Mansur Miftakhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523841/publications.pdf

Version: 2024-02-01

217 papers 500 citations

8 h-index 1199594 12 g-index

217 all docs

217 docs citations

times ranked

217

290 citing authors

#	Article	IF	CITATIONS
1	Stereochemical Aspects of the Beckman Rearrangement of Oximes of Levoglucosenone and Its Dihydro Derivative. Enantioselective Synthesis of (+)-Â-Pelargonolactone. Chemistry of Natural Compounds, 2003, 39, 563-568.	0.8	15
2	Cross-Conjugated Cyclopentenone Prostaglandins. Recent Advances. Russian Journal of Organic Chemistry, 2018, 54, 1585-1629.	0.8	15
3	Disaccharide blocks for analogs of OSW-1. Russian Journal of Organic Chemistry, 2011, 47, 1125-1129.	0.8	13
4	Unusual regioselectivity in a Diels-Alder reaction of isoprene with levoglucosenone. Russian Chemical Bulletin, 1996, 45, 1942-1944.	1.5	12
5	Synthesis and some transformations of (â^')-carveol. Russian Journal of Organic Chemistry, 2009, 45, 810-814.	0.8	12
6	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1489-1509.	1.5	11
7	Approaches to Epothilone Carboanalogs Starting from Δ3-Carene. Russian Journal of Organic Chemistry, 2003, 39, 75-81.	0.8	9
8	Adducts of dichloroketene with 1,3-cyclopentadienes in the synthesis of bioactive cyclopentanoids. Russian Chemical Bulletin, 2021, 70, 1-31.	1.5	9
9	On the [4+2]-cycloaddition reaction of levoglucosenone with piperylene. Russian Chemical Bulletin, 1996, 45, 2453-2455.	1.5	8
10	New monomers for fullerene-containing polymers. Russian Journal of Organic Chemistry, 2014, 50, 179-182.	0.8	8
11	Some Transformations of (-)-(1S,4R)-1-Vinyl-7,7-dimethyl-bicyclo[2.2.1]heptan-2-one. Russian Journal of Organic Chemistry, 2001, 37, 1102-1106.	0.8	7
12	Reaction of methyl-4-methylene-2,3-O-isopropylidene-Î ² -D-ribofuranoside with N-bromosuccinimide in aqueous tetrahydrofurane. Russian Journal of Organic Chemistry, 2007, 43, 742-746.	0.8	7
13	UV spectroscopy of monosubstituted derivatives of 1,2-dihydro-C60-fullerenes. Journal of Structural Chemistry, 2012, 53, 1081-1086.	1.0	7
14	Building blocks for (C15â~'C3)-modified epothilone D analogs. Russian Journal of Organic Chemistry, 2014, 50, 1511-1519.	0.8	7
15	Reactions of 3-iodolevoglucosenone with sodium derivatives of some CH acids. Chiral cyclopropanes and stable oxetenes. Russian Chemical Bulletin, 1999, 48, 152-156.	1.5	6
16	Prostanoids: LXXXVII. Synthesis of 3-Hydroxy-2-phenylsulfonyl-2-cyclopentenone and Its Ethylene Acetal. Russian Journal of Organic Chemistry, 2003, 39, 1652-1655.	0.8	6
17	Oxidation of (1S,5R,7R,S)-(4,7-dimethyl-6-oxabicyclo[3.2.1]oct-3-en-7-yl) methanol with pyridinium chlorochromate. Russian Journal of Organic Chemistry, 2011, 47, 682-686.	0.8	6
18	Quantitative UV Spectrophotometric Analysis of Mixtures of Substituted C60 Fullerenes. Journal of Applied Spectroscopy, 2015, 82, 644-652.	0.7	6

#	Article	IF	CITATIONS
19	Methyl (S)-(5-methylidene-4-oxocyclopent-2-en-1-yl)acetate as a readily available pharmacologically important subunit of cross-conjugated cyclopentenone prostaglandins. Russian Chemical Bulletin, 2020, 69, 547-551.	1.5	6
20	3-lodolevoglucosenone and chiral cyclopropane. Russian Chemical Bulletin, 1997, 46, 1192-1193.	1.5	5
21			

