IF	CITATIONS
307	Microbes inside—from diversity to function: the case of <i>Akkermansia</i> . ISME Journal, 2012, 6, 1449-1458.	9.8	551
308	The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2012, 14, 112-120.	4.4	283
309	Role of phosphate in the central metabolism of two lactic acid bacteria – a comparative systems biology approach. FEBS Journal, 2012, 279, 1274-1290.	4.7	52
310	Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. Journal of Proteomics, 2012, 75, 1357-1374.	2.4	130
311	Anaerobic benzene degradation under denitrifying conditions: <i>Peptococcaceae</i> as dominant benzene degraders and evidence for a syntrophic process. Environmental Microbiology, 2012, 14, 1171-1181.	3.8	100
312	Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples From Patients With Irritable Bowel Syndrome. Gastroenterology, 2011, 141, 1792-1801.	1.3	885
313	Organic Modification and Subsequent Biofunctionalization of Porous Anodic Alumina Using Terminal Alkynes. Langmuir, 2011, 27, 13606-13617.	3.5	27
314	Analysis of infant isolates of Bifidobacterium breve by comparative genome hybridization indicates the existence of new subspecies with marked infant specificity. Research in Microbiology, 2011, 162, 664-670.	2.1	2
315	Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms. PLoS ONE, 2011, 6, e23035.	2.5	302
316	Bifidobacterium breve – HT-29 cell line interaction: modulation of TNF-α induced gene expression. Beneficial Microbes, 2011, 2, 115-128.	2.4	18
317	Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?. Obesity Reviews, 2011, 12, 272-281.	6.5	248
318	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
319	Comparative genomics of <i>Lactobacillus</i> . Microbial Biotechnology, 2011, 4, 323-332.	4.2	112
320	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.6	881
321	Intestinal microbiota in human health and disease: the impact of probiotics. Genes and Nutrition, 2011, 6, 209-240.	2.5	557
322	Systems solutions by lactic acid bacteria: from paradigms to practice. Microbial Cell Factories, 2011, 10, S2.	4.0	108
323	Genome Sequence of the Verrucomicrobium Opitutus terrae PB90-1, an Abundant Inhabitant of Rice Paddy Soil Ecosystems. Journal of Bacteriology, 2011, 193, 2367-2368.	2.2	44
324	Genome Sequence of Victivallis vadensis ATCC BAA-548, an Anaerobic Bacterium from the Phylum Lentisphaerae, Isolated from the Human Gastrointestinal Tract. Journal of Bacteriology, 2011, 193, 2373-2374.	2.2	14

#	Article	IF	CITATIONS
325	Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Frontiers in Microbiology, 2011, 2, 166.	3.5	438
326	Microarray Analysis and Barcoded Pyrosequencing Provide Consistent Microbial Profiles Depending on the Source of Human Intestinal Samples. Applied and Environmental Microbiology, 2011, 77, 2071-2080.	3.1	141
327	Genome Sequence of Chthoniobacter flavus Ellin428, an Aerobic Heterotrophic Soil Bacterium. Journal of Bacteriology, 2011, 193, 2902-2903.	2.2	52
328	Genome Sequence of "Pedosphaera parvula―Ellin514, an Aerobic Verrucomicrobial Isolate from Pasture Soil. Journal of Bacteriology, 2011, 193, 2900-2901.	2.2	28
329	Genome Sequence of Lactobacillus amylovorus GRL1118, Isolated from Pig Ileum. Journal of Bacteriology, 2011, 193, 3147-3148.	2.2	20
330	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	3.5	267
331	Functional Characterization of a Mucus-Specific LPXTG Surface Adhesin from Probiotic Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 2011, 77, 4465-4472.	3.1	90
332	Health benefits and health claims of probiotics: bridging science and marketing. British Journal of Nutrition, 2011, 106, 1291-1296.	2.3	176
333	Role of "Dehalococcoides―spp. in the Anaerobic Transformation of Hexachlorobenzene in European Rivers. Applied and Environmental Microbiology, 2011, 77, 4437-4445.	3.1	20
334	Functional genome analysis of <i>Bifidobacterium breve</i> UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11217-11222.	7.1	328
335	Genome Sequence of <i>Lactobacillus amylovorus</i> GRL1112. Journal of Bacteriology, 2011, 193, 789-790.	2.2	15
336	The Genome of Akkermansia muciniphila, a Dedicated Intestinal Mucin Degrader, and Its Use in Exploring Intestinal Metagenomes. PLoS ONE, 2011, 6, e16876.	2.5	328
337	The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia, 2010, 53, 606-613.	6.3	270
338	Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Current Opinion in Biotechnology, 2010, 21, 539-550.	6.6	62
339	Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition, 2010, 26, 835-841.	2.4	33
340	Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends in Biotechnology, 2010, 28, 308-316.	9.3	145
341	Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied Microbiology, 2010, 50, 57-64.	2.2	105
342	Stability of the total and functional microbial communities in river sediment mesocosms exposed to anthropogenic disturbances. FEMS Microbiology Ecology, 2010, 74, 72-82.	2.7	13

#	Article	IF	CITATIONS
343	Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. FEMS Microbiology Ecology, 2010, 74, 682-692.	2.7	7
344	Convergence in probiotic <i>Lactobacillus</i> gut-adaptive responses in humans and mice. ISME Journal, 2010, 4, 1481-1484.	9.8	95
345	High temporal and interâ€individual variation detected in the human ileal microbiota. Environmental Microbiology, 2010, 12, 3213-3227.	3.8	254
346	Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology (United Kingdom), 2010, 156, 3270-3281.	1.8	84
347	Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 2010, 1, 254-268.	9.8	421
348	Correlation of <i>Dehalococcoides</i> 16S rRNA and Chloroethene-Reductive Dehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater. Applied and Environmental Microbiology, 2010, 76, 843-850.	3.1	92
349	Mucosal Adhesion Properties of the Probiotic <i>Lactobacillus rhamnosus</i> GG SpaCBA and SpaFED Pilin Subunits. Applied and Environmental Microbiology, 2010, 76, 2049-2057.	3.1	189
350	Molecular characterization of the glucose isomerase from the thermophilic bacterium <i>Fervidobacterium gondwanense</i> . Environmental Technology (United Kingdom), 2010, 31, 1083-1090.	2.2	18
351	Metatranscriptome Analysis of the Human Fecal Microbiota Reveals Subject-Specific Expression Profiles, with Genes Encoding Proteins Involved in Carbohydrate Metabolism Being Dominantly Expressed. Applied and Environmental Microbiology, 2010, 76, 5533-5540.	3.1	76
352	σ 54-mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism. Microbiology (United Kingdom), 2010, 156, 695-707.	1.8	24
353	Involvement of the Mannose Phosphotransferase System of <i>Lactobacillus plantarum</i> WCFS1 in Peroxide Stress Tolerance. Applied and Environmental Microbiology, 2010, 76, 3748-3752.	3.1	37
354	Microbial Community- And Metabolite Dynamics of an Anoxic Dechlorinating Bioreactor. Environmental Science & Technology, 2010, 44, 4884-4890.	10.0	28
355	Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in <i>Streptococcus thermophilus</i> and <i>Lactobacillus bulgaricus</i> . Applied and Environmental Microbiology, 2010, 76, 7775-7784.	3.1	194
356	Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical cell lysis. Journal of Microbiological Methods, 2010, 81, 127-134.	1.6	480
357	Semi-automated extraction of microbial DNA from feces for qPCR and phylogenetic microarray analysis. Journal of Microbiological Methods, 2010, 83, 231-235.	1.6	41
358	Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology (United Kingdom), 2010, 156, 3205-3215.	1.8	231
359	Microbial functionality in the human intestinal tract. Frontiers in Bioscience - Landmark, 2009, Volume, 3074.	3.0	17
360	Differential NF-κB pathways induction by <i>Lactobacillus plantarum</i> in the duodenum of healthy humans correlating with immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2371-2376.	7.1	363

