
Stefan K Piechnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light to moderate coffee consumption is associated with lower risk of death: a UK Biobank study. European Journal of Preventive Cardiology, 2022, 29, 982-991.	1.8	20
2	Improving robustness of automatic cardiac function quantification from cine magnetic resonance imaging using synthetic image data. Scientific Reports, 2022, 12, 2391.	3.3	3
3	Fairness in Cardiac Magnetic Resonance Imaging: Assessing Sex and Racial Bias in Deep Learning-Based Segmentation. Frontiers in Cardiovascular Medicine, 2022, 9, 859310.	2.4	26
4	Sex-specific associations between alcohol consumption, cardiac morphology, and function as assessed by magnetic resonance imaging: insights form the UK Biobank Population Study. European Heart Journal Cardiovascular Imaging, 2021, 22, 1009-1016.	1.2	4
5	Recovering from missing data in population imaging – Cardiac MR image imputation via conditional generative adversarial nets. Medical Image Analysis, 2021, 67, 101812.	11.6	14
6	Standardization of T1-mapping in cardiovascular magnetic resonance using clustered structuring for benchmarking normal ranges. International Journal of Cardiology, 2021, 326, 220-225.	1.7	19
7	Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine, 2021, 31, 100683.	7.1	435
8	Ensemble of Deep Convolutional Neural Networks with Monte Carlo Dropout Sampling for Automated Image Segmentation Quality Control and Robust Deep Learning Using Small Datasets. Lecture Notes in Computer Science, 2021, , 280-293.	1.3	4
9	Adverse cardiovascular magnetic resonance phenotypes are associated with greater likelihood of incident coronavirus disease 2019: findings from the UK Biobank. Aging Clinical and Experimental Research, 2021, 33, 1133-1144.	2.9	17
10	Quality assurance of quantitative cardiac T1-mapping in multicenter clinical trials – A T1 phantom program from the hypertrophic cardiomyopathy registry (HCMR) study. International Journal of Cardiology, 2021, 330, 251-258.	1.7	21
11	Associations of Meat and Fish Consumption With Conventional and Radiomics Cardiovascular Magnetic Resonance Phenotypes in the UK Biobank. Frontiers in Cardiovascular Medicine, 2021, 8, 667849.	2.4	7
12	Subclinical Changes in Cardiac Functional Parameters as Determined by Cardiovascular Magnetic Resonance (CMR) Imaging in Sleep Apnea and Snoring: Findings from UK Biobank. Medicina (Lithuania), 2021, 57, 555.	2.0	3
13	Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls. International Journal of Cardiology, 2021, 333, 239-245.	1.7	13
14	Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods. Scientific Reports, 2021, 11, 13568.	3.3	9
15	Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping. Medical Image Analysis, 2021, 71, 102029.	11.6	49
16	Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy. Circulation, 2021, 144, 589-599.	1.6	48
17	Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds. Medical Image Analysis, 2021, 74, 102228.	11.6	17
18	Cardiovascular magnetic resonance reference values of mitral and tricuspid annular dimensions: the UK Biobank cohort. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 5.	3.3	21

#	Article	IF	CITATIONS
19	Symptom Persistence Despite Improvement in Cardiopulmonary Health – Insights from longitudinal CMR, CPET and lung function testing post-COVID-19. EClinicalMedicine, 2021, 41, 101159.	7.1	87
20	9â€Identification of thirty novel loci for cardiovascular magnetic resonance derived aortic distensibility in the UK Biobank. , 2021, , .		0
21	1â€Long-term prognosis after acute ST-segment elevation myocardial infarction is determined by characteristics in both non-infarcted and infarcted myocardium on cardiovascular magnetic resonance imaging. , 2021, , .		0
22	MOCOnet: Robust Motion Correction of Cardiovascular Magnetic Resonance T1 Mapping Using Convolutional Neural Networks. Frontiers in Cardiovascular Medicine, 2021, 8, 768245.	2.4	9
23	Standardized image post-processing of cardiovascular magnetic resonance T1-mapping reduces variability and improves accuracy and consistency in myocardial tissue characterization. International Journal of Cardiology, 2020, 298, 128-134.	1.7	16
