
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2525132/publications.pdf Version: 2024-02-01

LUICI EDUNZIO

#	Article	IF	CITATIONS
1	Frequency-tunable Kerr-free three-wave mixing with a gradiometric SNAIL. Applied Physics Letters, 2022, 120, .	1.5	5
2	Single-shot number-resolved detection of microwave photons with error mitigation. Physical Review A, 2021, 103, .	1.0	9
3	Error-Detected State Transfer and Entanglement in a Superconducting Quantum Network. PRX Quantum, 2021, 2, .	3.5	34
4	High-Fidelity Measurement of Qubits Encoded in Multilevel Superconducting Circuits. Physical Review X, 2020, 10, .	2.8	45
5	Quantum error correction of a qubit encoded in grid states of an oscillator. Nature, 2020, 584, 368-372.	13.7	232
6	High coherence superconducting microwave cavities with indium bump bonding. Applied Physics Letters, 2020, 116, .	1.5	27
7	Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic Processor. Physical Review X, 2020, 10, .	2.8	73
8	Error-corrected gates on an encoded qubit. Nature Physics, 2020, 16, 822-826.	6.5	50
9	Free-standing silicon shadow masks for transmon qubit fabrication. AIP Advances, 2020, 10, .	0.6	14
10	Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons. Physical Review Applied, 2019, 12, .	1.5	66
11	Gated Conditional Displacement Readout of Superconducting Qubits. Physical Review Letters, 2019, 122, 080502.	2.9	73
12	Entanglement of bosonic modes through an engineered exchange interaction. Nature, 2019, 566, 509-512.	13.7	88
13	On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nature Physics, 2018, 14, 705-710.	6.5	143
14	A CNOT gate between multiphoton qubits encoded in two cavities. Nature Communications, 2018, 9, 652.	5.8	95
15	Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation. Physical Review X, 2018, 8, .	2.8	73
16	Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 2018, 563, 666-670.	13.7	176
17	Hot Nonequilibrium Quasiparticles in Transmon Qubits. Physical Review Letters, 2018, 121, 157701.	2.9	114
18	Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561, 368-373.	13.7	154

#	Article	IF	CITATIONS
19	Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions. Physical Review Letters, 2018, 120, 200501.	2.9	105
20	Driving Forbidden Transitions in the Fluxonium Artificial Atom. Physical Review Applied, 2018, 9, .	1.5	19
21	Simultaneous Monitoring of Fluxonium Qubits in a Waveguide. Physical Review Applied, 2018, 9, .	1.5	21
22	Programmable Interference between Two Microwave Quantum Memories. Physical Review X, 2018, 8, .	2.8	56
23	Fault-tolerant detection of a quantum error. Science, 2018, 361, 266-270.	6.0	113
24	RETICULA: Real-time code quality assessment. , 2018, , .		1
25	Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment. Physical Review X, 2017, 7, .	2.8	32
26	Quantum acoustics with superconducting qubits. Science, 2017, 358, 199-202.	6.0	284
27	Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Communications, 2017, 8, 94.	5.8	183
28	Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit. Physical Review Applied, 2017, 7, .	1.5	21
29	Controlled release of multiphoton quantum states from a microwave cavity memory. Nature Physics, 2017, 13, 882-887.	6.5	101
30	An architecture for integrating planar and 3D cQED devices. Applied Physics Letters, 2016, 109, .	1.5	55
31	Quantization of inductively shunted superconducting circuits. Physical Review B, 2016, 94, .	1.1	30
32	Suspending superconducting qubits by silicon micromachining. Applied Physics Letters, 2016, 109, .	1.5	34
33	Implementing and Characterizing Precise Multiqubit Measurements. Physical Review X, 2016, 6, .	2.8	27
34	A Schrödinger cat living in two boxes. Science, 2016, 352, 1087-1091.	6.0	244
35	Robust Concurrent Remote Entanglement Between Two Superconducting Qubits. Physical Review X, 2016, 6, .	2.8	82
36	Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit. Physical Review Letters, 2016, 117, 133601.	2.9	35