#	Article	IF	CITATIONS
361	Genome-Scale Model of <i>Streptococcus thermophilus</i> LMG18311 for Metabolic Comparison of Lactic Acid Bacteria. Applied and Environmental Microbiology, 2009, 75, 3627-3633.	3.1	148
362	Large Intergenic Cruciform-Like Supermotifs in the Lactobacillus plantarum Genome. Journal of Bacteriology, 2009, 191, 3420-3423.	2.2	4
363	Tracking Functional Guilds: " <i>Dehalococcoides</i> ―spp. in European River Basins Contaminated with Hexachlorobenzene. Applied and Environmental Microbiology, 2009, 75, 4696-4704.	3.1	41
364	Effect of Amino Acid Availability on Vitamin B 12 Production in Lactobacillus reuteri. Applied and Environmental Microbiology, 2009, 75, 3930-3936.	3.1	26
365	Review: Tools for the tract: understanding the functionality of the gastrointestinal tract. Therapeutic Advances in Gastroenterology, 2009, 2, S9-S22.	3.2	31
366	Mixed-Species Genomic Microarray Analysis of Fecal Samples Reveals Differential Transcriptional Responses of Bifidobacteria in Breast- and Formula-Fed Infants. Applied and Environmental Microbiology, 2009, 75, 2668-2676.	3.1	100
367	<i>Lactobacillus plantarum</i> WCFS1 Electron Transport Chains. Applied and Environmental Microbiology, 2009, 75, 3580-3585.	3.1	86
368	Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey. Extremophiles, 2009, 13, 885-894.	2.3	30
369	Genome-wide screen forListeria monocytogenesgenes important for growth at high temperatures. FEMS Microbiology Letters, 2009, 295, 195-203.	1.8	8
370	Folate overproduction in <i>Lactobacillus plantarum</i> WCFS1 causes methotrexate resistance. FEMS Microbiology Letters, 2009, 297, 261-265.	1.8	15
371	Linking phylogenetic identities of bacteria to starch fermentation in an <i>in vitro</i> model of the large intestine by RNAâ€based stable isotope probing. Environmental Microbiology, 2009, 11, 914-926.	3.8	157
372	Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environmental Microbiology, 2009, 11, 1736-1751.	3.8	420
373	Proteome Analysis of <i>Lactobacillus rhamnosus</i> GG Using 2-D DIGE and Mass Spectrometry Shows Differential Protein Production in Laboratory and Industrial-Type Growth Media. Journal of Proteome Research, 2009, 8, 4993-5007.	3.7	56
374	Effect of soil sample preservation, compared to the effect of other environmental variables, on bacterial and eukaryotic diversity. Research in Microbiology, 2009, 160, 89-98.	2.1	59
375	Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Research, 2009, 43, 3207-3216.	11.3	46
376	A Bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria. Journal of Microbiological Methods, 2009, 76, 269-277.	1.6	26
377	Comparative genomic analysis of <i>Lactobacillus rhamnosus</i> GG reveals pili containing a human- mucus binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17193-17198.	7.1	654
378	Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS ONE, 2009, 4, e6669.	2.5	719

#	Article	IF	CITATIONS
379	Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Alimentary Pharmacology and Therapeutics, 2008, 27, 48-57.	3.7	309
380	A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 2008, 47, 275-278.	2.2	150
381	Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics, 2008, 9, 374.	2.8	69
382	Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiology Ecology, 2008, 66, 599-607.	2.7	115
383	High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, 2008, 57, 1605-1615.	12.1	528
384	High-Level Folate Production in Fermented Foods by the B ₁₂ Producer <i>Lactobacillus reuteri</i> JCM1112. Applied and Environmental Microbiology, 2008, 74, 3291-3294.	3.1	131
385	Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology (United Kingdom), 2008, 154, 2492-2500.	1.8	39
386	Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression. Microbiology (United Kingdom), 2008, 154, 3686-3696.	1.8	22
387	Hydrogenomics of the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> . Applied and Environmental Microbiology, 2008, 74, 6720-6729.	3.1	142
388	S layer protein A of <i>Lactobacillus acidophilus</i> NCFM regulates immature dendritic cell and T cell functions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19474-19479.	7.1	515
389	The Mucin Degrader <i>Akkermansia muciniphila</i> Is an Abundant Resident of the Human Intestinal Tract. Applied and Environmental Microbiology, 2008, 74, 1646-1648.	3.1	517
390	Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in <i>Lactobacillus plantarum</i> WCFS1. Applied and Environmental Microbiology, 2008, 74, 4719-4726.	3.1	173
391	Improvement of <i>Lactobacillus plantarum</i> Aerobic Growth as Directed by Comprehensive Transcriptome Analysis. Applied and Environmental Microbiology, 2008, 74, 4776-4778.	3.1	49
392	Differential Transcriptional Response of <i>Bifidobacterium longum</i> to Human Milk, Formula Milk, and Galactooligosaccharide. Applied and Environmental Microbiology, 2008, 74, 4686-4694.	3.1	82
393	Interactomics in the Human Intestine. Journal of Clinical Gastroenterology, 2008, 42, S163-S167.	2.2	63
394	Identification of the σ B Regulon of Bacillus cereus and Conservation of σ B -Regulated Genes in Low-GC-Content Gram-Positive Bacteria. Journal of Bacteriology, 2007, 189, 4384-4390.	2.2	53
395	The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18217-18222.	7.1	255
396	Intestinal Integrity and <i>Akkermansia muciniphila</i> , a Mucin-Degrading Member of the Intestinal Microbiota Present in Infants, Adults, and the Elderly. Applied and Environmental Microbiology, 2007, 73, 7767-7770.	3.1	540

#	Article	IF	CITATIONS
397	Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays. Applied and Environmental Microbiology, 2007, 73, 1753-1765.	3.1	210
398	Generation of a Membrane Potential by Lactococcus lactis through Aerobic Electron Transport. Journal of Bacteriology, 2007, 189, 5203-5209.	2.2	65
399	Spatial and Temporal Expression of Lactobacillus plantarum Genes in the Gastrointestinal Tracts of Mice. Applied and Environmental Microbiology, 2007, 73, 124-132.	3.1	107
400	Metaproteomics Approach To Study the Functionality of the Microbiota in the Human Infant Gastrointestinal Tract. Applied and Environmental Microbiology, 2007, 73, 1388-1392.	3.1	149
401	The Novel Porcine Lactobacillus sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage ,. Journal of Nutrition, 2007, 137, 2709-2716.	2.9	143
402	Advanced Molecular Tools for the Identification of Lactic Acid Bacteria1, ,. Journal of Nutrition, 2007, 137, 741S-747S.	2.9	113
403	Pseudovitamin is the corrinoid produced by <i>Lactobacillus reuteri</i> CRL1098 under anaerobic conditions. FEBS Letters, 2007, 581, 4865-4870.	2.8	72
404	Characterization of the Role of para-Aminobenzoic Acid Biosynthesis in Folate Production by Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 2673-2681.	3.1	110
405	Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology (United Kingdom), 2007, 153, 3939-3947.	1.8	74
406	Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2007, 6, 29.	4.0	110
407	Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiology, 2007, 2, 285-295.	2.0	117
408	Diversity of the human gastrointestinal tract microbiota revisited. Environmental Microbiology, 2007, 9, 2125-2136.	3.8	485
409	Dynamics of competitive population abundance of Lactobacillus plantarum ivi gene mutants in faecal samples after passage through the gastrointestinal tract of mice. Journal of Applied Microbiology, 2007, 103, 1424-1434.	3.1	36
410	Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microbiology Ecology, 2007, 60, 126-135.	2.7	74
411	Germination of Bacillus cereus spores adhered to stainless steel. International Journal of Food Microbiology, 2007, 116, 367-371.	4.7	50
412	Identification of a Novel α-Galactosidase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2006, 188, 2392-2399.	2.2	51
413	Identification of the Missing Links in Prokaryotic Pentose Oxidation Pathways. Journal of Biological Chemistry, 2006, 281, 27378-27388.	3.4	102
414	Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 2006, 16, 1018-1028.	3.0	410