24	Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach. Medical Image Analysis, 2020, 61, 101636.	11.6	42
25	Total Mapping Toolbox (TOMATO): An open source library for cardiac magnetic resonance parametric mapping. SoftwareX, 2020, 11, 100369.	2.6	7
26	The Effect of Blood Lipids on the LeftÂVentricle. Journal of the American College of Cardiology, 2020, 76, 2477-2488.	2.8	26
27	Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank. Frontiers in Cardiovascular Medicine, 2020, 7, 591368.	2.4	32
28	A population-based phenome-wide association study of cardiac and aortic structure and function. Nature Medicine, 2020, 26, 1654-1662.	30.7	98
29	Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping. Artificial Intelligence in Medicine, 2020, 110, 101955.	6.5	24
30	Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images. Frontiers in Cardiovascular Medicine, 2020, 7, 105.	2.4	74
31	Fully Automated Myocardial Strain Estimation from Cardiovascular MRI–tagged Images Using a Deep Learning Framework in the UK Biobank. Radiology: Cardiothoracic Imaging, 2020, 2, e190032.	2.5	29
32	Extracellular Myocardial Volume in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2020, 75, 304-316.	2.8	141
33	Poor Bone Quality is Associated With Greater Arterial Stiffness: Insights From the UK Biobank. Journal of Bone and Mineral Research, 2020, 36, 90-99.	2.8	11
34	CMR Parametric Mapping as a Tool for Myocardial Tissue Characterization. Korean Circulation Journal, 2020, 50, 658.	1.9	39
35	Non-invasive assessment of portal hypertension by multi-parametric magnetic resonance imaging of the spleen: A proof of concept study. PLoS ONE, 2019, 14, e0221066.	2.5	27
36	Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 41.	3.3	47

#	Article	IF	CITATIONS
37	Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry. Journal of the American College of Cardiology, 2019, 74, 2333-2345.	2.8	152
38	Does self-reported pregnancy loss identify women at risk of an adverse cardiovascular phenotype in later life? Insights from UK Biobank. PLoS ONE, 2019, 14, e0223125.	2.5	3
39	Changes in Cardiac Morphology and Function in Individuals With Diabetes Mellitus. Circulation: Cardiovascular Imaging, 2019, 12, e009476.	2.6	43
40	Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation, 2019, 140, 1318-1330.	1.6	138
41	The Effect of Blood Composition on T1ÂMapping. JACC: Cardiovascular Imaging, 2019, 12, 1888-1890.	5.3	9
42	Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Medical Image Analysis, 2019, 56, 26-42.	11.6	41
43	Identification of Myocardial Disarray inÂPatients With HypertrophicÂCardiomyopathy and Ventricular Arrhythmias. Journal of the American College of Cardiology, 2019, 73, 2493-2502.	2.8	88
44	Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 18.	3.3	78
45	Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI—an Oxford Acute Myocardial Infarction (OxAMI) study. International Journal of Cardiovascular Imaging, 2019, 35, 1297-1308.	1.5	15
46	Independent Left Ventricular Morphometric Atlases Show Consistent Relationships with Cardiovascular Risk Factors: A UK Biobank Study. Scientific Reports, 2019, 9, 1130.	3.3	43
47	Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS ONE, 2019, 14, e0212272.	2.5	26
48	Validation of Cardiovascular Magnetic Resonance–Derived Equation for Predicted Left Ventricular Mass Using the UK Biobank Imaging Cohort. Circulation: Heart Failure, 2019, 12, e006362.	3.9	8
49	Automatic Assessment of Full Left Ventricular Coverage in Cardiac Cine Magnetic Resonance Imaging With Fisher-Discriminative 3-D CNN. IEEE Transactions on Biomedical Engineering, 2019, 66, 1975-1986.	4.2	19
50	T1 or ECV?. JACC: Cardiovascular Imaging, 2019, 12, 1670-1672.	5.3	1
51	Quality Control-Driven Image Segmentation Towards Reliable Automatic Image Analysis in Large-Scale Cardiovascular Magnetic Resonance Aortic Cine Imaging. Lecture Notes in Computer Science, 2019, , 750-758.	1.3	15
52	Myocardial native T1 and extracellular volume with healthy ageing and gender. European Heart Journal Cardiovascular Imaging, 2018, 19, 615-621.	1.2	78