#	Article	IF	CITATIONS
37	Unexpected transformation of methyl 3,6-anhydro-2,7-dideoxy-7-iodo-4,5-0-isopropylidene-D-allo-heptonate in the dehydroiodination reaction with 1,8-diazabicyclo[5.4.0]undec-7-ene. Russian Chemical Bulletin, 2005, 54, 2698-2701.	1.5	4
38	Features of catalyzed hydration of Chemistry, 2009, 45, 694-697.	0.8	4
39	Synthesis of PGB type misoprostol analog. Russian Journal of Organic Chemistry, 2011, 47, 1474-1478.	0.8	4
40	Sarkomycin A methyl esters and functionalized cyclopentane blocks for brefeldin A. Russian Journal of Organic Chemistry, 2012, 48, 8-17.	0.8	4
41	Chiral blocks for the synthesis of cyclopentanoids from [2 + 2]-cycloadduct of dichloroketene and dimethylfulvene. Russian Journal of Organic Chemistry, 2012, 48, 442-450.	0.8	4
42	UV spectroscopic quantitative determination of methanofullerene derivatives with a different degree of substitution. Journal of Structural Chemistry, 2013, 54, 719-723.	1.0	4
43	Ring-opening metathesis polymerization (ROMP) of fullerene-containing monomers in the presence of a first-generation Grubbs catalyst. Kinetics and Catalysis, 2017, 58, 111-121.	1.0	4
44	Reaction of 5,5-dimethoxy-1,2,3,4-tetrachlorocyclopentadiene with (Z)-butene-1,4-diol alcoholate. Russian Chemical Bulletin, 1996, 45, 982-983.	1.5	3
45	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 40-45.	0.8	3
46	Prostanoids: LXXIX. Analogs of "Marine―Prostanoids. 14,15-Dihydro-11-chlorochlorvulone II. Russian Journal of Organic Chemistry, 2001, 37, 1079-1082.	0.8	3
47	Reaction of 5-Allenyl-2,3,5-trichloro-4,4-dimethoxy-2-cyclopentenone and Its Derivative with Iodine. Russian Journal of Organic Chemistry, 2002, 38, 655-657.	0.8	3
48	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 759-760.	0.8	3
49	Racemic sulprostone. Russian Journal of Organic Chemistry, 2004, 40, 1539-1540.	0.8	3
50	Prostanoids: XC. Extension to the Synthesis of Enprostil of the o-Nitrophenylsulfonylhydrazine Method for Transformation of 2-Propynyl Alcohols into Allenes. Russian Journal of Organic Chemistry, 2005, 41, 967-973.	0.8	3
51	Synthesis of (1R,6S)-cis-7,7-dimethyl-4-formyl-3-oxabicyclo[4.1.0]hept-4-en-2-one. Russian Journal of Organic Chemistry, 2006, 42, 1250-1251.	0.8	3
52	Uncommon transformations of methyl (15,25,3R,4R)-2,3-isopropylidenedioxy-5-iodomethyl-2-tetrahydrofurylacetate initiated by bases. Russian Journal of Organic Chemistry, 2006, 42, 1701-1705.	0.8	3
53	Reactions of 2,3,5-trichloro-4-hydroxycyclopent-2-en-1-one with dimethyl-and diethylamines and benzenethiol. Some aspects of stereochemical assignments in cyclopentenone chlorohydrins. Russian Journal of Organic Chemistry, 2008, 44, 1278-1281.	0.8	3
54	Syntheses and oxidative transformations of 6-(1-methylethylidene)-3,3a,6,6a-tetrahydro-2H-cyclopenta[b]furan-2-one and its precursors. Russian Journal of Organic Chemistry, 2011, 47, 185-192.	0.8	3

#	Article	IF	CITATIONS
55	Synthesis of 6-hydroxycarvone derivatives and their oxidative decyclization with lead tetraacetate. Russian Journal of Organic Chemistry, 2011, 47, 1287-1292.	0.8	3
56	Chiral cyclohexene block from R-(â^')-carvone. Russian Journal of Organic Chemistry, 2012, 48, 180-183.	0.8	3
57	Haloiminolactonization of cyclopentene $\hat{l}_{\pm},\hat{l}_{\pm}$ -dichlorocarboxamides. Tandem rearrangement of iminolactones in epoxylactones. Russian Journal of Organic Chemistry, 2015, 51, 1524-1531.	0.8	3
58	Lipophilic fullerenes. Russian Journal of Organic Chemistry, 2015, 51, 1057-1060.	0.8	3
59	New chiral block for cyclopentanoids synthesis. Russian Journal of Organic Chemistry, 2016, 52, 670-675.	0.8	3
60	Synthesis of a chiral block for Đ¡ 1 â€"Đ¡ 5 fragment of epothilones. Russian Journal of Organic Chemistry, 2017, 53, 1687-1690.	0.8	3
61	Some aspects of intramolecular carbocyclization of methyl (2E)-3-[(1S,2R,5R)-2-({[tert-butyl(dimethyl)-silyl]oxy}methyl)-5-(trimethylsilyl)cyclopent-3-en-1-yl]prop-2-enoate and its derivatives. Russian Journal of Organic Chemistry, 2017, 53, 836-845.	0.8	3
62	Synthesis of an Acyclic Precursor to Epothilone D Analog. Aldol Condensation of (1R)-1-(1,3-Dithiolan-2-yl)-1-(methoxymethoxy)- 2,2-dimethylpentan-3-one with C6â€'C21 and C6â€'C9 Aldehyde Segments. Russian Journal of Organic Chemistry, 2018, 54, 1548-1552.	0.8	3
63	Synthesis of N-Substituted Methyl 4H-Thieno[3,2-b]pyrrole-5-carboxylates. Russian Journal of Organic Chemistry, 2018, 54, 912-917.	0.8	3
64	Synthesis and In Vitro Antibacterial Activity of New C-3-Modified Carbapenems. Russian Journal of Bioorganic Chemistry, 2019, 45, 398-404.	1.0	3
65	4H-Thieno[3,2-b]pyrrole-5-carbohydrazides and Their Derivatives. Russian Journal of Organic Chemistry, 2020, 56, 1545-1549.	0.8	3
66	Interaction of dimethylsulfoxonium methylide with 5-allyl-2,3,5-trichloro-4,4-dimethoxycyclopent-2-en-1-one. Russian Chemical Bulletin, 1996, 45, 2810-2812.	1.5	2
67	Formation of isomeric iodohydrins from terminal alkenes upon oxidation by a RuCl3-NaIO4 system. Russian Chemical Bulletin, 1996, 45, 2813-2815.	1.5	2
68	One-step transformation of sulfonyl chlorides into \hat{l}^2 -substituted acroleins. Russian Chemical Bulletin, 1997, 46, 1804-1805.	1.5	2
69	A novel variant for the preparation of allyl(propargyl) vinyl ethers and their rearrangement into 5-allyl(allenyl)-5-chloro-2-(2-hydroxyethyloxy)-cyclopent-2-ene-1,4-diones. Russian Chemical Bulletin, 1997, 46, 1963-1964.	1.5	2
70	Some features of an Sml2â^'(Me2N)3Pâ€"THF system. Transformation of esters into dimethylamides. Russian Chemical Bulletin, 2000, 49, 329-331.	1.5	2
71	Oxidative dimerization of vinylbornylacetylenes under the action of mercuric acetate. Russian Chemical Bulletin, 2001, 50, 1238-1241.	1.5	2
72	Prostanoids: LXXVII. Synthetic Approaches to Sterically Overcrowded Cyclopentenones. Russian Journal of Organic Chemistry, 2001, 37, 356-358.	0.8	2

