Liang Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523174/publications.pdf

Version: 2024-02-01

		218677	233421
59	2,108	26	45
papers	citations	h-index	g-index
59	59	59	3159
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface-enhanced Raman scattering nanotags design and synthesis., 2022,, 171-223.		2
2	Rational synthesis of Three-Layered plasmonic nanocomposites of copper Sulfide/Gold/Zinc-Doped Prussian blue analogues for improved photothermal disinfection and wound healing. Journal of Colloid and Interface Science, 2022, 610, 621-633.	9.4	11
3	Photoreduced Ag+ surrounding single poly(4-cyanostyrene) nanoparticles for undifferentiated SERS sensing and killing of bacteria. Talanta, 2022, 245, 123450.	5.5	5
4	Raman inks based on triple-bond-containing polymeric nanoparticles for security. Nanoscale, 2022, 14, 7864-7871.	5.6	2
5	MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 2172-2176.	3.1	8
6	The small silver nanoparticle-assisted homogeneous sensing of thiocyanate ions with an ultra-wide window based on surface-enhanced Raman-extinction spectroscopy. Analytical Methods, 2021, 13, 1049-1057.	2.7	5
7	Precise Encoding of Tripleâ€Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angewandte Chemie - International Edition, 2021, 60, 21846-21852.	13.8	17
8	Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Nanoscale, 2020, 12, 3292-3301.	5.6	45
9	Preparation of molecularly imprinted fluorescence sensor based on carbon quantum dots via precipitation polymerization for fluorescence detection of tetracycline. Journal of Applied Polymer Science, 2020, 137, 49126.	2.6	19
10	Total Aqueous Synthesis of Au@Cu _{2â^'} <i>_x</i> S Core–Shell Nanoparticles for In Vitro and In Vivo SERS/PA Imagingâ€Guided Photothermal Cancer Therapy. Advanced Healthcare Materials, 2019, 8, e1801257.	7.6	53
11	Combined Surface-Enhanced Raman Scattering Emissions for High-Throughput Optical Labels on Micrometer-Scale Objects. Analytical Chemistry, 2019, 91, 13866-13873.	6.5	26
12	Accurate Clinical Diagnosis of Liver Cancer Based on Simultaneous Detection of Ternary Specific Antigens by Magnetic Induced Mixing Surface-Enhanced Raman Scattering Emissions. Analytical Chemistry, 2019, 91, 2955-2963.	6. 5	85
13	â€~Mixing-and-measuring' surface-enhanced Raman scattering (SERS) detection of Bacillus cereus for potentially aiding gold mine field exploration. Talanta, 2019, 204, 44-49.	5.5	7
14	A tip–gap mesh-like bilayer SERS substrate for highly sensitive detection. Analytical Methods, 2018, 10, 2251-2256.	2.7	4
15	A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria. Talanta, 2018, 184, 156-161.	5.5	6
16	A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles. Analytical Methods, 2018, 10, 5622-5628.	2.7	26
17	Rational synthesis of hollow cubic CuS@Spiky Au core–shell nanoparticles for enhanced photothermal and SERS effects. Chemical Communications, 2018, 54, 13399-13402.	4.1	32
18	Facile One-Pot Synthesis of Nanodot-Decorated Gold–Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Interfaces, 2018, 10, 32526-32535.	8.0	45

#	Article	IF	CITATIONS
19	Splicing Nanoparticles-Based "Click―SERS Could Aid Multiplex Liquid Biopsy and Accurate Cellular Imaging. Journal of the American Chemical Society, 2018, 140, 10649-10652.	13.7	90
20	Environmentally Safe Mercury(II) Ions Aided Zero-Background and Ultrasensitive SERS Detection of Dipicolinic Acid. Analytical Chemistry, 2017, 89, 10335-10342.	6.5	40
21	Rapid and Reliable Detection of Alkaline Phosphatase by a Hot Spots Amplification Strategy Based on Well-Controlled Assembly on Single Nanoparticle. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29547-29553.	8.0	81
22	A label-free SERS probe for highly sensitive detection of Hg2+ based on functionalized Au@Ag nanoparticles. Talanta, 2017, 162, 374-379.	5.5	44
23	Study of Cloisonn \tilde{A} © enamel glaze of decorative components from Fuwangge in the Forbidden City by means of LA-ICP-MS and micro-Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2017, 1656, 187-198.	0.1	1
24	Reliable SERS detection of nitrite based on pH and laser irradiance-dependent diazotization through a convenient sampling micro-chamber. Analyst, The, 2016, 141, 5195-5201.	3.5	16
25	Simultaneous fluorescence detection of mercury (II) and silver ions based on rhodamine B isothiocyanate and 5-carboxyfluorescein-ssDNA modified probe. Wuhan University Journal of Natural Sciences, 2016, 21, 499-504.	0.4	2
26	An in vivo quantitative Raman-pH sensor of arterial blood based on laser trapping of erythrocytes. Analyst, The, 2016, 141, 3027-3032.	3.5	6
27	Field and Pretreatment-Free Detection of Heavy-Metal Ions in Organic Polluted Water through an Alkyne-Coded SERS Test Kit. ACS Applied Materials & Interfaces, 2016, 8, 27772-27778.	8.0	50
28	Facile and controllable synthesis of triplex Au@Ag–Pt@infinite coordination polymer core–shell nanoparticles for highly efficient immobilization of enzymes and enhanced electrochemical biosensing activity. RSC Advances, 2016, 6, 86025-86033.	3.6	11
29	Combined Labelled and Label-free SERS Probes for Triplex Three-dimensional Cellular Imaging. Scientific Reports, 2016, 6, 19173.	3.3	46
30	Alkyne-Modulated Surface-Enhanced Raman Scattering-Palette for Optical Interference-Free and Multiplex Cellular Imaging. Analytical Chemistry, 2016, 88, 6115-6119.	6.5	100
31	Photochemical Synthesis of Shape-Controlled Nanostructured Gold on Zinc Oxide Nanorods as Photocatalytically Renewable Sensors. Analytical Chemistry, 2016, 88, 3789-3795.	6.5	27
32	Core–shell Fructus Broussonetia-like Au@Ag@Pt nanoparticles as highly efficient peroxidase mimetics for supersensitive resonance-enhanced Raman sensing. Analytical Methods, 2016, 8, 2097-2105.	2.7	21
33	Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonn \tilde{A} © wares and painted enamels from the Imperial Palace. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 165-170.	3.9	19
34	INHIBITâ€Inspired Twoâ€Output DNA Logic Gates Based on Surfaceâ€Enhanced Raman Scattering. Chemistry - A European Journal, 2015, 21, 14301-14304.	3.3	11
35	Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for high sensitive detection of melamine in milk powder. Talanta, 2015, 140, 204-211.	5.5	41
36	Portable SERS-enabled Micropipettes for Microarea Sampling and Reliably Quantitative Detection of Surface Organic Residues. Analytical Chemistry, 2015, 87, 9217-9224.	6.5	83