53	Fully-automated left ventricular mass and volume MRI analysis in the UK Biobank population cohort: evaluation of initial results. International Journal of Cardiovascular Imaging, 2018, 34, 281-291.	1.5	46
54	Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. International Journal of Cardiovascular Imaging, 2018, 34, 3-14.	1.5	24

#	Article	IF	CITATIONS
55	State-of-the-art review: stress T1 mapping—technical considerations, pitfalls and emerging clinical applications. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 131-141.	2.0	42
56	6â€Diffusion tensor magnetic resonance imaging of myocardial disarray in hypertrophic cardiomyopathy. , 2018, , .		0
57	Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 65.	3.3	468
58	Anti-TNF modulation reduces myocardial inflammation and improves cardiovascular function in systemic rheumatic diseases. International Journal of Cardiology, 2018, 270, 253-259.	1.7	58
59	Association Between Ambient Air Pollution and Cardiac Morpho-Functional Phenotypes. Circulation, 2018, 138, 2175-2186.	1.6	70
60	Prospective association between handgrip strength and cardiac structure and function in UK adults. PLoS ONE, 2018, 13, e0193124.	2.5	37
61	The impact of menopausal hormone therapy (MHT) on cardiac structure and function: Insights from the UK Biobank imaging enhancement study. PLoS ONE, 2018, 13, e0194015.	2.5	19
62	Variation in lung function and alterations in cardiac structure and function—Analysis of the UK Biobank cardiovascular magnetic resonance imaging substudy. PLoS ONE, 2018, 13, e0194434.	2.5	6
63	Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. Journal of Cardiovascular Magnetic Resonance, 2017, 19, 18.	3.3	391
64	Inflammatory bowel disease and myocarditis: T1-mapping the heart of the problem. European Heart Journal Cardiovascular Imaging, 2017, 18, 940-940.	1.2	3
65	022â€Novel perfusion CMR reference standard for the objective diagnosis of microcirculatory dysfunction – validation against prognostic invasive markers of coronary physiology. Heart, 2017, 103, A18-A18.	2.9	Ο
66	The impact of cardiovascular risk factors on cardiac structure and function: Insights from the UK Biobank imaging enhancement study. PLoS ONE, 2017, 12, e0185114.	2.5	52
67	Relationship Between Left Ventricular Structural and Metabolic Remodeling in Type 2 Diabetes. Diabetes, 2016, 65, 44-52.	0.6	177
68	Cine dyscontractility index: A novel marker of mechanical dyssynchrony that predicts response to cardiac resynchronization therapy. Journal of Magnetic Resonance Imaging, 2016, 44, 1483-1492.	3.4	8
69	Seeing Beyond the Obvious. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	5
70	Pheochromocytoma Is Characterized byÂCatecholamine-Mediated Myocarditis, Focal and Diffuse Myocardial Fibrosis, andÂMyocardial Dysfunction. Journal of the American College of Cardiology, 2016, 67, 2364-2374.	2.8	139
71	Ultrafast Magnetic Resonance Imaging for Iron Quantification in Thalassemia Participants in the Developing World. Circulation, 2016, 134, 432-434.	1.6	23
72	Breast Milk Consumption in Preterm Neonates and Cardiac Shape in Adulthood. Pediatrics, 2016, 138, .	2.1	72

#	Article	IF	CITATIONS
73	Automatic Measurement of the MyocardialÂInterstitium. JACC: Cardiovascular Imaging, 2016, 9, 54-63.	5.3	127
74	Adenosine Stress and Rest T1 Mapping Can Differentiate Between Ischemic, Infarcted, Remote, and Normal Myocardium Without the Need for Gadolinium Contrast Agents. JACC: Cardiovascular Imaging, 2016, 9, 27-36.	5.3	118
75	Splenic T1-mapping: a novel quantitative method for assessing adenosine stress adequacy for cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 1.	3.3	81
76	Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 74.	3.3	60
77	Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 81.	3.3	57
78	Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 77.	3.3	55
79	Noncontrast myocardial <i>T</i> ₁ mapping using cardiovascular magnetic resonance for iron overload. Journal of Magnetic Resonance Imaging, 2015, 41, 1505-1511.	3.4	139
80	T1 mapping and survival in systemic light-chain amyloidosis. European Heart Journal, 2015, 36, 244-251.	2.2	310