#	Article	IF	CITATIONS
37	Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536, 441-445.	13.7	603
38	Quantum memory with millisecond coherence in circuit QED. Physical Review B, 2016, 94, .	1.1	237
39	Comparing and Combining Measurement-Based and Driven-Dissipative Entanglement Stabilization. Physical Review X, 2016, 6, .	2.8	47
40	Planar Multilayer Circuit Quantum Electrodynamics. Physical Review Applied, 2016, 5, .	1.5	30
41	Multilayer microwave integrated quantum circuits for scalable quantum computing. Npj Quantum Information, 2016, 2, .	2.8	121
42	Cavity State Manipulation Using Photon-Number Selective Phase Gates. Physical Review Letters, 2015, 115, 137002.	2.9	121
43	Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States. Physical Review Letters, 2015, 115, 180501.	2.9	63
44	Surface participation and dielectric loss in superconducting qubits. Applied Physics Letters, 2015, 107, .	1.5	170
45	Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality. Nature Communications, 2015, 6, 8970.	5.8	46
46	Demonstration of superconducting micromachined cavities. Applied Physics Letters, 2015, 107, .	1.5	39
47	Reconfigurable Josephson Circulator/Directional Amplifier. Physical Review X, 2015, 5, .	2.8	167
48	Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347, 853-857.	6.0	357
49	Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations. Physical Review Letters, 2014, 113, 247001.	2.9	98
50	Wireless Josephson amplifier. Applied Physics Letters, 2014, 104, .	1.5	11
51	Measurement and control of quasiparticle dynamics in a superconducting qubit. Nature Communications, 2014, 5, 5836.	5.8	130
52	Josephson Directional Amplifier for Quantum Measurement of Superconducting Circuits. Physical Review Letters, 2014, 112, 167701.	2.9	78
53	Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature, 2014, 511, 444-448.	13.7	195
54	Deterministically Encoding Quantum Information Using 100-Photon SchrĶdinger Cat States. Science, 2013, 342, 607-610.	6.0	455

#	Article	IF	CITATIONS
55	Autonomously stabilized entanglement between two superconducting quantum bits. Nature, 2013, 504, 419-422.	13.7	267
56	Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Applied Physics Letters, 2013, 102, .	1.5	168
57	Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature, 2013, 495, 205-209.	13.7	394
58	Directional Amplification with a Josephson Circuit. Physical Review X, 2013, 3, .	2.8	67
59	Quantum Back-Action of an Individual Variable-Strength Measurement. Science, 2013, 339, 178-181.	6.0	215
60	Full Coherent Frequency Conversion between Two Propagating Microwave Modes. Physical Review Letters, 2013, 110, 173902.	2.9	55
61	Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Physical Review Letters, 2013, 110, 120501.	2.9	147
62	Measurements of Quasiparticle Tunneling Dynamics in a Band-Gap-Engineered Transmon Qubit. Physical Review Letters, 2012, 108, 230509.	2.9	78
63	Photon shot noise dephasing in the strong-dispersive limit of circuit QED. Physical Review B, 2012, 86, .	1.1	95
64	Two-Mode Correlation of Microwave Quantum Noise Generated by Parametric Down-Conversion. Physical Review Letters, 2012, 108, 123902.	2.9	41
65	Mesoscopic resistor as a self-calibrating quantum noise source. Applied Physics Letters, 2012, 100, 203507.	1.5	3
66	Realization of three-qubit quantum error correction with superconducting circuits. Nature, 2012, 482, 382-385.	13.7	481
67	Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters. Applied Physics Letters, 2012, 100, .	1.5	78
68	Black-Box Superconducting Circuit Quantization. Physical Review Letters, 2012, 108, 240502.	2.9	226
69	Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture. Physical Review Letters, 2011, 107, 240501.	2.9	830
70	Quasiparticle Relaxation of Superconducting Qubits in the Presence of Flux. Physical Review Letters, 2011, 106, 077002.	2.9	119
71	Optimized driving of superconducting artificial atoms for improved single-qubit gates. Physical Review A, 2010, 82, .	1.0	144
72	Detecting highly entangled states with a joint qubit readout. Physical Review A, 2010, 81, .	1.0	82