#	Article	IF	CITATIONS
415	Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology, 2006, 14, 86-91.	7.7	187
416	9 Functional Genomics of the Thermo-Acidophilic Archaeon Sulfolobus solfataricus. Methods in Microbiology, 2006, 35, 201-231.	0.8	0
417	Proteomic analysis of log to stationary growth phaseLactobacillus plantarum cells and a 2-DE database. Proteomics, 2006, 6, 6485-6493.	2.2	95
418	Post-natal development of the porcine microbiota composition and activities. Environmental Microbiology, 2006, 8, 1191-1199.	3.8	253
419	Identification of a glycolytic regulon in the archaeaPyrococcusandThermococcus. FEMS Microbiology Letters, 2006, 260, 69-76.	1.8	39
420	Eukaryotic diversity in historical soil samples. FEMS Microbiology Ecology, 2006, 57, 420-428.	2.7	64
421	DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. Journal of Applied Microbiology, 2006, 100, 728-738.	3.1	139
422	A microbial world within us. Molecular Microbiology, 2006, 59, 1639-1650.	2.5	335
423	Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nature Protocols, 2006, 1, 870-873.	12.0	171
424	Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nature Protocols, 2006, 1, 954-959.	12.0	82
425	Nutridynamics – studying the dynamics of food components in products and in the consumer. Current Opinion in Biotechnology, 2006, 17, 217-225.	6.6	27
426	Characterization of CprK1, a CRP/FNR-Type Transcriptional Regulator of Halorespiration from Desulfitobacterium hafniense. Journal of Bacteriology, 2006, 188, 2604-2613.	2.2	40
427	Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 29-32.	1.7	52
428	Characterization of Germination Receptors of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2006, 72, 44-53.	3.1	79
429	Influence of Sporulation Medium Composition on Transcription of ger Operons and the Germination Response of Spores of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2006, 72, 3746-3749.	3.1	63
430	Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model. Journal of Biological Chemistry, 2006, 281, 40041-40048.	3.4	261
431	Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electronic Journal of Biotechnology, 2006, 9, 0-0.	2.2	49
432	Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology (United Kingdom), 2006, 152, 1969-1979.	1.8	49

#	Article	IF	CITATIONS
433	Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiology Reviews, 2005, 29, 477-490.	8.6	122
434	Probiotic and other functional microbes: from markets to mechanisms. Current Opinion in Biotechnology, 2005, 16, 204-211.	6.6	344
435	Functional ingredient production: application of global metabolic models. Current Opinion in Biotechnology, 2005, 16, 190-197.	6.6	35
436	Discovering novel biology by in silico archaeology. Nature Reviews Microbiology, 2005, 3, 859-869.	28.6	21
437	Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS Journal, 2005, 272, 5464-5473.	4.7	46
438	Lactic acid bacteria – Genetics, metabolism and application. FEMS Microbiology Reviews, 2005, 29, 391-391.	8.6	11
439	Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes. Systematic and Applied Microbiology, 2005, 28, 187-195.	2.8	34
440	Enrichment and Detection of Microorganisms Involved in Direct and Indirect Methanogenesis from Methanol in an Anaerobic Thermophilic Bioreactor. Microbial Ecology, 2005, 50, 440-446.	2.8	27
441	Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Applied Microbiology and Biotechnology, 2005, 67, 75-82.	3.6	48
442	Deletion ofsigBinBacillus cereusaffects spore properties. FEMS Microbiology Letters, 2005, 252, 169-173.	1.8	11
443	An agr -Like Two-Component Regulatory System in Lactobacillus plantarum Is Involved in Production of a Novel Cyclic Peptide and Regulation of Adherence. Journal of Bacteriology, 2005, 187, 5224-5235.	2.2	144
444	Exploring Lactobacillus plantarum Genome Diversity by Using Microarrays. Journal of Bacteriology, 2005, 187, 6119-6127.	2.2	229
445	Engineering a Selectable Marker for Hyperthermophiles. Journal of Biological Chemistry, 2005, 280, 11422-11431.	3.4	78
446	Deletion of the sigB Gene in Bacillus cereus ATCC 14579 Leads to Hydrogen Peroxide Hyperresistance. Applied and Environmental Microbiology, 2005, 71, 6427-6430.	3.1	18
447	Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis. Applied and Environmental Microbiology, 2005, 71, 1507-1514.	3.1	57
448	The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1697-1703.	1.7	139
449	gerR , a Novel ger Operon Involved in l -Alanine- and Inosine-Initiated Germination of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2005, 71, 774-781.	3.1	72
450	Representational Difference Analysis and Real-Time PCR for Strain-Specific Quantification of Lactobacillus sobrius sp. nov. Applied and Environmental Microbiology, 2005, 71, 7578-7581.	3.1	38

#	Article	IF	CITATIONS
451	Lipotechoic acid in lactobacilli: D-Alanine makes the difference. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10763-10764.	7.1	16
452	Colonic Microbiota Signatures across Five Northern European Countries. Applied and Environmental Microbiology, 2005, 71, 4153-4155.	3.1	243
453	Cloning and Expression of Islandisin, a New Thermostable Subtilisin from Fervidobacterium islandicum , in Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 3951-3958.	3.1	28
454	Biodiversity-Based Identification and Functional Characterization of the Mannose-Specific Adhesin of <i>Lactobacillus plantarum </i> . Journal of Bacteriology, 2005, 187, 6128-6136.	2.2	272
455	Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology (United Kingdom), 2005, 151, 1229-1238.	1.8	68
456	Complete Sequences of Four Plasmids of Lactococcus lactis subsp. cremoris SK11 Reveal Extensive Adaptation to the Dairy Environment. Applied and Environmental Microbiology, 2005, 71, 8371-8382.	3.1	150
457	Genetic Diversity of Viable, Injured, and Dead Fecal Bacteria Assessed by Fluorescence-Activated Cell Sorting and 16S rRNA Gene Analysis. Applied and Environmental Microbiology, 2005, 71, 4679-4689.	3.1	190
458	Analysis of the Role of RsbV, RsbW, and RsbY in Regulating Ï f B Activity in Bacillus cereus. Journal of Bacteriology, 2005, 187, 5846-5851.	2.2	43
459	Influence of Glutamate on Growth, Sporulation, and Spore Properties of Bacillus cereus ATCC 14579 in Defined Medium. Applied and Environmental Microbiology, 2005, 71, 3248-3254.	3.1	48
460	Functional Analysis of Three Plasmids from Lactobacillus plantarum. Applied and Environmental Microbiology, 2005, 71, 1223-1230.	3.1	100
461	Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiology Reviews, 2005, 29, 477-490.	8.6	75
462	Specific Response of a Novel and Abundant <i>Lactobacillus amylovorus</i> -Like Phylotype to Dietary Prebiotics in the Guts of Weaning Piglets. Applied and Environmental Microbiology, 2004, 70, 3821-3830.	3.1	185
463	Identification and Functional Characterization of the Lactococcus lactis rfb Operon, Required for dTDP-Rhamnose Biosynthesis. Journal of Bacteriology, 2004, 186, 1239-1248.	2.2	40
464	Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis. Genetics, 2004, 168, 1145-1157.	2.9	38
465	Selection and Characterization of Conditionally Active Promoters in Lactobacillus plantarum , Using Alanine Racemase as a Promoter Probe. Applied and Environmental Microbiology, 2004, 70, 310-317.	3.1	37
466	Genetic Characterization of the Bile Salt Response in Lactobacillus plantarum and Analysis of Responsive Promoters In Vitro and In Situ in the Gastrointestinal Tract. Journal of Bacteriology, 2004, 186, 7829-7835.	2.2	130
467	Development and Application of a Selective PCR-Denaturing Gradient Gel Electrophoresis Approach To Detect a Recently Cultivated Bacillus Group Predominant in Soil. Applied and Environmental Microbiology, 2004, 70, 5801-5809.	3.1	15
468	Growth and Sporulation of Bacillus cereus ATCC 14579 under Defined Conditions: Temporal Expression of Genes for Key Sigma Factors. Applied and Environmental Microbiology, 2004, 70, 2514-2519.	3.1	67