#	Article	IF	CITATIONS
73	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 757-758.	0.8	2
74	Reactions of N,N-Dimethylformamide with Functionalized Di- and Trichlorocyclopentenones. Russian Journal of Organic Chemistry, 2001, 37, 1342-1343.	0.8	2
75	Prostanoids: LXXXI. Synthesis of $(\hat{A}\pm)$ -2-Decarboxy-2-ethyl-19,20-dinor-18-carboxyprostaglandin E1. Russian Journal of Organic Chemistry, 2002, 38, 361-364.	0.8	2
76	Prostanoids: LXXXII. Synthesis of Key Precursors of 9-LO Thromboxans. Russian Journal of Organic Chemistry, 2002, 38, 365-369.	0.8	2
77	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 491-493.	0.8	2
78	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 658-661.	0.8	2
79	Reactions of secondary amines with derivatives of 5-(2-methyl-3-furyl)cyclopent-2-en-1-one. Russian Chemical Bulletin, 2002, 51, 1068-1070.	1.5	2
80	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 651-654.	0.8	2
81	Chiral exo-Alkylidenecyclopentanes from (1S,4R)-7,7-Dimethyl-1-vinylbicyclo[2.2.1]heptan-2-one. Russian Journal of Organic Chemistry, 2003, 39, 650-653.	0.8	2
82	Prostanoids: LXXXV. Synthesis 9-Oxo Derivatives of 9-LO Thromboxans. Russian Journal of Organic Chemistry, 2003, 39, 658-662.	0.8	2
83	Synthesis of a Ring Fragment of $9\hat{A}$,11 \hat{A} -Thiathromboxane A2. Procedure for Bond C1-C2Cleavage in Monosaccharides by an Example of D-Glucose 2-Deoxy-3-mesyl Derivative. Russian Journal of Organic Chemistry, 2003, 39, 834-836.	0.8	2
84	Unusual Reaction of Tetrachlorocyclopentadienone Dimer with Secondary Amines. Russian Journal of Organic Chemistry, 2003, 39, 1264-1267.	0.8	2
85	Synthesis of 2-(3-Bromo-1,1-dimethyl-2-methoxypropyl)-2,4,5-trichlorocyclopent-4-ene-1,3-dione. Russian Journal of Organic Chemistry, 2006, 42, 288-289.	0.8	2
86	Double $\hat{1}$ ±-ketol rearrangement of (\hat{a} ')-1-{(1S,2R,4R)-1-ethenyl-2-hydroxy-7,7-dimethylbicyclo[2.2.1]hept-2-yl}ethan-1-one. Russian Journal of Organic Chemistry, 2006, 42, 839-843.	0.8	2
87	Convenient synthesis of 5-benzyl-2,3,5-trichloro-4,4-dimethoxycyclopent-2-en-1-one and some its reactions. Russian Journal of Organic Chemistry, 2008, 44, 321-324.	0.8	2
88	Synthesis of (2S,3S,4S)-2,3-O-isopropylidene-4-(methoxycarbonylmethyl)cyclopentan-1-one. Russian Journal of Organic Chemistry, 2008, 44, 335-339.	0.8	2
89	Synthesis of (5S)-5-methylfuran-2(5H)-one and its dihydro derivative. Russian Journal of Organic Chemistry, 2008, 44, 1804-1806.	0.8	2
90	Unusual removal of the ethylene ketal protection from 2,3-dichloro-4,4-ethylenedioxycyclopent-2-en-1-one under alkaline conditions. Simple synthesis of naturally occurring cyclopentenedione analogs. Russian Chemical Bulletin, 2009, 58, 838-843.	1.5	2