#	Article	IF	CITATIONS
73	Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature, 2010, 465, 64-68.	13.7	357
74	Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 2010, 467, 574-578.	13.7	476
75	Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 2010, 6, 663-667.	6.5	233
76	High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity. Physical Review Letters, 2010, 105, 173601.	2.9	218
77	Fast reset and suppressing spontaneous emission of a superconducting qubit. Applied Physics Letters, 2010, 96, .	1.5	200
78	Reset dynamics and latching in niobium superconducting nanowire single-photon detectors. Journal of Applied Physics, 2010, 108, 084507.	1.1	88
79	Energy resolution of terahertz single-photon-sensitive bolometric detectors. Applied Physics Letters, 2010, 96, .	1.5	28
80	Tunable superconducting nanoinductors. Nanotechnology, 2010, 21, 445202.	1.3	157
81	High-Cooperativity Coupling of Electron-Spin Ensembles to Superconducting Cavities. Physical Review Letters, 2010, 105, 140501.	2.9	398
82	Publisher's Note: Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [Phys. Rev. Lett.102, 090502 (2009)]. Physical Review Letters, 2009, 102, .	2.9	2
83	Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit. Physical Review Letters, 2009, 102, 090502.	2.9	179
84	Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460, 240-244.	13.7	923
85	Niobium Superconducting Nanowire Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2009, 19, 327-331.	1.1	36
86	Demonstration of Two-Qubit Quantum Algorithms with a Solid-State Electronic Processor. , 2009, , .		0
87	Characterization of Terahertz Single-Photon-Sensitive Bolometric Detectors Using a Pulsed Microwave Technique. , 2009, , .		1
88	Suppressing charge noise decoherence in superconducting charge qubits. Physical Review B, 2008, 77, .	1.1	415
89	Controlling the Spontaneous Emission of a Superconducting Transmon Qubit. Physical Review Letters, 2008, 101, 080502.	2.9	336
90	Ultrasensitive Quantum-Limited Far-Infrared STJ Detectors. IEEE Transactions on Applied Superconductivity, 2007, 17, 241-245.	1.1	8

#	Article	IF	CITATIONS
91	A far-infrared Fourier transform spectrometer with an antenna-coupled niobium bolometer. Superconductor Science and Technology, 2007, 20, S398-S402.	1.8	11
92	Quantum Information Processing with Superconducting Qubits and Cavities. , 2007, , .		2
93	Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier. Physical Review B, 2007, 76, .	1.1	58
94	Superconducting microbolometers for time-resolved terahertz spectroscopy. , 2007, , .		1
95	Sideband Transitions and Two-Tone Spectroscopy of a Superconducting Qubit Strongly Coupled to an On-Chip Cavity. Physical Review Letters, 2007, 99, 050501.	2.9	86
96	Enhancing the Energy Resolution of a Singles Photon STJ Spectrometer Using Diffusion Engineering. IEEE Transactions on Applied Superconductivity, 2007, 17, 324-327.	1.1	4
97	Niobium Hot Electron Bolometer Development for a Submillimeter Heterodyne Array Camera. IEEE Transactions on Applied Superconductivity, 2007, 17, 403-406.	1.1	9
98	Observation of Berry's Phase in a Solid-State Qubit. Science, 2007, 318, 1889-1892.	6.0	321
99	Resolving photon number states in a superconducting circuit. Nature, 2007, 445, 515-518.	13.7	685
100	Generating single microwave photons in a circuit. Nature, 2007, 449, 328-331.	13.7	378
101	Coupling superconducting qubits via a cavity bus. Nature, 2007, 449, 443-447.	13.7	1,109
102	Dispersive measurements of superconducting qubit coherence with a fast latching readout. Physical Review B, 2006, 73, .	1.1	125
103	Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting. Physical Review A, 2006, 74, .	1.0	281
104	Quasiparticle dynamics and a new, high-resolution readout of STJ photon detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 676-679.	0.7	6
105	Superconducting niobium nanowire single photon detectors. , 2006, 6372, 239.		8
106	The Josephson Bifurcation Amplifier for Quantum Measurements. , 2006, , 28-37.		2
107	ac Stark Shift and Dephasing of a Superconducting Qubit Strongly Coupled to a Cavity Field. Physical Review Letters, 2005, 94, 123602.	2.9	351
108	Diffusion-Engineered Quasiparticle Multiplication for STJ Single Photon Detectors. IEEE Transactions on Applied Superconductivity, 2005, 15, 609-612.	1.1	2