#	Article	IF	CITATIONS
469	Transformation of Folate-Consuming Lactobacillus gasseri into a Folate Producer. Applied and Environmental Microbiology, 2004, 70, 3146-3148.	3.1	64
470	The Alternative Sigma Factor σ B of Bacillus cereus : Response to Stress and Role in Heat Adaptation. Journal of Bacteriology, 2004, 186, 316-325.	2.2	72
471	Identification of ÏfB-Dependent Genes in Bacillus cereus by Proteome and In Vitro Transcription Analysis. Journal of Bacteriology, 2004, 186, 4100-4109.	2.2	26
472	Substrate-Induced Production and Secretion of Cellulases by <i>Clostridium acetobutylicum</i> . Applied and Environmental Microbiology, 2004, 70, 5238-5243.	3.1	57
473	Identification and Functional Verification of Archaeal-Type Phosphoenolpyruvate Carboxylase, a Missing Link in Archaeal Central Carbohydrate Metabolism. Journal of Bacteriology, 2004, 186, 7754-7762.	2.2	33
474	The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microbial Ecology in Health and Disease, 2004, 16, 137-144.	3.5	11
475	Molecular methods for the analysis of gut microbiota. Microbial Ecology in Health and Disease, 2004, 16, 71-85.	3.5	25
476	Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1469-1476.	1.7	1,566
477	The food, GI-tract functionality and human health cluster: PROEUHEALTH and beyond. Microbial Ecology in Health and Disease, 2004, 16, 66-70.	3.5	1
478	Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends in Biotechnology, 2004, 22, 72-79.	9.3	126
479	Anaerobic Microbial Dehalogenation. Annual Review of Microbiology, 2004, 58, 43-73.	7.3	433
480	Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Current Opinion in Biotechnology, 2004, 15, 86-93.	6.6	53
481	Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice. Journal of Bacteriology, 2004, 186, 5721-5729.	2.2	211
482	Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides, 2004, 25, 1415-1424.	2.4	39
483	Optimising single cell activity assessment of Lactobacillus plantarum by fluorescent in situ hybridisation as affected by growth. Journal of Microbiological Methods, 2004, 59, 109-115.	1.6	16
484	Crystal Structure of Fervidolysin from Fervidobacterium pennivorans, a Keratinolytic Enzyme Related to Subtilisin. Journal of Molecular Biology, 2004, 335, 787-797.	4.2	56
485	Progress in Food-related Research Focussing on Bacillus cereus. Microbes and Environments, 2004, 19, 265-269.	1.6	5
486	Microbial Functionality in the Human Gastrointestinal Tract. Microbes and Environments, 2004, 19, 276-280.	1.6	3

#	Article	IF	CITATIONS
487	TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends in Biochemical Sciences, 2003, 28, 170-173.	7.5	65
488	Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe, 2003, 9, 175-180.	2.1	47
489	Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe, 2003, 9, 219-229.	2.1	171
490	Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. FEBS Journal, 2003, 270, 2885-2894.	0.2	46
491	The Lrp family of transcriptional regulators. Molecular Microbiology, 2003, 48, 287-294.	2.5	252
492	Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology, 2003, 43, 225-235.	2.7	150
493	Increased Production of Folate by Metabolic Engineering of Lactococcus lactis. Applied and Environmental Microbiology, 2003, 69, 3069-3076.	3.1	169
494	Complete genome sequence of <i>Lactobacillus plantarum</i> WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1990-1995.	7.1	1,326
495	Bacterial gene expression detected in human faeces by reverse transcription-PCR. Journal of Microbiological Methods, 2003, 55, 133-140.	1.6	14
496	Engineering of Carbon Distribution between Glycolysis and Sugar Nucleotide Biosynthesis in Lactococcus lactis. Applied and Environmental Microbiology, 2003, 69, 1129-1135.	3.1	58
497	ControlledModulation of Folate Polyglutamyl Tail Length by Metabolic Engineeringof Lactococcuslactis. Applied and Environmental Microbiology, 2003, 69, 7101-7107.	3.1	42
498	Production by <i>Clostridium acetobutylicum</i> ATCC 824 of CelG, a Cellulosomal Glycoside Hydrolase Belonging to Family 9. Applied and Environmental Microbiology, 2003, 69, 869-877.	3.1	31
499	Characterization, Expression, and Mutation of the Lactococcus lactis galPMKTE Genes, Involved in Galactose Utilization via the Leloir Pathway. Journal of Bacteriology, 2003, 185, 870-878.	2.2	80
500	Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 787-793.	1.7	176
501	High-throughput PCR Screening of Genes for Three-component Regulatory System Putatively Involved in Quorum Sensing from Low-G+C Gram-positive Bacteria. Bioscience, Biotechnology and Biochemistry, 2003, 67, 480-489.	1.3	22
502	Identification and Molecular Characterization of a Novel Type of α-galactosidase fromPyrococcus furiosus. Biocatalysis and Biotransformation, 2003, 21, 243-252.	2.0	27
503	Increased Exopolysaccharide Production in Lactococcus lactis due to Increased Levels of Expression of the NIZO B40 eps Gene Cluster. Applied and Environmental Microbiology, 2003, 69, 5029-5031.	3.1	53
504	Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology, 2003, 43, 225-235.	2.7	2

#	Article	IF	CITATIONS
505	Quantification of Uncultured <i>Ruminococcus obeum</i> -Like Bacteria in Human Fecal Samples by Fluorescent In Situ Hybridization and Flow Cytometry Using 16S rRNA-Targeted Probes. Applied and Environmental Microbiology, 2002, 68, 4225-4232.	3.1	115
506	The Sulfolobus solfataricus Lrp-like Protein LysM Regulates Lysine Biosynthesis in Response to Lysine Availability. Journal of Biological Chemistry, 2002, 277, 29537-29549.	3.4	98
507	Characterization of Plasmid pRT1 from Pyrococcus sp. Strain JT1. Journal of Bacteriology, 2002, 184, 2561-2566.	2.2	30
508	Diversity of Bifidobacterium and Lactobacillus spp. in Breast-Fed and Formula-Fed Infants as Assessed by 16S rDNA Sequence Differences. Microbial Ecology in Health and Disease, 2002, 14, 97-105.	3.5	43
509	Food, GI-tract Functionality and Human Health Cluster: PROEUHEALTH. Microbial Ecology in Health and Disease, 2002, 14, 65-74.	3.5	12
510	Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis. Applied and Environmental Microbiology, 2002, 68, 1882-1892.	3.1	332
511	Use of the <i>alr</i> Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria. Applied and Environmental Microbiology, 2002, 68, 5663-5670.	3.1	85
512	Molecular and Biochemical Characterization of a Distinct Type of Fructose-1,6-Bisphosphatase from Pyrococcus furiosus. Journal of Bacteriology, 2002, 184, 3401-3405.	2.2	32
513	Multiparametric Flow Cytometry and Cell Sorting for the Assessment of Viable, Injured, and Dead Bifidobacterium Cells during Bile Salt Stress. Applied and Environmental Microbiology, 2002, 68, 5209-5216.	3.1	252
514	Mucosa-Associated Bacteria in the Human Gastrointestinal Tract Are Uniformly Distributed along the Colon and Differ from the Community Recovered from Feces. Applied and Environmental Microbiology, 2002, 68, 3401-3407.	3.1	716
515	Molecular Monitoring of Succession of Bacterial Communities in Human Neonates. Applied and Environmental Microbiology, 2002, 68, 219-226.	3.1	730
516	Genetics of Streptococci, Lactococci, and Enterococci: Review of the Sixth International Conference. Journal of Bacteriology, 2002, 184, 6085-6092.	2.2	19
517	Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism ofPyrococcus furiosus. Archaea, 2002, 1, 133-141.	2.3	20
518	Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles, 2002, 6, 185-194.	2.3	43
519	Aspergillus oryzaein solid-state and submerged fermentations. FEMS Yeast Research, 2002, 2, 245-248.	2.3	75
520	Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek, 2002, 81, 233-243.	1.7	248
521	The Intestinal LABs. Antonie Van Leeuwenhoek, 2002, 82, 341-352.	1.7	133
522	Molecular Diversity of <i>Lactobacillus</i> spp. and Other Lactic Acid Bacteria in the Human Intestine as Determined by Specific Amplification of 16S Ribosomal DNA. Applied and Environmental Microbiology, 2002, 68, 114-123.	3.1	619