#	Article	IF	CITATIONS
91	Synthesis of diels-alder adduct of (4S,5S)-4,5-O-isopropylidene-2-cyclopenten-1-one with isoprene. Vicinal substituted oxygenated cyclopentane blocks. Russian Journal of Organic Chemistry, 2009, 45, 1718-1720.	0.8	2
92			

#	Article	IF	CITATIONS
109	(2R,3R)-3-[(1R)-1-{[tert-Butyl(dimethyl)silyl]oxy}ethyl]-4-oxoazetidin-2-yl Acetate in Zinc- and Samarium-Promoted Substitution Reactions with Methyl 2-Bromopropanoate and Methyl (2-Bromomethyl)prop-2-enoate. Unusual Cleavage of the N1â€'C4 Bond in Azetidin-2-one Derivative with Migration of Methoxycarbonyl Group in Synthetic Approaches to Carbapenems and Their Analogs.	0.8	2
110	Synthetic Approaches to 15-Deoxy-Δ12,14-prostaglandin J2. A New Key Building Block Based on Organic Chemistry, 2019, 55, 831-836.	0.8	2
111	New 11,13-Dienone Analog of Cloprostenol. Russian Journal of Organic Chemistry, 2019, 55, 1465-1468.	0.8	2
112	Novel 13,14-Dehydro Analogs of Prostaglandins of the 11-Deoxy Series. Russian Journal of Organic Chemistry, 2020, 56, 1347-1352.	0.8	2
113	Synthesis of Dicobalt Hexacarbonyl Complex with B-Type 13,14-Didehydromisoprostol Analog. Russian Journal of Organic Chemistry, 2020, 56, 708-711.	0.8	2
114	Aromatic and Heteroaromatic 4-Benzyl-4H-thieno[3,2-b]pyrrole-5-carbohydrazides. Russian Journal of Organic Chemistry, 2021, 57, 117-120.	0.8	2
115	Synthesis of a New 10,11-Didehydro Analog of Epothilone D. Russian Journal of Organic Chemistry, 2021, 57, 889-904.	0.8	2
116	New 4-Substituted 5-(1H-Pyrrol-2-ylmethyl)-4H-thieno[3,2-b]pyrroles and Their Reactions with N-Bromosuccinimide. Russian Journal of Organic Chemistry, 2019, 55, 1907-1911.	0.8	2
117	Some features of RuCl3-catalyzed periodate oxidation of 3-N-substituted 5-allenyl-2,5-dichloro-4,4-dimethoxycyclopent-2-en-1-ones. Russian Chemical Bulletin, 1997, 46, 1569-1571.	1.5	1
118	Reactions of (Me2N)3P with functionalized di- and trichlorocyclopentenones. Russian Chemical Bulletin, 1998, 47, 2473-2474.	1.5	1
119	Prostanoids, part LXX. Synthesis and study of antiinflammatory and antiulcerogenic activity of 2-(3-hydroxy-1e-octenyl)phenylacetic acid methyl ester. Pharmaceutical Chemistry Journal, 1998, 32, 255-257.	0.8	1
120	Reaction of 5-allyl-2,5-dichloro-4,4-dimethoxy-3-morpholinocyclopent-2-enone with Me3Sil. Russian Chemical Bulletin, 1998, 47, 1616-1617.	1.5	1
121	Some aspects of selective ozonolysis of 5-allyl(allenyl)-4,4-dimethoxy-2,3,5-trichlorocyclopent-2-enones and their 3-morpholino derivatives. Russian Chemical Bulletin, 1999, 48, 342-345.	1.5	1
122	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 359-361.	0.8	1
123	Prostanoids: LXXV. Synthesis of 4-Hydroxy-2-octyl-2-cyclopentenone. Russian Journal of Organic Chemistry, 2001, 37, 125-127.	0.8	1
124	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1338-1339.	0.8	1
125	Prostanoids: LXXXIII. Synthesis of $(\hat{A}\pm)$ -19-Carboxy-20-norprostaglandin F2 $\hat{I}\pm$ and Its 15 \hat{I}^2 -Epimer. Russian Journal of Organic Chemistry, 2002, 38, 487-490.	0.8	1
126	Uncommon C1-C2 rupture in Methyl-4-C-allyl-2,4-dideoxy-3-O-mesyl-α-D-arabino-hexopyranoside. Russian Journal of Organic Chemistry, 2002, 38, 1226-1227.	0.8	1

