
Gianni Parise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524948/publications.pdf Version: 2024-02-01

CIANNI PADISE

#	Article	IF	CITATIONS
1	Sex-Based Differences in the Myogenic Response and Inflammatory Gene Expression Following Eccentric Contractions in Humans. Frontiers in Physiology, 2022, 13, 880625.	2.8	8
2	The Metabolomic Pathways of the Senescenceâ€Associated Secretory Phenotype in C2C12 Myoblasts. FASEB Journal, 2022, 36, .	0.5	0
3	Do Different Ascertainment Techniques Identify the Same Individuals as Sarcopenic in the Canadian Longitudinal Study on Aging?. Journal of the American Geriatrics Society, 2021, 69, 164-172.	2.6	4
4	The Effect of a Multi-ingredient Supplement on Resistance Training–induced Adaptations. Medicine and Science in Sports and Exercise, 2021, 53, 1699-1707.	0.4	3
5	The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exercise and Sport Sciences Reviews, 2021, 49, 284-290.	3.0	17
6	Superior Aerobic Capacity and Indices of Skeletal Muscle Morphology in Chronically Trained Master Endurance Athletes Compared With Untrained Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1079-1088.	3.6	22
7	Brain-derived neurotrophic factor is associated with human muscle satellite cell differentiation in response to muscle-damaging exercise. Applied Physiology, Nutrition and Metabolism, 2020, 45, 581-590.	1.9	19
8	Capillary facilitation of skeletal muscle function in health and disease. Applied Physiology, Nutrition and Metabolism, 2020, 45, 453-462.	1.9	7
9	The impact of different diagnostic criteria on the association of sarcopenia with injurious falls in the CLSA. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1603-1613.	7.3	7
10	Ageâ€related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB Journal, 2020, 34, 8975-8989.	0.5	15
11	The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiologica, 2020, 229, e13465.	3.8	52
12	Hematopoietic Stem and Progenitor Cell (HSPC) Mobilization Responses to Different Exercise Intensities in Young and Older Adults. Journal of Science in Sport and Exercise, 2020, 2, 47-58.	1.0	2
13	Variability in skeletal muscle fibre characteristics during repeated muscle biopsy sampling in human vastus lateralis. Applied Physiology, Nutrition and Metabolism, 2020, 45, 368-375.	1.9	21
14	Examining the first-person perspective as appropriate prelaboratory preparation. American Journal of Physiology - Advances in Physiology Education, 2019, 43, 317-323.	1.6	2
15	Consistent expression pattern of myogenic regulatory factors in whole muscle and isolated human muscle satellite cells after eccentric contractions in humans. Journal of Applied Physiology, 2019, 127, 1419-1426.	2.5	13
16	A Multi-Ingredient Nutritional Supplement in Combination With Resistance Exercise and High-Intensity Interval Training Improves Cognitive Function and Increases N-3 Index in Healthy Older Men: A Randomized Controlled Trial. Frontiers in Aging Neuroscience, 2019, 11, 107.	3.4	14
17	Integrated Myofibrillar Protein Synthesis in Recovery From Unaccustomed and Accustomed Resistance Exercise With and Without Multi-ingredient Supplementation in Overweight Older Men. Frontiers in Nutrition, 2019, 6, 40.	3.7	14
18	Exercise training impacts skeletal muscle gene expression related to the kynurenine pathway. American Journal of Physiology - Cell Physiology, 2019, 316, C444-C448.	4.6	37