#	Article	IF	CITATIONS
523	Bifidobacterial Diversity in Human Feces Detected by Genus-Specific PCR and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2001, 67, 504-513.	3.1	392
524	A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter. Peptides, 2001, 22, 1597-1601.	2.4	31
525	Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. International Dairy Journal, 2001, 11, 723-732.	3.0	117
526	Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms. Methods in Enzymology, 2001, 330, 383-393.	1.0	16
527	[4] ADP-dependent glucokinase and phosphofructokinase from Pyrococcus furiosus. Methods in Enzymology, 2001, 331, 41-53.	1.0	16
528	A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols. Archives of Microbiology, 2001, 175, 389-394.	2.2	32
529	Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Archives of Microbiology, 2001, 176, 165-169.	2.2	54
530	Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeonPyrococcus furiosus. FEBS Journal, 2001, 268, 3062-3068.	0.2	50
531	Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Molecular Microbiology, 2001, 41, 145-154.	2.5	234
532	Advances in genomics for microbial food fermentations and safety. Current Opinion in Biotechnology, 2001, 12, 493-498.	6.6	44
533	The NADH oxidase fromPyrococcus furiosus. FEBS Journal, 2001, 268, 5816-5823.	0.2	60
534	Improved oligosaccharide synthesis by protein engineering of ?-glucosidase CelB from hyperthermophilicPyrococcus furiosus. Biotechnology and Bioengineering, 2001, 73, 203-210.	3.3	77
535	Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO Journal, 2001, 20, 990-997.	7.8	135
536	Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis Monitoring of Fecal Bifidobacterium Populations in a Prebiotic and Probiotic Feeding Trial. Systematic and Applied Microbiology, 2001, 24, 227-231.	2.8	94
537	DNA Isolation Protocols Affect the Detection Limit of PCRApproaches of Bacteria in Samples from the HumanGastrointestinal Tract. Systematic and Applied Microbiology, 2001, 24, 405-410.	2.8	102
538	Functional Analysis of the Lactococcus lactis galU and galE Genes and Their Impact on Sugar Nucleotide and Exopolysaccharide Biosynthesis. Applied and Environmental Microbiology, 2001, 67, 3033-3040.	3.1	117
539	β-glucosidase CelB from Pyrococcus furiosus: Production by Escherichia coli, purification, and in vitro evolution. Methods in Enzymology, 2001, 330, 364-379.	1.0	23
540	ADP-Dependent Phosphofructokinases in Mesophilic and Thermophilic Methanogenic Archaea. Journal of Bacteriology, 2001, 183, 7145-7153.	2.2	51

#	Article	IF	CITATIONS
541	The Phosphoglucose Isomerase from the Hyperthermophilic ArchaeonPyrococcus furiosus Is a Unique Glycolytic Enzyme That Belongs to the Cupin Superfamily. Journal of Biological Chemistry, 2001, 276, 40926-40932.	3.4	49
542	Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis. Applied and Environmental Microbiology, 2001, 67, 33-41.	3.1	121
543	Cold Shock Proteins of <i>Lactococcus lactis</i> MG1363 Are Involved in Cryoprotection and in the Production of Cold-Induced Proteins. Applied and Environmental Microbiology, 2001, 67, 5171-5178.	3.1	58
544	Development of a Gene Cloning and Inactivation System for Halorespiring Desulfitobacterium dehalogenans. Applied and Environmental Microbiology, 2001, 67, 591-597.	3.1	15
545	Activation of Silent gal Genes in the lac-gal Regulon of Streptococcus thermophilus. Journal of Bacteriology, 2001, 183, 1184-1194.	2.2	117
546	Energy Yield of Respiration on Chloroaromatic Compounds in Desulfitobacterium dehalogenans. Applied and Environmental Microbiology, 2001, 67, 3958-3963.	3.1	35
547	Clostridium beijerinckii Cells Expressing Neocallimastix patriciarum Glycoside Hydrolases Show Enhanced Lichenan Utilization and Solvent Production. Applied and Environmental Microbiology, 2001, 67, 5127-5133.	3.1	41
548	Characterization of β-glycosylhydrolases from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 329-346.	1.0	19
549	Chapter 4 The role of cold-shock proteins in low-temperature adaptation. Cell and Molecular Response To Stress, 2001, 2, 43-56.	0.4	3
550	Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 401-13.	1.0	25
551	Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil. Letters in Applied Microbiology, 2000, 31, 118-122.	2.2	18
552	Halorespiring bacteria–molecular characterization and detection. Enzyme and Microbial Technology, 2000, 27, 812-820.	3.2	50
553	Nucleotide Sequence Analysis of the Lactococcal EPS Plasmid pNZ4000. Plasmid, 2000, 43, 130-136.	1.4	52
554	Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology, 2000, 54, 162-167.	3.6	73
555	Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal β-glycosidases. Extremophiles, 2000, 4, 157-164.	2.3	32
556	An Lrp-like Transcriptional Regulator from the ArchaeonPyrococcus furiosus Is Negatively Autoregulated. Journal of Biological Chemistry, 2000, 275, 38160-38169.	3.4	79
557	Transcriptional Regulation of the cpr Gene Cluster inortho-Chlorophenol-Respiring Desulfitobacterium dehalogenans. Journal of Bacteriology, 2000, 182, 5683-5691.	2.2	100
558	Response of a Soil Bacterial Community to Grassland Succession as Monitored by 16S rRNA Levels of the Predominant Ribotypes. Applied and Environmental Microbiology, 2000, 66, 3998-4003.	3.1	97