81	Diffuse Myocardial Fibrosis and Inflammation in Rheumatoid Arthritis. JACC: Cardiovascular Imaging, 2015, 8, 526-536.	5.3	164
82	Severe aortic stenosis has blunted myocardial T1 relaxation response to vasodilator stress: a cardiac magnetic resonance adenosine stress test study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O28.	3.3	0
83	Abnormal myocardial perfusion correlates with impaired systolic strain and diastolic strain rate in systemic lupus erythematosus: a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O81.	3.3	3
84	Impaired energetics and normal myocardial lipids in rheumatoid arthritis and systemic lupus erythematosus: a phosphorous and proton magnetic resonance spectroscopy and cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O99.	3.3	2
85	Myocardial T1 responds to adenosine - normal values of stress T1 reactivity at 1.5T and 3T. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P107.	3.3	Ο
86	Inversion time calculations have varying impact on short, intermediate and long MOLLI T1 values: implications for studies using T1-mapping sequences. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P23.	3.3	2
87	Multi-parametric cardiovascular magnetic resonance imaging detects subclinical myocardial involvement in patients diagnosed with phaeochromocytoma. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P271.	3.3	Ο
88	Myocardial iron quantification using T2* and native T1mapping - a 250 patient study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P312.	3.3	2
89	An instantaneous ECV with no blood sampling: using native blood T1 for hematocrit is as good as standard ECV. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	3.3	2
90	Systolic ShMOLLI T1-mapping is feasible in tachyarrhythmia, with improved image quality compared to diastolic readout. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q5.	3.3	0

#	Article	IF	CITATIONS
91	Adenosine stress native T1 mapping detects microvascular disease in diabetic cardiomyopathy, without the need for gadolinium-based contrast. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q55.	3.3	3
92	Impaired myocardial perfusion in rheumatoid arthritis is associated with impaired strain, strain rate, disease activity and myocardial oedema: a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q65.	3.3	2
93	Impaired myocardial perfusion is associated with extracellular volume expansion, disease activity and impaired strain and strain rate in systemic sclerosis: a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q71.	3.3	1
94	Saturation recovery allows T1 mapping in the human heart at 7T with a commercial MRI scanner. Journal of Cardiovascular Magnetic Resonance, 2015, 17, W1.	3.3	0
95	Acute chest pain and massive LV hypertrophy in a 38-year-old man. Heart, 2014, 100, 347-347.	2.9	7
96	Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 92.	3.3	94
97	Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 99.	3.3	154
98	Myocardial Tissue Characterization by Magnetic Resonance Imaging. Journal of Thoracic Imaging, 2014, 29, 147-154.	1.5	122
99	Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis – a clinical study using myocardial T1-mapping and extracellular volume quantification. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 21.	3.3	200
100	Native T1 Mapping in Transthyretin Amyloidosis. JACC: Cardiovascular Imaging, 2014, 7, 157-165.	5.3	339
101	Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. Journal of Hepatology, 2014, 60, 69-77.	3.7	367
102	Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 36.	3.3	184
103	Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 2013, 6, 488-497.	5.3	517
104	Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 13.	3.3	216
105	T1 Mapping for the Diagnosis of Acute Myocarditis Using CMR. JACC: Cardiovascular Imaging, 2013, 6, 1048-1058.	5.3	318
106	Diagnostic Value of Pre-Contrast T1 Mapping in Acute and Chronic Myocardial Infarction. JACC: Cardiovascular Imaging, 2013, 6, 739-742.	5.3	50
107	T1 Mapping for Myocardial Extracellular Volume Measurement by CMR. JACC: Cardiovascular Imaging, 2013, 6, 955-962.	5.3	245