#	Article	IF	Citations
127	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1755-1757.	0.8	1
128	Molecular and crystal structure of 2,3,4,5,6,7,8-heptachloro-2-morpholinocarbonyltricyclo[4.3.0.01,3]nona-4,7-dien-9-one. Russian Chemical Bulletin, 2003, 52, 2278-2281.	1.5	1
129	New 2,10-Functionalized Camphor Derivatives. Russian Journal of Organic Chemistry, 2003, 39, 1240-1243.	0.8	1
130	Prostanoids: LXXXVI. Synthesis and Reductive Transformations of 2-Chloro-4,4-ethylenedioxy-3-phenylsulfanyl-2-cyclopentenone. Russian Journal of Organic Chemistry, 2003, 39, 1489-1492.	0.8	1
131	Reactions of 2,3-Dichloro- and 2,3,5-Trichloro-4,4-ethylenedioxy-2-cyclopentenones with Some O-, S-, and N-Nucleophiles. Russian Journal of Organic Chemistry, 2003, 39, 1493-1496.	0.8	1
132	Prostanoids: LXXXVIII. Chlorocyclopentenone Building Blocks in the Synthesis of Marine Prostanoids. Russian Journal of Organic Chemistry, 2003, 39, 1719-1723.	0.8	1
133	New ?camphor? Michael acceptor. Russian Journal of Organic Chemistry, 2004, 40, 1373-1374.	0.8	1
134	2,5-Dichloro-4,4-ethylenedioxy-3-phenylsulfonyl-2-cyclopentenone in Nucleophilic Substitution and Addition Reactions. Russian Journal of Organic Chemistry, 2005, 41, 551-555.	0.8	1
135	Specificity of the reaction of (â^')-1-{(1S,2R,4R)-1-ethenyl-2-hydroxy-7,7-dimethylbicyclo[2.2.1]hept-2-yl}xethanone with ethenylmagnesium bromide. Russian Journal of Organic Chemistry, 2006, 42, 962-965.	0.8	1
136	Synthesis and structure of 5,5′-[(E,E)-2,5-diiodohexa-1,5-diene-1,6-diyl]bis(2,3-dichloro-4,4-dimethoxycyclopent-2-en-1-one). Russian Journal of Organic Chemistry, 2006, 42, 1435-1439.	0.8	1
137	Some transformations of the substitutive recyclization product obtained from tetrachlorocyclopentadiene dimer and diethylamine. Russian Journal of Organic Chemistry, 2006, 42, 1775-1779.	0.8	1
138	Racemic cis,cis-2,3,5-trichloro-2-cyclopentene-1,4-diol. Russian Journal of Organic Chemistry, 2007, 43, 307-308.	0.8	1
139	Reactions of 2-Chloro-4,4-ethylenedioxy-3-phenylsulfonyl-cyclopent-2-en-1-one with some hydride reducing agents and carbon-centered nucleophiles. Russian Journal of Organic Chemistry, 2007, 43, 1342-1346.	0.8	1
140	New captodative polyheterofunctionalized cyclopentenones from 2,3,5-Trichloro-4,4-dimethoxy-5-(2-methylfuran-3-yl)cyclopent-2-en-1-one and secondary amines. Russian Journal of Organic Chemistry, 2007, 43, 1651-1655.	0.8	1
141	Specificity of the reaction of 2,3-dichloro-4,4-dimethoxy-5-(2-methylfuran-3-yl)cyclopent-2-en-1-one with amines. Russian Journal of Organic Chemistry, 2008, 44, 397-401.	0.8	1
142	Some reactions of 5-benzyl-2,3,5-trichloro-4,4-dimethoxy-cyclopent-2-en-1-one and its derivatives. Russian Journal of Organic Chemistry, 2008, 44, 524-527.	0.8	1
143	Features of 2,3,5-trichloro-4-hydroxy-2-cyclopenten-1-one reduction with sodium borohydride. Russian Journal of Organic Chemistry, 2008, 44, 764-766.	0.8	1
144	Direct synthesis of 2,3,5-trichloro-4,4-dimethoxy-and 2,5-dichloro-3,4,4-trimethoxycyclopent-2-en-1-ones from hexachlorocyclopentadiene and some aspects of their reactivity. Russian Journal of Organic Chemistry, 2008, 44, 1271-1277.	0.8	1