#	Article	IF	CITATIONS
559	Control of Lactose Transport, Î ² -Galactosidase Activity, and Glycolysis by CcpA in <i>Streptococcus thermophilus</i> : Evidence for Carbon Catabolite Repression by a Non-Phosphoenolpyruvate-Dependent Phosphotransferase System Sugar. Journal of Bacteriology, 2000, 182, 5982-5989.	2.2	111
560	Physiological and Regulatory Effects of Controlled Overproduction of Five Cold Shock Proteins of Lactococcus lactis MG1363. Applied and Environmental Microbiology, 2000, 66, 3756-3763.	3.1	43
561	Changes in Glycolytic Activity of <i>Lactococcus lactis</i> Induced by Low Temperature. Applied and Environmental Microbiology, 2000, 66, 3686-3691.	3.1	74
562	Deletion of Various Carboxy-Terminal Domains of Lactococcus lactis SK11 Proteinase: Effects on Activity, Specificity, and Stability of the Truncated Enzyme. Applied and Environmental Microbiology, 2000, 66, 2859-2865.	3.1	15
563	Purification and Characterization of the Alanine Aminotransferase from the Hyperthermophilic Archaeon Pyrococcus furiosus and Its Role in Alanine Production. Journal of Bacteriology, 2000, 182, 2559-2566.	2.2	74
564	Improving Low-Temperature Catalysis in the Hyperthermostable Pyrococcus furiosus β-Glucosidase CelB by Directed Evolution. Biochemistry, 2000, 39, 3656-3665.	2.5	83
565	Temperature and Denaturing Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Faecal Samples. Bioscience and Microflora, 2000, 19, 93-98.	0.5	15
566	A molecular view of the intestinal ecosystem. Current Issues in Intestinal Microbiology, 2000, 1, 1-12.	2.5	115
567	Molecular and Biochemical Characterization of the ADP-dependent Phosphofructokinase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1999, 274, 21023-21028.	3.4	91
568	Purification and Molecular Characterization ofortho-Chlorophenol Reductive Dehalogenase, a Key Enzyme of Halorespiration in Desulfitobacterium dehalogenans. Journal of Biological Chemistry, 1999, 274, 20287-20292.	3.4	154
569	Food biotechnology: Frontiers of food functionalityEditorial overview. Current Opinion in Biotechnology, 1999, 10, 483-484.	6.6	2
570	Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Current Opinion in Biotechnology, 1999, 10, 498-504.	6.6	92
571	Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 1999, 17, 588-592.	17.5	174
572	Glutamate dehydrogenase from hyperthermophilic Bacteria and Archaea: determinants of thermostability and catalysis at extremely high temperatures. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 133-145.	1.8	5
573	In vivo nuclear magnetic resonance studies of glycolytic kinetics inLactococcus lactis. , 1999, 64, 200-212.		107
574	Gene expression systems for lactic acid bacteria. Current Opinion in Microbiology, 1999, 2, 289-295.	5.1	151
575	Molecular approaches to study probiotic bacteria. Trends in Food Science and Technology, 1999, 10, 400-404.	15.1	31
576	Lantibiotics: biosynthesis, mode of action and applications. Natural Product Reports, 1999, 16, 575-587.	10.3	123

#	Article	IF	CITATIONS
577	Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. Journal of Molecular Biology, 1999, 289, 357-369.	4.2	66
578	Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiology Ecology, 1999, 30, 137-145.	2.7	5
579	Cold Shock Proteins and Low-Temperature Response of <i>Streptococcus thermophilus</i> CNRZ302. Applied and Environmental Microbiology, 1999, 65, 4436-4442.	3.1	51
580	Reductive Dechlorination of Tetrachloroethene to cis -1,2-Dichloroethene by a Thermophilic Anaerobic Enrichment Culture. Applied and Environmental Microbiology, 1999, 65, 2312-2316.	3.1	37
581	Exopolysaccharide Biosynthesis in <i>Lactococcus lactis</i> NIZO B40: Functional Analysis of the Glycosyltransferase Genes Involved in Synthesis of the Polysaccharide Backbone. Journal of Bacteriology, 1999, 181, 338-340.	2.2	74
582	Transcriptional Regulation in the Hyperthermophilic Archaeon Pyrococcus furiosus : Coordinated Expression of Divergently Oriented Genes in Response to β-Linked Glucose Polymers. Journal of Bacteriology, 1999, 181, 3777-3783.	2.2	21
583	Acetate Utilization in <i>Lactococcus lactis</i> Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance. Journal of Bacteriology, 1999, 181, 5521-5526.	2.2	48
584	Functional Analysis of Glycosyltransferase Genes from <i>Lactococcus lactis</i> and Other Gram-Positive Cocci: Complementation, Expression, and Diversity. Journal of Bacteriology, 1999, 181, 6347-6353.	2.2	96
585	Random Transposition by Tn 916 in Desulfitobacterium dehalogenans Allows for Isolation and Characterization of Halorespiration-Deficient Mutants. Journal of Bacteriology, 1999, 181, 6882-6888.	2.2	33
586	Molecular Characterization of the Lactococcus lactis ptsHI Operon and Analysis of the Regulatory Role of HPr. Journal of Bacteriology, 1999, 181, 764-771.	2.2	48
587	Characterization of the Divergent <i>sacBK</i> and <i>sacAR</i> Operons, Involved in Sucrose Utilization by <i>Lactococcus lactis</i> . Journal of Bacteriology, 1999, 181, 1924-1926.	2.2	35
588	Use of marker genes in competition studies of Rhizobium. Plant and Soil, 1998, 204, 35-45.	3.7	28
589	Demonstration of safety of probiotics — a review. International Journal of Food Microbiology, 1998, 44, 93-106.	4.7	701
590	Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the Glutamate Dehydrogenase family. FEBS Journal, 1998, 255, 336-346.	0.2	103
591	Sugar utilization and its control in hyperthermophiles. Extremophiles, 1998, 2, 201-205.	2.3	42
592	Synthesis of oligosaccharides catalyzed by thermostable β-glucosidase fromPyrococcus furiosus. Applied Biochemistry and Biotechnology, 1998, 75, 269-278.	2.9	18
593	Transcriptional activation of the glycolytic <i>las</i> operon and catabolite repression of the <i>gal</i> operon in <i>Lactococcus lactis</i> are mediated by the catabolite control protein CcpA. Molecular Microbiology, 1998, 30, 789-798.	2.5	173
594	Making More of Milk Sugar by Engineering Lactic Acid Bacteria. International Dairy Journal, 1998, 8, 227-233.	3.0	21

#	Article	IF	CITATIONS
595	Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. introduction of a six-residue ion-pair network in the hinge region. Journal of Molecular Biology, 1998, 280, 287-296.	4.2	33
596	Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology, 1998, 64, 15-21.	3.8	641
597	The Ferredoxin-dependent Conversion of Glyceraldehyde-3-phosphate in the Hyperthermophilic ArchaeonPyrococcus furiosus Represents a Novel Site of Glycolytic Regulation. Journal of Biological Chemistry, 1998, 273, 28149-28154.	3.4	99
598	Genetics of galactose utilisation via the Leloir pathway in lactic acid bacteria. Dairy Science and Technology, 1998, 78, 77-84.	0.9	79
599	Use of the Lactococcal <i>nisA</i> Promoter To Regulate Gene Expression in Gram-Positive Bacteria: Comparison of Induction Level and Promoter Strength. Applied and Environmental Microbiology, 1998, 64, 2763-2769.	3.1	171
600	Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria. Applied and Environmental Microbiology, 1998, 64, 3854-3859.	3.1	1,186
601	Redistribution métabolique chez une souche de Lactobacillus plantarum déficiente en lactate deshydrogénase. Dairy Science and Technology, 1998, 78, 107-116.	0.9	6
602	Regulation of the carbohydrate metabolism in Lactococcus lactis and other lactic acid bacteria. Dairy Science and Technology, 1998, 78, 69-76.	0.9	8
603	Quantification of 16S rRNAs in Complex Bacterial Communities by Multiple Competitive Reverse Transcription-PCR in Temperature Gradient Gel Electrophoresis Fingerprints. Applied and Environmental Microbiology, 1998, 64, 4581-4587.	3.1	205
604	In Situ Detection of an Uncultured Predominant Bacillus in Dutch Grassland Soils. Applied and Environmental Microbiology, 1998, 64, 4588-4590.	3.1	41
605	Cofactor Engineering: a Novel Approach to Metabolic Engineering in <i>Lactococcus lactis</i> by Controlled Expression of NADH Oxidase. Journal of Bacteriology, 1998, 180, 3804-3808.	2.2	217
606	Characterization of Multiple Regions Involved in Replication and Mobilization of Plasmid pNZ4000 Coding for Exopolysaccharide Production in <i>Lactococcus lactis</i> . Journal of Bacteriology, 1998, 180, 5285-5290.	2.2	46
607	Molecular and Biochemical Characterization of an Endo-β-1,3-glucanase of the Hyperthermophilic ArchaeonPyrococcus furiosus. Journal of Biological Chemistry, 1997, 272, 31258-31264.	3.4	130
608	Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. Journal of Bacteriology, 1997, 179, 6163-6171.	2.2	116
609	Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 Ã resolution. Journal of Molecular Biology, 1997, 267, 916-932.	4.2	146
610	Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotechnology, 1997, 15, 976-979.	17.5	146
611	Controlled overproduction of proteins by lactic acid bacteria. Trends in Biotechnology, 1997, 15, 135-140.	9.3	208
612	Glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: molecular characterization and phylogenetic implications. Extremophiles, 1997, 1, 53-61.	2.3	19