#	Article	IF	CITATIONS
19	Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. Journal of Physiology, 2019, 597, 105-119.	2.9	45
20	Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women. Physiological Reports, 2018, 6, e13597.	1.7	28
21	The Impact of Aerobic Exercise on the Muscle Stem Cell Response. Exercise and Sport Sciences Reviews, 2018, 46, 180-187.	3.0	25
22	A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men. Applied Physiology, Nutrition and Metabolism, 2018, 43, 299-302.	1.9	13
23	The influence of capillarization on satellite cell pool expansion and activation following exerciseâ€induced muscle damage in healthy young men. Journal of Physiology, 2018, 596, 1063-1078.	2.9	50
24	Exercise training differentially alters axial and appendicular marrow cellularity in old mice. Applied Physiology, Nutrition and Metabolism, 2018, 43, 523-527.	1.9	1
25	A randomized controlled trial of the impact of protein supplementation on leg lean mass and integrated muscle protein synthesis during inactivity and energy restriction in older persons. American Journal of Clinical Nutrition, 2018, 108, 1060-1068.	4.7	50
26	Lowâ€load resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 747-754.	7.3	35
27	Blunted satellite cell response is associated with dysregulated IGF-1 expression after exercise with age. European Journal of Applied Physiology, 2018, 118, 2225-2231.	2.5	7
28	Ingestion of a Multi-Ingredient Supplement Does Not Alter Exercise-Induced Satellite Cell Responses in Older Men. Journal of Nutrition, 2018, 148, 891-899.	2.9	13
29	Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men. PLoS ONE, 2018, 13, e0191039.	2.5	42
30	The First Characterization of a Novel Stem Cell Population and the Temporal Relationship with Satellite Cells in Human Skeletal Muscle. FASEB Journal, 2018, 32, 615.2.	0.5	0
31	Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. Journal of Applied Physiology, 2017, 122, 182-190.	2.5	15
32	Role of muscle stem cells in sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 186-190.	2.5	45
33	Altered muscle satellite cell activation following 16 wk of resistance training in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R85-R92.	1.8	45
34	The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells. Current Stem Cell Reports, 2017, 3, 192-201.	1.6	5
35	Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization. Gerontology, 2017, 63, 91-100.	2.8	82
36	Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 267-276.	7.3	114

#	Article	IF	CITATIONS
37	Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. ELife, 2017, 6, .	6.0	65
38	A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS ONE, 2017, 12, e0181387.	2.5	87
39	Resistance trainingâ€induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. Journal of Physiology, 2016, 594, 5209-5222.	2.9	236
40	Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 547-554.	7.3	91
41	Are satellite cells lost during short-term disuse-induced muscle fiber atrophy?. Journal of Applied Physiology, 2016, 120, 1490-1490.	2.5	5
42	Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB Journal, 2016, 30, 3256-3268.	0.5	56
43	Skeletal Muscle Erythropoietin Expression Is Responsive to Hypoxia and Exercise. Medicine and Science in Sports and Exercise, 2016, 48, 1294-1301.	0.4	11
44	Cytokine Mediated Control of Muscle Stem Cell Function. Advances in Experimental Medicine and Biology, 2016, 900, 27-44.	1.6	13
45	The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiologica, 2015, 215, 177-190.	3.8	39
46	Satellite cells in human skeletal muscle plasticity. Frontiers in Physiology, 2015, 6, 283.	2.8	236
47	Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1024-1029.	3.6	87
48	Effects of age and unaccustomed resistance exercise on mitochondrial transcript and protein abundance in skeletal muscle of men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R734-R741.	1.8	36
49	Satellite cell activity, without expansion, after nonhypertrophic stimuli. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1101-R1111.	1.8	49
50	Myostatin inhibition for treatment of sarcopenia. Lancet Diabetes and Endocrinology,the, 2015, 3, 917-918.	11.4	12
51	Aging of Muscle Stem Cells. , 2015, , 195-226.		0
52	Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated with Resistance Training-Induced Muscle Hypertrophy in Young Men. PLoS ONE, 2014, 9, e89431.	2.5	167
53	Acute Dietary Protein Intake Restriction Is Associated with Changes in Myostatin Expression after a Single Bout of Resistance Exercise in Healthy Young Men. Journal of Nutrition, 2014, 144, 137-145.	2.9	24
54	The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R664-R669.	1.8	57