#	Article	IF	Citations
145	Synthesis-freindly chiral α-hydroxymethyl ketones from (-)-carvone. Russian Journal of Organic Chemistry, 2008, 44, 1606-1610.	0.8	1
146	New "sp 2 -bonded―carbanucleosides. Russian Journal of Organic Chemistry, 2009, 45, 256-258.	0.8	1
147	Dual course of bisacetonation of D-xylose in a system Me2CO-Me2C(OMe)2-H2SO4. Russian Journal of Organic Chemistry, 2009, 45, 762-765.	0.8	1
148	Unexpected transformation of (\hat{A}_{\pm}) -7,7-dichloro-4- $(1$ -methylethylidene)bicyclo[3.2.0]hept-2-en-6-one in reaction with ozone. Russian Journal of Organic Chemistry, 2009, 45, 1725-1726.	0.8	1
149	Carvone hydrochloride in the synthesis of thiazole-containing C11–C21-block of epithilones gem-dimethylcyclopropane analogs. Russian Journal of Organic Chemistry, 2010, 46, 191-197.	0.8	1
150	Synthesis of 3,5-dichlorocyclopentane-1,2,4-trione. Russian Journal of Organic Chemistry, 2010, 46, 1885-1887.	0.8	1
151	New nitrogen- and sulfur-containing derivatives of chlorocyclopentenones. Russian Journal of Organic Chemistry, 2011, 47, 366-370.	0.8	1
152	Unusual transformation of 2-propyn-1-ol tetrahydropyranyl ether in reaction with BuLi. Russian Journal of Organic Chemistry, 2011, 47, 789-790.	0.8	1
153	Skeletal rearrangements of cis-(-)-7,8-epoxycarveol derivatives promoted by triethylsilyl trifluoromethanesulfonate. Russian Journal of Organic Chemistry, 2011, 47, 989-993.	0.8	1
154	Synthesis of methyl (E)-2-[(3S,4S)-4-hydroxy-3-(pent-3-yloxy)-pyrrolidin-2-ylidene]propanoate and its unusual recyclization. Russian Chemical Bulletin, 2013, 62, 1227-1231.	1.5	1
155	Cautions in the synthesis of prostaglandins. C9→C15 acetate migration. Russian Journal of Organic Chemistry, 2014, 50, 140-142.	0.8	1
156	Reductive dechlorination of hexachlorofullerene with diisopropylethylamine. Russian Journal of Organic Chemistry, 2014, 50, 301-302.	0.8	1
157	Vicinally substituted cyclopentenes and cyclopentenones from (±)-7,7-dichlorobicyclo[3.2.0]hept-2-en-6-one. Russian Journal of Organic Chemistry, 2015, 51, 319-324.	0.8	1
158	Practical $F\hat{l}$ "12,14-D transformation in the prostaglandin series. synthesis of methyl (±)-(5Z,12E,14E)-9α-acetoxy- 16-(3-chlorophenoxy)-15-deoxy-11-oxo-17,18,19,20-tetranorprosta-5,12,14-trienoate from cloprostenol. Russian Journal of Organic Chemistry, 2016, 52, 1765-1772.	0.8	1
159	Pyrrolidine synthons for \hat{l}^2 -lactams. Russian Journal of Organic Chemistry, 2016, 52, 349-354.	0.8	1
160	Synthesis of a conjugate of (R)-2,2-dichloro- N-(1-phenylethyl)acetamide with fullerene C60. Russian Journal of Organic Chemistry, 2017, 53, 1583-1585.	0.8	1
161	Physicochemical characteristics of the radical copolymerization of fullerene-containing methacrylates with vinyl monomers. Russian Journal of Physical Chemistry B, 2017, 11, 324-329.	1.3	1
162	(2Z)-2,3,4,5,5-Pentachloropenta-2,4-dienic acid as a minor product in the synthesis of 5,5-dimetoxytetrachlorocyclopentadiene from hexachlorocyclopentadiene. Russian Chemical Bulletin, 2019, 68, 1940-1943.	1.5	1

#	Article	IF	Citations
163	Yamaguchi Esterification in the Synthetic Approaches to Precursors of Epothilone D Analogs. Russian Journal of Organic Chemistry, 2019, 55, 1439-1441.	0.8	1
164	New Differently Functionalized Cyclopentenediones. Russian Journal of Organic Chemistry, 2019, 55, 1869-1873.	0.8	1
165	New Carboxamides of the Thieno [3,2-b] pyrrole Series. Russian Journal of Organic Chemistry, 2020, 56, 1850-1853.	0.8	1
166	1,8-Diazabicyclo[5.4.0]undec-7-ene-Promoted Oxidation by Atmospheric Oxygen of an Allylsilane Derived from Î ³ -Formyl-Substituted Cyclopentene. Russian Journal of Organic Chemistry, 2020, 56, 255-260.	0.8	1
167	Synthesis of 13,14-Dehydro-15-deoxy-16-hydroxy-16-methyl-17-phenoxyprostaglandin B1 Ethyl Ester. Russian Journal of Organic Chemistry, 2020, 56, 540-543.	0.8	1
168	2,4-Dichloro-5-(2,4,6-trimethoxyphenyl)cyclopent-4-ene-1,3-dione derivatives in the reaction with CrCl2. Russian Chemical Bulletin, 2021, 70, 128-131.	1.5	1
169	4H-Thieno[3,2-b]pyrrole-5-carboxylate Conjugates with Taurine and Its Tetrabutylammonium Salt. Russian Journal of Organic Chemistry, 2019, 55, 1902-1906.	0.8	1
170	Low-Temperature Reactions of \hat{l}_{\pm} -Bromopropanoyl Chloride with Lithium Derivative of Ethyl Acetate. Russian Journal of Organic Chemistry, 2019, 55, 1726-1730.	0.8	1
171	Reactions of 2,3-Dibromo-2-methylpropanamides Promoted by Potassium tert-Butoxide. Russian Journal of Organic Chemistry, 2021, 57, 1643-1649.	0.8	1
172	Synthesis of Ethyl Ethers 13,14-Dehydro-16-aryloxy-11-deoxyprostaglandin E1. Russian Journal of Organic Chemistry, 2022, 58, 691-696.	0.8	1
173	Peculiarities of the formation of long-lived molecular negative ions from mono-, bis-, and tris-(trimethylsilyl)cyclopentadienyltitanium trichlorides. Russian Chemical Bulletin, 1995, 44, 2200-2200.	1.5	0
174	Synthesis and properties of (+)-2-decarboxy-2-methyl-20-nor-19-carboxyprostaglandin F2 a and its $15\hat{l}$ -epimerideand its $15\hat{l}$ -epimeride. Pharmaceutical Chemistry Journal, 1996, 30, 513-519.	0.8	0
175	Synthesis of ("¿½) -2,3,5-trichloro-4, 4-dimetoxycyclopent-2-en-1-one. Russian Chemical Bulletin, 1996, 45, 2658-2659.	1.5	0
176	Reactions of 1,6-anhydro-3,4-dideoxy-2-O-methyl- \hat{l}^2 -d-threo-hex-3-enopyranose with thiols and methanol. Russian Chemical Bulletin, 1997, 46, 528-531.	1.5	0
177	Molecular and crystal structure of 5Z-carboxymethylene-2-chloro-4,4-dimethoxy-3-N,N-dimethylaminocyclopent-2-en-1-one. Russian Chemical Bulletin, 1997, 46, 1875-1877.	1.5	0
178	$(\hat{A}\pm)$ -2,3,5-trichloro-4,4-ethylenedioxycyclopent-2-en-1-one and its 5-allyl-substituted derivative in conjugated 1,4-addition with dimethyldilithium cyanocuprate. Russian Chemical Bulletin, 1997, 46, 1886-1890.	1.5	0
179	Recyclization of 5-allenyl-2,5-dichloro-3-N,N-dimethylamino-4,4-dimethoxycyclopent-2-enone under the action of Sml2â°'(Me2N)3P. Functionalizedcis-, trans-cycloocta-2,6-dienones. Russian Chemical Bulletin, 1998, 47, 2469-2471.	1.5	0
180	Prostanoids. Part LXXIV. Antiulcerous activity of misoprostol and its 11-deoxy analog. Misoprostol synthesis. Pharmaceutical Chemistry Journal, 1998, 32, 578-580.	0.8	0