#	Article	IF	CITATIONS
613	Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Current Opinion in Biotechnology, 1997, 8, 547-553.	6.6	48
614	Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Molecular Ecology, 1997, 6, 601-608.	3.9	38
615	Molecular characterization of the plasmidâ€encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular Microbiology, 1997, 24, 387-397.	2.5	257
616	Quorum sensing by peptide pheromones and twoâ€component signalâ€transduction systems in Gramâ€positive bacteria. Molecular Microbiology, 1997, 24, 895-904.	2.5	710
617	Stabilization of Enzymes against Thermal Stress and Freeze-Drying by Mannosylglycerate. Applied and Environmental Microbiology, 1997, 63, 4020-4025.	3.1	111
618	Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Applied and Environmental Microbiology, 1997, 63, 4581-4584.	3.1	231
619	A Cell-Free Transcription System for the Hyperthermophilic Archaeon Pyrococcus Furiosus. Nucleic Acids Research, 1996, 24, 2369-2376.	14.5	75
620	Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in lactococcus lactis SK11. Journal of Bacteriology, 1996, 178, 1525-1531.	2.2	37
621	Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology, 1996, 178, 3434-3439.	2.2	316
622	Crystallization and preliminary structural studies of lactose-specific enzyme IIA from Lactococcus lactis. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 1199-1201.	2.5	2
623	Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek, 1996, 70, 223-242.	1.7	134
624	Genetics of subtilin and nisin biosyntheses. Antonie Van Leeuwenhoek, 1996, 69, 109-117.	1.7	57
625	Protein engineering of lantibiotics. Antonie Van Leeuwenhoek, 1996, 69, 161-170.	1.7	119
626	Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek, 1996, 69, 171-184.	1.7	156
627	Immunological crossreactivity to the catabolite control protein CcpA fromBacillus megateriumis found in many Gram-positive bacteria. FEMS Microbiology Letters, 1996, 139, 109-115.	1.8	46
628	Sugar metabolism of hyperthermophiles. FEMS Microbiology Reviews, 1996, 18, 119-137.	8.6	107
629	Carbon Monoxide Dehydrogenase from Gö1. Journal of Biological Chemistry, 1996, 271, 14256-14263.	3.4	27
630	Isolation and Characterization of the Hyperthermostable Serine Protease, Pyrolysin, and Its Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1996, 271, 20426-20431.	3.4	72

#	Article	IF	CITATIONS
631	Sugar metabolism of hyperthermophiles. FEMS Microbiology Reviews, 1996, 18, 119-137.	8.6	8
632	Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology, 1996, 62, 3662-3667.	3.1	752
633	Simultaneous detection of different Rhizobium strains marked with either the Escherichia coli gusA gene or the Pyrococcus furiosus celB gene. Applied and Environmental Microbiology, 1996, 62, 4191-4194.	3.1	25
634	Food-grade cloning and expression system for Lactococcus lactis. Applied and Environmental Microbiology, 1996, 62, 1008-1013.	3.1	127
635	Rapid and sensitive method for the detection of Mycobacterium chlorophenolicum PCP-1 in soil based on 16S rRNA gene-targeted PCR. Applied and Environmental Microbiology, 1996, 62, 1478-1480.	3.1	23
636	The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators. Applied and Environmental Microbiology, 1996, 62, 1574-1582.	3.1	30
637	Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Applied and Environmental Microbiology, 1996, 62, 1656-1663.	3.1	151
638	Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Applied and Environmental Microbiology, 1996, 62, 2163-2168.	3.1	76
639	Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. Journal of Bacteriology, 1995, 177, 7105-7111.	2.2	128
640	Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Molecular Microbiology, 1995, 17, 427-437.	2.5	194
641	Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. Journal of Bacteriology, 1995, 177, 2982-2989.	2.2	86
642	Purification and Characterization of a Novel ADP-dependent Glucokinase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1995, 270, 30453-30457.	3.4	117
643	Homology modelling of the Lactococcus lactis leader peptidase NisP and its interaction with the precursor of the lantibiotic nisin. Protein Engineering, Design and Selection, 1995, 8, 117-125.	2.1	39
644	Exchange of domains of glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus and the mesophilic bacterium Clostridium difficile: effects on catalysis, thermoactivity and stability. Protein Engineering, Design and Selection, 1995, 8, 1287-1294.	2.1	22
645	Identification and characterization of the insertion element IS1070 from leuconostoc lactis NZ6009. Gene, 1995, 155, 95-100.	2.2	27
646	Characterization and heterologous expression of the tetL gene and identification of iso-ISS1 elements from Enterococcus faecalis plasmid pJH1. Gene, 1995, 160, 89-93.	2.2	16
647	Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction. Journal of Biological Chemistry, 1995, 270, 27299-27304.	3.4	483
648	Elucidation of the Primary Structure of the Lantibiotic Epilancin K7 from Staphylococcus epidermidis K7. Cloning and Characterisation of the Epilancin-K7-Encoding Gene and NMR Analysis of Mature Epilancin K7. FEBS Journal, 1995, 230, 587-600.	0.2	90

#	Article	IF	CITATIONS
649	Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Applied and Environmental Microbiology, 1995, 61, 3967-3971.	3.1	93
650	Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Applied and Environmental Microbiology, 1995, 61, 788-792.	3.1	160
651	Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Applied and Environmental Microbiology, 1995, 61, 2771-2774.	3.1	187
652	Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Applied and Environmental Microbiology, 1995, 61, 2873-2878.	3.1	274
653	Characterization of plasmid-encoded citrate permease (citP) genes from Leuconostoc species reveals high sequence conservation with the Lactococcus lactis citP gene. Applied and Environmental Microbiology, 1995, 61, 3172-3176.	3.1	33
654	Analysis of the binding site of the LysR-type transcriptional activator TcbR on the tcbR and tcbC divergent promoter sequences. Journal of Bacteriology, 1994, 176, 1850-1856.	2.2	23
655	Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. Journal of Bacteriology, 1994, 176, 2165-2171.	2.2	49
656	Evidence for a large dispensable segment in the subtilisin-like catalytic domain of the Lactococcus lactis cell-envelope proteinas. Protein Engineering, Design and Selection, 1994, 7, 991-996.	2.1	32
657	Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiology Reviews, 1994, 15, 217-237.	8.6	178
658	Molecular and Comparative Analysis of the Hyperthermostable <i>Pyrococcus Furiosus</i> Glutamate Dehydrogenase and its Gene. Biocatalysis, 1994, 11, 131-141.	0.9	6
659	Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Applied and Environmental Microbiology, 1994, 60, 587-593.	3.1	185
660	Distribution and evolution of nisin-sucrose elements in Lactococcus lactis. Applied and Environmental Microbiology, 1994, 60, 1798-1804.	3.1	33
661	Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. Journal of Biological Chemistry, 1994, 269, 17537-41.	3.4	175
662	Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. Journal of Biological Chemistry, 1994, 269, 3555-62.	3.4	132
663	Distribution and characterization of plasmid-related sequences in the chromosomal DNA of different thermophilic Methanobacterium strains. Molecular Genetics and Genomics, 1993, 240, 81-91.	2.4	6
664	Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α-amylase. Molecular Genetics and Genomics, 1993, 240, 428-434.	2.4	86
665	Characterization of the nisin gene cluster <i>nisABTCIPR</i> of <i>Lactococcus lactis</i> . FEBS Journal, 1993, 216, 281-291.	0.2	495
666	Biosynthesis and secretion of a precursor of nisin Z byLactococcus lactis, directed by the leader peptide of the homologous lantibiotic subtilin fromBacillus subtilis. FEBS Letters, 1993, 330, 23-27.	2.8	79