#	Article	IF	CITATIONS
55	Reduced fat oxidation rates during submaximal exercise in boys with cystic fibrosis. Journal of Cystic Fibrosis, 2014, 13, 92-98.	0.7	6
56	IGF-1 colocalizes with muscle satellite cells following acute exercise in humans. Applied Physiology, Nutrition and Metabolism, 2014, 39, 514-518.	1.9	18
57	The effects of resting and exercise serum from children with cystic fibrosis on C2C12 myoblast proliferation in vitro. Physiological Reports, 2014, 2, e12042.	1.7	4
58	The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age, 2014, 36, 9699.	3.0	87
59	Fibre-Specific Responses to Endurance and Low Volume High Intensity Interval Training: Striking Similarities in Acute and Chronic Adaptation. PLoS ONE, 2014, 9, e98119.	2.5	101
60	The Acute Satellite Cell Response and Skeletal Muscle Hypertrophy following Resistance Training. PLoS ONE, 2014, 9, e109739.	2.5	115
61	Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans. FASEB Journal, 2013, 27, 4596-4605.	0.5	69
62	Exercise promotes bone marrow cell survival and recipient reconstitution post-bone marrow transplantation, which is associated with increased survival. Experimental Hematology, 2013, 41, 143-154.	0.4	37
63	Xin Is a Marker of Skeletal Muscle Damage Severity in Myopathies. American Journal of Pathology, 2013, 183, 1703-1709.	3.8	35
64	Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. American Journal of Physiology - Cell Physiology, 2013, 304, C717-C728.	4.6	69
65	Eccentric Exercise Increases Satellite Cell Content in Type II Muscle Fibers. Medicine and Science in Sports and Exercise, 2013, 45, 230-237.	0.4	76
66	Exercise and Hematopoietic Stem and Progenitor Cells. Exercise and Sport Sciences Reviews, 2013, 41, 116-122.	3.0	20
67	Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy. PLoS ONE, 2013, 8, e78636.	2.5	134
68	Wnt7a treatment ameliorates muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20614-20619.	7.1	105
69	Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. Journal of Applied Physiology, 2012, 113, 1576-1584.	2.5	42
70	A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Experimental Physiology, 2012, 97, 762-773.	2.0	51
71	Myostatin is associated with ageâ€related human muscle stem cell dysfunction. FASEB Journal, 2012, 26, 2509-2521.	0.5	139
72	Compromised genomic integrity impedes muscle growth after Atrx inactivation. Journal of Clinical Investigation, 2012, 122, 4412-4423.	8.2	57

#	Article	IF	CITATIONS
73	IL-6 Induced STAT3 Signalling Is Associated with the Proliferation of Human Muscle Satellite Cells Following Acute Muscle Damage. PLoS ONE, 2011, 6, e17392.	2.5	128
74	Exercise training enhances the skeletal muscle response to radiationâ€induced oxidative stress. Muscle and Nerve, 2011, 43, 58-64.	2.2	36
75	Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 75-84.	1.7	38
76	Endurance exercise training promotes medullary hematopoiesis. FASEB Journal, 2011, 25, 4348-4357.	0.5	56
77	Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R363-R369.	1.8	9
78	Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry <i>versus</i> flow cytometry. Journal of Physiology, 2010, 588, 3307-3320.	2.9	73
79	Mitochondrial Theory of Aging in Human Age-Related Sarcopenia. Interdisciplinary Topics in Gerontology, 2010, 37, 142-156.	3.6	16
80	Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men. PLoS ONE, 2010, 5, e12033.	2.5	396
81	Regulation of Muscle Satellite Cell Activation and Chemotaxis by Angiotensin II. PLoS ONE, 2010, 5, e15212.	2.5	40
82	Angiotensin II signalling regulates skeletal muscle growth and myoblast chemotaxis. FASEB Journal, 2010, 24, 824.4.	0.5	0
83	FACS Analysis and Immunohistochemical Analysis of Human Myogenic Stem Cell Number and Cellâ€cycle Kinetics in Response to Acute Myotrauma. FASEB Journal, 2010, 24, 824.7.	0.5	0
84	Satellite Cell Specific p‧TAT3 Signalling in Human Muscle Following Acute Muscle Damage. FASEB Journal, 2010, 24, lb31.	0.5	0
85	Association of Interleukin-6 Signalling with the Muscle Stem Cell Response Following Muscle-Lengthening Contractions in Humans. PLoS ONE, 2009, 4, e6027.	2.5	120
86	Resistance exerciseâ€induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. Journal of Physiology, 2009, 587, 5239-5247.	2.9	229
87	Exercise training and low dose radiation protect skeletal muscle from high dose radiation. FASEB Journal, 2009, 23, 600.6.	0.5	0
88	Angiotensin II is Necessary for Skeletal Muscle Regeneration Following Cardiotoxinâ€induced Injury. FASEB Journal, 2009, 23, 601.6.	0.5	0
89	Interleukinâ€6 Signaling Mediates Human Muscle Satellite Cell Proliferation Following Acute Muscle Damage. FASEB Journal, 2009, 23, 601.7.	0.5	0
90	Interleukinâ€4 is a Potential Regulator of Satellite Cell Function in Response to Acute Myotrauma in Humans. FASEB Journal, 2009, 23, 601.14.	0.5	0