#	Article	IF	CITATIONS
109	Direct Observation of Dynamical Bifurcation between Two Driven Oscillation States of a Josephson Junction. Physical Review Letters, 2005, 94, 027005.	2.9	143
110	Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout. Physical Review Letters, 2005, 95, 060501.	2.9	456
111	Fabrication and Characterization of Superconducting Circuit QED Devices for Quantum Computation. IEEE Transactions on Applied Superconductivity, 2005, 15, 860-863.	1.1	142
112	Dynamics and energy distribution of nonequilibrium quasiparticles in superconducting tunnel junctions. Physical Review B, 2004, 70, .	1.1	19
113	RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement. Physical Review Letters, 2004, 93, 207002.	2.9	295
114	Diffusion-engineered single-photon spectrometer for UV/visible detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 237-239.	0.7	8
115	Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431, 162-167.	13.7	3,195
116	Quasiparticle nonequilibrium dynamics in a superconducting Ta film. Journal of Applied Physics, 2003, 93, 1137-1141.	1.1	22
117	Superconducting tunnel junction detectors for extreme ultraviolet applications. IEEE Transactions on Applied Superconductivity, 2003, 13, 1120-1123.	1.1	9
118	Physical properties of the superconducting Ta film absorber of an X-ray photon detector. IEEE Transactions on Applied Superconductivity, 2003, 13, 1124-1127.	1.1	3
119	Spatial uniformity of single photon 1-D imaging detectors using superconducting tunnel junctions. , 2002, , .		3
120	Annular superconducting tunnel junction detectors: Experimental results under X-ray illumination. , 2002, , .		1
121	Approaching intrinsic resolution limits in optical/UV superconducting tunnel junction detectors. , 2002, , .		1
122	Aluminum Superconducting Tunnel Junction as X-ray detector: Technological aspects and phonon decoupling from the substrate. , 2002, , .		2
123	Improved energy resolution of x-ray single photon imaging spectrometers using superconducting tunnel junctions. Journal of Applied Physics, 2001, 90, 3645-3647.	1.1	27
124	A new noise source in superconducting tunnel junction photon detectors. IEEE Transactions on Applied Superconductivity, 2001, 11, 645-648.	1.1	8
125	X-ray single photon 1-D imaging spectrometers. IEEE Transactions on Applied Superconductivity, 2001, 11, 685-687.	1.1	15
126	Detection of single x-ray photons by an annular superconducting tunnel junction. Applied Physics Letters, 2001, 79, 2103-2105.	1.5	9

#	Article	IF	CITATIONS
127	Time-Resolved Measurements of Thermodynamic Fluctuations of the Particle Number in a Nondegenerate Fermi Gas. Physical Review Letters, 2001, 87, 067004.	2.9	52
128	SOME ASPECTS OF SUPERCONDUCTIVE JUNCTION RADIATION DETECTORS. , 2000, , .		0
129	Quasiparticle diffusion and edge losses in superconducting tunnel junction detectors with two active electrodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 15-18.	0.7	7
130	Single-photon 2-D imaging X-ray spectrometer employing trapping with four tunnel junctions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 228-231.	0.7	3
131	Optical/UV single-photon imaging spectrometers using superconducting tunnel junctions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 449-452.	0.7	20
132	Annular Josephson junctions for radiation detection: fabrication and investigation of the magnetic behaviour. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 476-479.	0.7	1
133	Noise mechanisms in superconducting tunnel-junction detectors. Applied Physics Letters, 2000, 76, 3998-4000.	1.5	30
134	Magnetic properties of annular Josephson junctions for radiation detection: Experimental results. Applied Physics Letters, 1999, 74, 3389-3391.	1.5	19
135	Quasiparticle diffusion, edge losses, and back-tunneling in superconducting tunnel junctions under x-ray irradiation. Journal of Applied Physics, 1999, 86, 4580-4587.	1.1	18
136	Abrikosov Monopole Vortices and Their Images in a Circular Josephson Tunnel Junction. International Journal of Modern Physics B, 1999, 13, 1265-1270.	1.0	1
137	Effects of Quasiparticle Diffusion in Nb-Based Superconducting Tunnel Junctions Under X-Rays Irradiation. International Journal of Modern Physics B, 1999, 13, 1247-1252.	1.0	Ο
138	Traversal Time in Josephson Junctions. Journal of Superconductivity and Novel Magnetism, 1999, 12, 829-833.	0.5	8
139	Development of radiation-hard particle detectors using Josephson tunnel junctions. Nuclear Physics, Section B, Proceedings Supplements, 1998, 61, 570-575.	0.5	1
140	A hotspot size estimate technique by using Abrikosov vortices in Josephson tunnel junctions. Applied Superconductivity, 1998, 6, 331-335.	0.5	0
141	Traversal Time as Deduced from Decay Time Measurements in Josephson Junctions. Physica Scripta, 1998, 58, 538-542.	1.2	11
142	Radiation Hardness of Josephson Devices. Japanese Journal of Applied Physics, 1998, 37, 40.	0.8	7
143	X-ray response of Nb-based superconducting tunnel junction. European Physical Journal Special Topics, 1998, 08, Pr3-275-Pr3-278.	0.2	1
144	Effect of intense proton irradiation on properties of Josephson devices. IEEE Transactions on Applied Superconductivity, 1997, 7, 2917-2920.	1.1	15