#	Article	IF	Citations
181	Structure-biological activity relationship in prostaglandin analogs. Pharmaceutical Chemistry Journal, 2006, 40, 424-429.	0.8	O
182	Structure-dependent transformations of the tetrachlorocyclopentadienone dimer and the product of its substitutive rearrangement in reactions with NaBH4, CrCl2, LiAlH4, and Zn. Russian Chemical Bulletin, 2006, 55, 1038-1045.	1.5	0
183	1H NMR study on intramolecular hydrogen bonding in 2,3-O-isopropylidene-D-ribofuranosides and their 5(4)-hydroxy derivatives. Russian Journal of Organic Chemistry, 2007, 43, 812-816.	0.8	0
184	Reaction of lithiated 2-trimethylsilyl-1,3-dithiane with $(\hat{A}\pm)$ -pantolactone. Russian Journal of Organic Chemistry, 2007, 43, 915-917.	0.8	0
185	One-pot conversion of $(\hat{A}\pm)$ -7,7-dichloro-4-(1-methylethylidene)-bicyclo[3.2.0]hept-2-en-6-one into dechlorinated \hat{I}^3 -lactone. Russian Journal of Organic Chemistry, 2010, 46, 605-606.	0.8	0
186	Reaction of $(\hat{A}\pm)$ -7,7-dichloro-4- $(1$ -methylethylidene)-bicyclo[3.2.0]hept-2-en-6-one with ozone. Russian Journal of Organic Chemistry, 2010, 46, 1013-1016.	0.8	0
187	Characteristic features of reduction with i-Bu2AlH of products of ring opening with (â^)-α-methylbenzylamine of (3aS,4R,7R,7aS)-3a,4,7,7a-tetrahydro-4,7-epoxy-2-benzofuran-1,3-dione. Russian Journal of Organic Chemistry, 2011, 47, 714-721.	0.8	0
188	Influence of steric factors on the direction of reactions. Russian Journal of Organic Chemistry, 2011, 47, 1256-1258.	0.8	0
189	5,5-dimethyl-1,3-dioxan-4-ol as orthogonally protected equivalent of 2,2-dimethyl-3-hydroxypropanal. Russian Journal of Organic Chemistry, 2012, 48, 820-822.	0.8	0
190	Transmetallation example in reaction of tetrahydothiopyran-4-one lithium enolate with methyl bromoacetate. Russian Journal of Organic Chemistry, 2012, 48, 304-305.	0.8	0
191	Chiral furan-2-yl-substituted reagents based on (+)-α-methylbenzylamine. Russian Journal of Organic Chemistry, 2012, 48, 439-441.	0.8	0
192	Reactions of 4,5-bis(morpholin-4-yl)cyclopent-2-en-1-one with sodium salts derived from methyl dichloroacetate and ethyl (dimethyl-λ4-sulfanylidene)acetate. Russian Journal of Organic Chemistry, 2012, 48, 509-512.	0.8	0
193	Trichlorocyclopentenone conjugates with amino acids. Isolation and structure of diastereomerically pure N-[(4R)-4-allyl-2,4-dichloro-5,5-dimethoxy-3-oxocyclopent-1-en-1-yl]-L-methionine methyl ester. Russian Journal of Organic Chemistry, 2015, 51, 1721-1724.	0.8	0
194	Reaction of (2S,3S)-2-benzyloxybutane-1,2,4-triol with N,N′-carbonyldiimidazole. Russian Journal of Organic Chemistry, 2015, 51, 910-914.	0.8	0
195	[2+4]Cycloadduct of fullerene C60 and 5,5-dimethoxy-1,2,3,4-tetrachlorocyclopentadiene. Russian Journal of Organic Chemistry, 2016, 52, 1692-1694.	0.8	0
196	Synthesis of (â€")-(3aR,4R,5S,6aS)-4-[(acetoxy)methyl]-1-oxohexahydro-1H-cyclopenta[c]furan-5-yl Acetate. Russian Journal of Organic Chemistry, 2016, 52, 523-525.	0.8	0
197	Synthesis of a chiral building block for the C6‒C9 fragment of epothilones. Russian Journal of Organic Chemistry, 2016, 52, 883-886.	0.8	0
198	Functionalized β-lactams based on (E)-1-(furan-2-yl)-N-[(4-methoxyphenyl)methyl]methanimine and its imine–imine rearrangement initiated by potassium hydride. Russian Journal of Organic Chemistry, 2016, 52, 950-955.	0.8	0