#	Article	IF	CITATIONS
667	Overproduction of bovine β-casein in Escherichia coli and engineering of its main chymosin cleavage site. Protein Engineering, Design and Selection, 1993, 6, 763-770.	2.1	15
668	The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. Gene, 1993, 132, 143-148.	2.2	59
669	Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression. Protein Engineering, Design and Selection, 1993, 6, 201-206.	2.1	38
670	Engineering of the substrate-binding region of the sublilisin-like, cell-envelop proteinase of Lactococcus lactis. Protein Engineering, Design and Selection, 1993, 6, 927-937.	2.1	42
671	Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Research, 1993, 21, 777-778.	14.5	160
672	Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. Journal of Bacteriology, 1993, 175, 2578-2588.	2.2	305
673	Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. Journal of Bacteriology, 1993, 175, 1637-1644.	2.2	130
674	Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacC-deficient strains. Journal of Bacteriology, 1993, 175, 5168-5175.	2.2	28
675	Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Applied and Environmental Microbiology, 1993, 59, 213-218.	3.1	193
676	Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. Journal of Biological Chemistry, 1993, 268, 16361-8.	3.4	114
677	Identification of the CTAG-recognizing restriction-modification systemsMthZI andMthFI fromMethanobacterium thermoformicicumand characterization of the plasmid-encodedmthZIMgene. Nucleic Acids Research, 1992, 20, 5047-5052.	14.5	25
678	Modular organization of related Archaeal plasmids encoding different restriction-modification systems inMethanobacterium thermoformicicum. Nucleic Acids Research, 1992, 20, 6501-6507.	14.5	46
679	Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. Journal of Bacteriology, 1992, 174, 1280-1287.	2.2	204
680	Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. Journal of Bacteriology, 1992, 174, 2273-2280.	2.2	128
681	Leuconostoc lactis beta-galactosidase is encoded by two overlapping genes. Journal of Bacteriology, 1992, 174, 4475-4481.	2.2	81
682	Location, characterization and expression of lytic enzyme-encoding gene, lytA, of Lactococcus lactis bacteriophage ï† US3 â€. Gene, 1992, 118, 115-120.	2.2	61
683	Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose operon and characterization of the sac A gene encoding sucrose-6-phosphate hydrolase. Gene, 1992, 121, 55-61.	2.2	40
684	Characterization of theLactococcus lactis pepNgene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Letters, 1992, 306, 9-16.	2.8	74

#	Article	IF	CITATIONS
685	Characterization of the archaeal, plasmid-encoded type II restriction-modification system MthTl from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. Journal of Bacteriology, 1992, 174, 5719-5726.	2.2	50
686	Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Applied and Environmental Microbiology, 1992, 58, 78-84.	3.1	48
687	Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. Journal of Biological Chemistry, 1992, 267, 24340-6.	3.4	133
688	Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Engineering, Design and Selection, 1991, 4, 719-737.	2.1	331
689	Molecular organization of the minimal replicon of novel, narrow-host-range, lactococcal plasmid pCl305. Plasmid, 1991, 25, 16-26.	1.4	66
690	Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. Journal of Bacteriology, 1991, 173, 2425-2434.	2.2	181
691	Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. Journal of Bacteriology, 1991, 173, 3700-3708.	2.2	94
692	Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. Journal of Bacteriology, 1991, 173, 7077-7083.	2.2	130
693	Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. Journal of Bacteriology, 1991, 173, 6-15.	2.2	183
694	Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. Journal of Bacteriology, 1991, 173, 6383-6389.	2.2	74
695	Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. FEBS Journal, 1991, 201, 581-584.	0.2	377
696	Improved site-directed mutagenesis method using PCR. Nucleic Acids Research, 1991, 19, 4558-4558.	14.5	117
697	Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes. Protein Engineering, Design and Selection, 1991, 4, 479-484.	2.1	83
698	Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology, 1991, 57, 3390-3393.	3.1	247
699	Detection of Plasmid Transfer from <i>Pseudomonas fluorescens</i> to Indigenous Bacteria in Soil by Using Bacteriophage φR2f for Donor Counterselection. Applied and Environmental Microbiology, 1991, 57, 3482-3488.	3.1	117
700	Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Applied and Environmental Microbiology, 1991, 57, 2555-2561.	3.1	101
701	Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. Journal of Biological Chemistry, 1991, 266, 6883-7.	3.4	54
702	Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. Journal of Biological Chemistry, 1991, 266, 7176-81.	3.4	99

#	Article	IF	CITATIONS
703	Nucleotide sequence and expression in Escherichia coli of the Lactococcus lactis citrate permease gene. Journal of Bacteriology, 1990, 172, 5789-5794.	2.2	75
704	Organization of a ribosomal RNA gene cluster from the ArchaebacteriumMethanothrix soehngenii. Nucleic Acids Research, 1990, 18, 1306-1306.	14.5	10
705	Nucleotide sequence of IS904 fromLactococcus lactissubsp.lactisstrain NIZO R5. Nucleic Acids Research, 1990, 18, 4253-4254.	14.5	58
706	Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene, 1990, 95, 155-160.	2.2	222
707	Insertion elements on lactococcal proteinase plasmids. Applied and Environmental Microbiology, 1990, 56, 1890-1896.	3.1	61
708	Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. Journal of Biological Chemistry, 1990, 265, 22554-60.	3.4	114
709	Nucleotide sequence of a 16S rRNA encoding gene from the ArchaebacteriumMethanothrix soehngenii. Nucleic Acids Research, 1989, 17, 9469-9469.	14.5	17
710	Cloning and expression of the Lactococcus lactis subsp. Cremoris SK11 gene encoding an extracellular serine proteinase. Gene, 1989, 85, 169-176.	2.2	137
711	Gene Organization and Expression in Mesophilic Lactic Acid Bacteria. Journal of Dairy Science, 1989, 72, 3398-3405.	3.4	26
712	A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. Journal of Bacteriology, 1989, 171, 2795-2802.	2.2	186
713	Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Applied and Environmental Microbiology, 1989, 55, 1483-1489.	3.1	53
714	Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. Journal of Biological Chemistry, 1989, 264, 13579-85.	3.4	149
715	Proteinases of Streptococcus cremoris: physiological and genetic analysis. Antonie Van Leeuwenhoek, 1985, 51, 565-566.	1.7	6
716	A shoot-specific mRNA from pea: nucleotide sequence and regulation as compared to light-induced mRNAs. Plant Molecular Biology, 1985, 4, 95-102.	3.9	17
717	Transformation of Bacillus subtilis competent cells: Identification and regulation of the rec E gene product. Molecular Genetics and Genomics, 1983, 190, 56-64.	2.4	39
718	Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis. Gene, 1983, 25, 301-308.	2.2	58
719	Transformation of Bacillus subtilis competent cells: Identification of a protein involved in recombination. Molecular Genetics and Genomics, 1982, 187, 439-445.	2.4	33
720	Plasmid DNA in <i>Streptococcus cremoris</i> Wg2: Influence of pH on Selection in Chemostats of a Variant Lacking a Protease Plasmid. Applied and Environmental Microbiology, 1982, 43, 1272-1277.	3.1	92

#	Article	IF	CITATIONS
721	Fate of plasmid DNA in transformation of Bacillus subtilis protoplasts. Molecular Genetics and Genomics, 1981, 182, 39-43.	2.4	32
722	Plasmid transformation in Bacillus subtilis: Fate of plasmid DNA. Molecular Genetics and Genomics, 1981, 181, 424-433.	2.4	86
723	l-Aspartate fermentation by a free-livingCampylobacter species. Archives of Microbiology, 1978, 117, 109-114.	2.2	28
724	Future Development of Probiotic Dairy Products. , 0, , 195-206.		0
725	The Human Intestinal Microbiota and Its Impact on Health. , 0, , 11-32.		1