#	Article	IF	CITATIONS
91	Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle and Nerve, 2008, 37, 611-619.	2.2	44
92	Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle and Nerve, 2008, 38, 1434-1442.	2.2	87
93	Coâ€expression of IGFâ€l family members with myogenic regulatory factors following acute damaging muscleâ€lengthening contractions in humans. Journal of Physiology, 2008, 586, 5549-5560.	2.9	145
94	Hepatocyte Growth Factor Signaling in Mediating Human Muscle Satellite Cell Activation and Proliferation Following Eccentric Exercise. FASEB Journal, 2008, 22, 962.23.	0.5	0
95	Gene expression profiling of the RAS in myoblasts following differentiation and mechanical stretch. FASEB Journal, 2008, 22, 1197.8.	0.5	0
96	Adaptive Response with Oxidative Stress from CT Scans and Exercise in Mice. FASEB Journal, 2008, 22, 758.8.	0.5	0
97	Progressive exercise training protects bone marrow stem cells from radiationâ€induced damage. FASEB Journal, 2008, 22, 758.7.	0.5	0
98	Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle and Nerve, 2007, 35, 235-242.	2.2	235
99	Molecular regulation of myogenic progenitor populations. Applied Physiology, Nutrition and Metabolism, 2006, 31, 773-781.	1.9	20
100	Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Experimental Gerontology, 2005, 40, 173-180.	2.8	164
101	Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, 2005, 39, 289-295.	2.9	145
102	Muscle Stem Cells and Regenerative Myogenesis. Current Topics in Developmental Biology, 2005, 71, 113-130.	2.2	23
103	Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiological Genomics, 2004, 18, 226-231.	2.3	183
104	Title is missing!. Molecular and Cellular Biochemistry, 2003, 244, 159-166.	3.1	39
105	Effect of Creatine and Weight Training on Muscle Creatine and Performance in Vegetarians. Medicine and Science in Sports and Exercise, 2003, 35, 1946-1955.	0.4	156
106	Effect of α-Lipoic Acid Combined with Creatine Monohydrate on Human Skeletal Muscle Creatine and Phosphagen Concentration. International Journal of Sport Nutrition and Exercise Metabolism, 2003, 13, 294-302.	2.1	34
107	A Moderate Dose of Pseudoephedrine Does Not Alter Muscle Contraction Strength or Anaerobic Power. Clinical Journal of Sport Medicine, 2002, 12, 387-390.	1.8	23
108	Selective serotonin reuptake inhibitors: Their effect on high-intensity exercise performance. Archives of Physical Medicine and Rehabilitation, 2001, 82, 867-871.	0.9	52

#	Article	IF	CITATIONS
109	Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. Journal of Physiology, 2001, 533, 881-889.	2.9	56
110	Creatine-dextrose and protein-dextrose induce similar strength gains during training. Medicine and Science in Sports and Exercise, 2001, 33, 2044-2052.	0.4	60
111	Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. American Journal of Clinical Nutrition, 1999, 70, 1032-1039.	4.7	153