108	Critical Pressure for Arterial Wall Rupture in Major Human Cerebral Arteries. Stroke, 2013, 44, 3226-3228.	2.0	20

#	Article	IF	CITATIONS
109	Is it really fat? Ask a T1-map. European Heart Journal Cardiovascular Imaging, 2013, 14, 1060-1060.	1.2	30
110	Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 92.	3.3	864
111	Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping. Circulation: Cardiovascular Imaging, 2013, 6, 392-398.	2.6	399
112	Comprehensive Cardiac Magnetic Resonance Imaging and Spectroscopy Reveal a High Burden of Myocardial Disease in HIV Patients. Circulation, 2013, 128, 814-822.	1.6	160
113	Response to Letter Regarding Article, "Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathyâ€: Circulation: Cardiovascular Imaging, 2013, 6, e2.	2.6	0
114	Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart, 2013, 99, 932-937.	2.9	390
115	<i>T</i> ₁ measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. Magnetic Resonance in Medicine, 2013, 70, 664-670.	3.0	135
116	Inversion recovery at 7 T in the human myocardium: Measurement of <i>T</i> ₁ , inversion efficiency and <i>B</i> ₁ ⁺ . Magnetic Resonance in Medicine, 2013, 70, 1038-1046.	3.0	39
117	Estimation of cerebrospinal fluid compensation parameters in hydrocephalus using short-lasting constant rate lumbar infusion tests. British Journal of Neurosurgery, 2012, 26, 38-44.	0.8	4
118	Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathy. Circulation: Cardiovascular Imaging, 2012, 5, 726-733.	2.6	286
119	Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 15.	3.3	236
120	Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 53.	3.3	368
121	Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 87.	3.3	207
122	Pre-contrast ShMOLLI T1 mapping in cardiac AL amyloidosis. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	4
123	The diagnostic performance of non-contrast T1-mapping in patients with acute myocarditis on cardiovascular magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	2
124	Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLU. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	9
125	Pre-contrast T1 mapping for detection of myocardial fibrosis in asymptomatic and symptomatic aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	2
126	Quantification of acute myocardial injury by ShMOLLI T1-Mapping, T2-weighted and late gadolinium imaging in patients presenting with chest pain, positive troponins and non-obstructive coronary arteries. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	3.3	6

STEFAN K PIECHNIK

#	Article	IF	CITATIONS
127	Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 69.	3.3	552
128	Semiâ€quantitative assessment of the distribution of skin lesions in patients with psoriasis and psoriasis arthritis. Skin Research and Technology, 2009, 15, 451-458.	1.6	2
129	Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation. NeuroImage, 2008, 39, 107-118.	4.2	101
130	Magnetic resonance measurement of blood and CSF flow rates with phase contrast – normal values, repeatability and CO2 reactivity. Acta Neurochirurgica Supplementum, 2008, 102, 263-270.	1.0	9
131	Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magnetic Resonance in Medicine, 2007, 57, 538-547.	3.0	94
132	Symmetry of Cerebral Hemodynamic Indices Derived from Bilateral Transcranial Doppler. Journal of Neuroimaging, 2003, 13, 248-254.	2.0	34
133	Asymmetry of pressure autoregulation after traumatic brain injury. Journal of Neurosurgery, 2003, 99, 991-998.	1.6	66
134	Symmetry of Cerebral Hemodynamic Indices Derived from Bilateral Transcranial Doppler. , 2003, 13, 248-254.		5
135	Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Critical Care Medicine, 2002, 30, 733-738.	0.9	646
136	Problems in application of purely linear models in cerebral circulation. Journal of Biomechanics, 2002, 35, 553-554.	2.1	9
137	The Continuous Assessment of Cerebrovascular Reactivity: A Validation of the Method in Healthy Volunteers. Anesthesia and Analgesia, 1999, 89, 944.	2.2	43
138	The Continuous Assessment of Cerebrovascular Reactivity: A Validation of the Method in Healthy Volunteers. Anesthesia and Analgesia, 1999, 89, 944.	2.2	83