#	Article	IF	CITATIONS
37	A novel platform for detection of protooncogene based on Au nanocluster enhanced fluorescence. Analytical Methods, 2015, 7, 40-44.	2.7	8
38	A simple and universal "turn-on―detection platform for proteases based on surface enhanced Raman scattering (SERS). Biosensors and Bioelectronics, 2015, 65, 375-381.	10.1	46
39	A sensitive sequential â€~on/off' SERS assay for heparin with wider detection window and higher reliability based on the reversed surface charge changes of functionalized Au@Ag nanoparticles. Biosensors and Bioelectronics, 2015, 66, 55-61.	10.1	34
40	A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag+. Talanta, 2015, 132, 658-663.	5. 5	81
41	Inclusion of guest materials in aqueous coordination network shells spontaneously generated by reacting 2,5-dimercapto-1,3,4-thiadiazole with nanoscale metallic silver. RSC Advances, 2014, 4, 34294.	3.6	9
42	A one-tube multiplexed colorimetric strategy based on plasmonic nanoparticles combined with non-negative matrix factorization. Talanta, 2014, 128, 305-310.	5 . 5	8
43	A "turn-off―SERS assay of heparin with high selectivity based on heparin–peptide complex and Raman labelled gold nanoparticles. Biosensors and Bioelectronics, 2014, 60, 124-129.	10.1	25
44	\hat{l}^2 -Carotene doped silicananoparticles as a novel resonance Raman scattering tag for in vivo cellular imaging. Journal of Materials Chemistry, 2012, 22, 631-635.	6.7	2
45	Bio-Raman spectroscopy: a potential clinical analytical method assisting in disease diagnosis. Analytical Methods, 2011, 3, 1257.	2.7	45
46	Surfaceâ€enhanced Raman spectroscopy in living plant using triplex AuAgC core–shell nanoparticles. Journal of Raman Spectroscopy, 2011, 42, 879-884.	2.5	27
47	Application of surfaceâ€enhanced Raman scattering in cell analysis. Journal of Raman Spectroscopy, 2011, 42, 1248-1254.	2.5	37
48	A background elimination method based on linear programming for Raman spectra. Journal of Raman Spectroscopy, 2011, 42, 1987-1993.	2.5	32
49	Functionalization of Graphene Sheets by Polyacetylene: Convenient Synthesis and Enhanced Emission. Macromolecular Chemistry and Physics, 2011, 212, 768-773.	2.2	54
50	Triplex Au–Ag–C Core–Shell Nanoparticles as a Novel Raman Label. Advanced Functional Materials, 2010, 20, 969-975.	14.9	87
51	In vivo Molecular Imaging of Plant Tissues Using a Novel Carbon Encapsulated SERS Tags. , 2010, , .		0
52	A Novel Early Diagnosis Method of Alzheimer's Disease: Raman Studies of Platelet from Tg2576 Mice. , 2010, , .		0
53	Study on the Resonance Raman Scattering Properties of \hat{I}^2 -carotene Incorporated in SBA-15. , 2010, , .		0
54	Three new antioxidant <i>C</i> -glucosylanthrones from <i>Aloe nobilis</i> . Journal of Asian Natural Products Research, 2010, 12, 443-447.	1.4	2

LIANG LV

#	Article	IF	CITATIONS
55	<i>In vivo</i> study on the protection of indoleâ€3â€carbinol (I3C) against the mouse acute alcoholic liver injury by microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 550-555.	2.5	21
56	BACE1 (\hat{l}^2 -Secretase) Inhibitory Chromone Glycosides from Aloe vera and Aloe nobilis. Planta Medica, 2008, 74, 540-545.	1.3	37
57	Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Research, 2006, 40, 735-743.	11.3	210
58	Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials, 2006, 133, 119-128.	12.4	240
59	Raman scattering properties of human pterygium tissue. Journal of Biomedical Optics, 2005, 10, 024036.	2.6	16