#	Article	IF	CITATIONS
145	Experimental estimation of the hot spot size in Nb-based Josephson tunnel junctions using Abrikosov vortices. Journal of Applied Physics, 1997, 82, 5024-5029.	1.1	9
146	The effective dissipation in Nb/AlOx/Nb Josephson tunnel junctions by return current measurements. Journal of Applied Physics, 1997, 81, 7418-7426.	1.1	12
147	Sidelobe suppression in arbitrarity shaped quadrangle Josephson junctions. Journal of Low Temperature Physics, 1997, 106, 359-364.	0.6	1
148	Proton damage on Nb-based Josephson junctions. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1397-1404.	0.4	1
149	Fabrication of high-quality Josephson junctions for applications as particle detectors. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1405-1409.	0.4	0
150	Estimation of α-particle induced hot spot size in Nb film using Abrikosov vortices. European Physical Journal D, 1996, 46, 2881-2882.	0.4	0
151	Investigation of Fiske steps of a josephson tunnel junction with trapped Abrikosov vortices. European Physical Journal D, 1996, 46, 685-686.	0.4	0
152	X-ray response of STJ detectors using NbN absorbing layers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 370, 95-97.	0.7	0
153	Direct measurements of relaxation time scales in Josephson junctions. Solid State Communications, 1996, 97, 439-444.	0.9	8
154	Superconductive tunnel junction detectors: ten years ago, ten years from now. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 370, 26-30.	0.7	10
155	Switching dynamics of Nb/AlOx/Nb Josephson junctions: Measurements for an experiment of macroscopic quantum coherence. Journal of Applied Physics, 1996, 80, 2922-2928.	1.1	26
156	On the magnetic field dependence of the critical current in small irregular polygonal Josephson junctions. Journal of Applied Physics, 1996, 80, 3401-3407.	1.1	9
157	X ray response of STJs detectors with different trapping layers: Preliminary results. Nuclear Physics, Section B, Proceedings Supplements, 1995, 44, 682-687.	0.5	1
158	Influence of a NbN overlayer on Nb/Al–AlOx/Nb high quality Josephson tunnel junctions for xâ€ray detection. Applied Physics Letters, 1995, 67, 3340-3342.	1.5	6
159	Two-particle structures in high quality Nb/AlOx/Nb Josephson tunnel junctions. Physica B: Condensed Matter, 1994, 194-196, 1681-1682.	1.3	0
160	Set up of a nuclear radiation experiment with superconducting tunnel junctions in a compact3He cryostat. Cryogenics, 1994, 34, 243-246.	0.9	1
161	Investigation of subgap structures in high-quality Nb/AlOx/Nb tunnel junctions. Physical Review B, 1994, 49, 429-440.	1.1	19
162	Nbâ€based Josephson junction devices for nuclear radiation detection: Design and preliminary experimental results. Journal of Applied Physics, 1994, 75, 5210-5217.	1.1	17

#	Article	IF	CITATIONS
163	X-ray detection by Nb STJs above 1.4 K. Journal of Low Temperature Physics, 1993, 93, 691-696.	0.6	5
164	High quality Nb-based junctions for superconductive detectors. Nuclear Physics, Section B, Proceedings Supplements, 1993, 32, 300-306.	0.5	1
165	High-resolution energy spectroscopy and superconductive Tunnel Junction. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 735-742.	0.2	1
166	A New Fabrication Process of Superconducting Nb Tunnel Junctions with Ultralow Leakage Current for X-Ray Detection. Japanese Journal of Applied Physics, 1993, 32, 4535-4537.	0.8	33
167	Investigation of lowâ€ŧemperaturelâ€Vcurves of highâ€quality Nb/Alâ€AlOx/Nb Josephson junctions. Journal of Applied Physics, 1992, 71, 1888-1892.	1.1	35
168	Observation of subgap structures in high-quality Nb/Al-AlOx/Nb Josephson tunnel junctions. Journal of Superconductivity and Novel Magnetism, 1992, 5, 451-455.	0.5	7
169	BCS quasi-particle tunnelling current in Josephson tunnel junctions. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1992, 14, 395-410.	0.4	3
170	Thermodynamic properties of low-Tcand high-Tcsuperconducting barrier junction (S-S'-Ssystem) in a magnetic field. Physical Review B, 1991, 44, 805-808.	1.1	0
171	Sweep rate effects and quantum energy levels in Josephson junctions. Physica B: Condensed Matter, 1990, 165-166, 947-948.	1.3	Ο
172	Ac losses in <code>ï¬e</code> ld-cooled type I superconducting cavities. Superconductor Science and Technology, 0, , .	1.8	2