#	Article	IF	Citations
199	New functionalized pyrrolidines. Russian Journal of Organic Chemistry, 2017, 53, 371-373.	0.8	O
200	Unusual course of "enolate-imine―condensation in approach to β-lactams. Russian Journal of Organic Chemistry, 2017, 53, 787-789.	0.8	0
201	Methyl 2-(Bromomethyl)acrylate, Methyl Acrylate, and Glycine in the Synthesis of Functionalized Pyrrolidones. Russian Journal of Organic Chemistry, 2018, 54, 1665-1669.	0.8	0
202	Synthesis and Electrophysical Properties of Methanofullerene with C1-Geminal Dimethoxyphosphoryl and Methoxycarbonyl Groups. Russian Journal of Organic Chemistry, 2018, 54, 1419-1421.	0.8	0
203	Synthesis of \hat{I}^2 -Lactam and Anomalous Minor Products in the (i-Pr)2NEt-Promoted Reaction of N-Chloroglycine Methyl Ester Derivative with Dichloroacetyl Chloride. Russian Journal of Organic Chemistry, 2018, 54, 1559-1561.	0.8	0
204	New Conjugates of Di- and Trichlorocyclopentenones with Amino Derivatives of Adamantane and Amino Acids. Russian Journal of Organic Chemistry, 2018, 54, 1003-1007.	0.8	0
205	Chiral 7-Oxabicyclo[2.2.1]heptane Building Blocks for Prostanoids. Russian Journal of Organic Chemistry, 2019, 55, 1131-1135.	0.8	0
206	New Key Building Block for Ixabepilone from R-(-)-Carvone. Russian Journal of Organic Chemistry, 2019, 55, 1370-1373.	0.8	0
207	ω-Aryloxy Analogs of Prostamides. Russian Journal of Organic Chemistry, 2019, 55, 498-501.	0.8	0
208	Structure Determination of Diastereoisomeric Thia-Michael Bis-adducts of Methyl (5-Methylidene-4-oxocyclopent-2-en-1-yl)acetate with Ethanethiol. Russian Journal of Organic Chemistry, 2019, 55, 330-334.	0.8	0
209	Some Peculiarities of the Reduction of Di- and Trichlorocyclopentenones. Russian Journal of Organic Chemistry, 2019, 55, 118-120.	0.8	0
210	Synthesis and Isomerization of the 2-Methyl Enal Fragment of Acyclic Precursors to 9,11-Diene Analogs of Epothilones. Russian Journal of Organic Chemistry, 2020, 56, 1140-1145.	0.8	0
211	Synthesis of C3-Modified Carbapenems. Russian Journal of Organic Chemistry, 2020, 56, 7-10.	0.8	0
212	\hat{l}^2 -Lactam Ring Opening in the Reformatsky Reaction of (3R,4R)-4-Acetoxy-3-((1R)-1-{[tert-butyl(dimethyl)silyl]oxy}ethyl)azetidin-2-one with Ethyl 4-Bromo-3-oxopentanoate. Russian Journal of Organic Chemistry, 2021, 57, 1461-1465.	0.8	0
213	10.1007/s11178-008-3001-8., 2010, 44, 321.		0
214	10.1007/s11178-008-3004-5., 2010, 44, 335.		0
215	10.1007/s11178-008-3014-3., 2010, 44, 397.		0
216	Regioselective Intermolecular Cyclization of Methyl Chemistry, 2020, 56, 2043-2047.	0.8	0

#	Article	IF	CITATIONS
217	Synthesis of the 2,3-Asyridinyl Derivative of d-Carvone. Russian Journal of Organic Chemistry, 2022, 58, 724-726.	0.8	O