Zhaobo Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523902/publications.pdf

Version: 2024-02-01

40 papers 3,668 citations

218677 26 h-index 289244 40 g-index

41 all docs

41 docs citations

41 times ranked

3816 citing authors

#	Article	IF	CITATIONS
1	Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 2018, 19, 489-506.	37.0	1,145
2	Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4511-E4519.	7.1	342
3	Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1430-1436.	7.1	190
4	The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nature Plants, 2016, 2, 16169.	9.3	147
5	Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19, 212.	8.8	147
6	Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biology, 2015, 16, 272.	8.8	145
7	UTR-Dependent Control of Gene Expression in Plants. Trends in Plant Science, 2018, 23, 248-259.	8.8	140
8	Cold responsive gene transcription becomes more complex. Trends in Plant Science, 2015, 20, 466-468.	8.8	119
9	The Methyl-CpG-Binding Protein MBD7 Facilitates Active DNA Demethylation to Limit DNA Hyper-Methylation and Transcriptional Gene Silencing. Molecular Cell, 2015, 57, 971-983.	9.7	112
10	Genome Editingâ€"Principles and Applications for Functional Genomics Research and Crop Improvement. Critical Reviews in Plant Sciences, 2017, 36, 291-309.	5.7	111
11	Specific but interdependent functions for <i> <scp>A</scp> rabidopsis </i> <scp>AGO</scp> 4 and <scp>AGO</scp> 6 in <scp>RNA</scp> â€directed <scp>DNA</scp> methylation. EMBO Journal, 2015, 34, 581-592.	7.8	90
12	The mechanism and function of active DNA demethylation in plants. Journal of Integrative Plant Biology, 2020, 62, 148-159.	8.5	82
13	Methylation interactions in <i>Arabidopsis</i> hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4248-56.	7.1	79
14	Genome editing for horticultural crop improvement. Horticulture Research, 2019, 6, 113.	6.3	79
15	Fruit development and epigenetic modifications. New Phytologist, 2020, 228, 839-844.	7. 3	75
16	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	7.1	73
17	Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nature Plants, 2020, 6, 661-674.	9.3	52
18	Methyl-CpG-Binding Domain Protein MBD7 Is Required for Active DNA Demethylation in Arabidopsis Â. Plant Physiology, 2015, 167, 905-914.	4.8	51

#	Article	IF	CITATIONS
19	Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. Journal of Integrative Plant Biology, 2019, 61, 1224-1242.	8.5	49
20	DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6, 983-995.	9.3	48
21	An Rrp6-like Protein Positively Regulates Noncoding RNA Levels and DNA Methylation in Arabidopsis. Molecular Cell, 2014, 54, 418-430.	9.7	45
22	Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis. Molecular Cell, 2014, 55, 361-371.	9.7	44
23	A group of SUVH methylâ€DNA binding proteins regulate expression of the DNA demethylase ROS1 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2019, 61, 110-119.	8.5	44
24	Expanding the scope of CRISPR/Cas9â€mediated genome editing in plants using an xCas9 and Cas9â€NG hybrid. Journal of Integrative Plant Biology, 2020, 62, 398-402.	8.5	36
25	Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants. Plant Methods, 2014, 10, 18.	4.3	32
26	De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. BMC Genomics, 2016, 17, 209.	2.8	30
27	Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Research, 2021, 31, 2276-2289.	5. 5	28
28	A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nature Communications, 2021, 12, 3367.	12.8	21
29	Efficient A·T to G·C base conversions in dicots using adenine base editors expressed under the tomato <i>EF1\hat{l}±</i> promoter. Plant Biotechnology Journal, 2023, 21, 5-7.	8.3	18
30	Increasing Freezing Tolerance: Kinase Regulation of ICE1. Developmental Cell, 2015, 32, 257-258.	7.0	17
31	A novel protein complex that regulates active DNA demethylation in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2021, 63, 772-786.	8.5	16
32	The 1001 Arabidopsis DNA Methylomes: An Important Resource for Studying Natural Genetic, Epigenetic, and Phenotypic Variation. Trends in Plant Science, 2016, 21, 906-908.	8.8	13
33	OST1 phosphorylates ICE1 to enhance plant cold tolerance. Science China Life Sciences, 2015, 58, 317-318.	4.9	12
34	Generating Novel Male Sterile Tomatoes by Editing Respiratory Burst Oxidase Homolog Genes. Frontiers in Plant Science, 2021, 12, 817101.	3.6	8
35	Say "NO―to ABA signaling in guard cells by S-nitrosylation of OST1. Science China Life Sciences, 2015, 58, 313-314.	4.9	7
36	Largeâ€scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology, 2020, 62, 1469-1484.	8.5	7

ZHAOBO LANG

#	Article	IF	CITATION
37	MSI4/FVE is required for accumulation of 24â€nt siRNAs and DNA methylation at a subset of target regions of RNAâ€directed DNA methylation. Plant Journal, 2021, 108, 347-357.	5.7	5
38	Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. Journal of Integrative Plant Biology, 2021, 63, 1451-1461.	8.5	5
39	A role of OsROS1 in aleurone development and nutrient improvement in rice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11659-11660.	7.1	3
40	Small RNA biogenesis: Novel roles of an RNase III enzyme. Nature Plants, 2016, 2, 16021.	9.3	1