
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2523130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stress-induced generalization of negative memories is mediated by an extended hippocampal circuit. Neuropsychopharmacology, 2022, 47, 516-523.	5.4	8
2	GluN2A-ERK-mTOR pathway confers a vulnerability to LPS-induced depressive-like behaviour. Behavioural Brain Research, 2022, 417, 113625.	2.2	5
3	From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 481-495.	1.8	2
4	Stress-induced changes of the cholinergic circuitry promote retrieval-based generalization of aversive memories. Molecular Psychiatry, 2022, 27, 3795-3805.	7.9	3
5	Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain, 2021, 162, 2865-2880.	4.2	27
6	PFC mTOR signaling as a biological signature for cognitive deficits in bipolar disorder without psychosis. Cell Reports Medicine, 2021, 2, 100282.	6.5	4
7	Primary cilia are required for the persistence of memory and stabilization of perineuronal nets. IScience, 2021, 24, 102617.	4.1	9
8	Functional differentiation in the transverse plane of the hippocampus: An update on activity segregation within the DG and CA3 subfields. Brain Research Bulletin, 2021, 171, 35-43.	3.0	6
9	High ethanol preference and dissociated memory are co-occurring phenotypes associated with hippocampal GABAAR-δreceptor levels. Neurobiology of Learning and Memory, 2021, 183, 107459.	1.9	2
10	Protocol for assessing the role of hippocampal perineuronal nets in aversive memories. STAR Protocols, 2021, 2, 100931.	1.2	1
11	Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Reports, 2020, 33, 108464.	6.4	24
12	Stress-related memories disrupt sociability and associated patterning of hippocampal activity: a role of hilar oxytocin receptor-positive interneurons. Translational Psychiatry, 2020, 10, 428.	4.8	10
13	Excitatory VTA to DH projections provide a valence signal to memory circuits. Nature Communications, 2020, 11, 1466.	12.8	24
14	Differential Contributions of Glutamatergic Hippocampal→Retrosplenial Cortical Projections to the Formation and Persistence of Context Memories. Cerebral Cortex, 2019, 29, 2728-2736.	2.9	57
15	Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21427-21437.	7.1	110
16	Long-range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft-targeting CA1 neurons. Nature Neuroscience, 2019, 22, 618-626.	14.8	74
17	N-Methyl D-aspartate receptor subunit signaling in fear extinction. Psychopharmacology, 2019, 236, 239-250.	3.1	22
18	Glucocorticoid receptor alpha translational isoforms as mediators of early adversities and negative emotional states. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 90, 288-299.	4.8	4

#	Article	IF	CITATIONS
19	Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behavioural Brain Research, 2019, 359, 550-559.	2.2	29
20	State-Dependent Memory: Neurobiological Advances and Prospects for Translation to Dissociative Amnesia. Frontiers in Behavioral Neuroscience, 2018, 12, 259.	2.0	19
21	Role of retrosplenial cortex in processing stress-related context memories Behavioral Neuroscience, 2018, 132, 388-395.	1.2	21
22	Therapeutic Strategies for Treatment of Inflammation-related Depression. Current Neuropharmacology, 2018, 16, 176-209.	2.9	107
23	Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia. Current Behavioral Neuroscience Reports, 2017, 4, 49-58.	1.3	5
24	Neurobiological mechanisms of state-dependent learning. Current Opinion in Neurobiology, 2017, 45, 92-98.	4.2	25
25	Neurobiological correlates of state-dependent context fear. Learning and Memory, 2017, 24, 385-391.	1.3	10
26	Network oscillatory activity driven by context memory processing is differently regulated by glutamatergic and cholinergic neurotransmission. Neurobiology of Learning and Memory, 2017, 145, 59-66.	1.9	12
27	Role of adult hippocampal neurogenesis in persistent pain. Pain, 2016, 157, 418-428.	4.2	90
28	A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse. Journal of Neuroscience, 2016, 36, 9365-9374.	3.6	104
29	Experimental Methods for Functional Studies of microRNAs in Animal Models of Psychiatric Disorders. Neuromethods, 2016, , 129-146.	0.3	Ο
30	Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. Learning and Memory, 2016, 23, 631-638.	1.3	41
31	Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiology of Learning and Memory, 2016, 127, 93-101.	1.9	50
32	Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Translational Psychiatry, 2015, 5, e657-e657.	4.8	11
33	Accumulation of Cytoplasmic Glucocorticoid Receptor Is Related to Elevation of FKBP5 in Lymphocytes of Depressed Patients. Journal of Molecular Neuroscience, 2015, 55, 951-958.	2.3	21
34	Double Dissociation of the Roles of Metabotropic Glutamate Receptor 5 and Oxytocin Receptor in Discrete Social Behaviors. Neuropsychopharmacology, 2015, 40, 2337-2346.	5.4	41
35	GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nature Neuroscience, 2015, 18, 1265-1271.	14.8	81
36	Role of oxytocin receptors in modulation of fear by social memory. Psychopharmacology, 2014, 231, 2097-2105.	3.1	71

#	Article	IF	CITATIONS
37	Psychiatric Risk Factor ANK3/Ankyrin-G Nanodomains Regulate the Structure and Function of Glutamatergic Synapses. Neuron, 2014, 84, 399-415.	8.1	159
38	Introduction to the special issue of Neurobiology of Learning and Memory on Fear Extinction. Neurobiology of Learning and Memory, 2014, 113, 1-2.	1.9	0
39	Co-activation of NR2A and NR2B subunits induces resistance to fear extinction. Neurobiology of Learning and Memory, 2014, 113, 35-40.	1.9	13
40	Fear-enhancing effects of septal oxytocin receptors. Nature Neuroscience, 2013, 16, 1185-1187.	14.8	193
41	Modulation of behavior by scaffolding proteins of the post-synaptic density. Neurobiology of Learning and Memory, 2013, 105, 3-12.	1.9	34
42	Extinction of Remotely Acquired Fear Depends on an Inhibitory NR2B/PKA Pathway in the Retrosplenial Cortex. Journal of Neuroscience, 2013, 33, 19492-19498.	3.6	38
43	Role of peripheral inflammation in central cytokine signaling, depression, and fear. FASEB Journal, 2013, 27, 690.8.	0.5	0
44	Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends in Neurosciences, 2012, 35, 145-155.	8.6	82
45	Abnormalities in Hippocampal Functioning with Persistent Pain. Journal of Neuroscience, 2012, 32, 5747-5756.	3.6	365
46	Preso1, mGluR5 and the machinery of pain. Nature Neuroscience, 2012, 15, 805-807.	14.8	10
47	Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Molecular Psychiatry, 2012, 17, 49-61.	7.9	165
48	Receptors in (e)motion. Nature Neuroscience, 2011, 14, 1222-1224.	14.8	0
49	Hippocampal phenotypes in kalirin-deficient mice. Molecular and Cellular Neurosciences, 2011, 46, 45-54.	2.2	30
50	ERK-associated changes of AP-1 proteins during fear extinction. Molecular and Cellular Neurosciences, 2011, 47, 137-144.	2.2	30
51	NMDA Receptors in Retrosplenial Cortex Are Necessary for Retrieval of Recent and Remote Context Fear Memory. Journal of Neuroscience, 2011, 31, 11655-11659.	3.6	145
52	IQGAP1 Regulates NR2A Signaling, Spine Density, and Cognitive Processes. Journal of Neuroscience, 2011, 31, 8533-8542.	3.6	82
53	Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation. Hippocampus, 2010, 20, 1072-1082.	1.9	76
54	Molecular Specificity of Multiple Hippocampal Processes Governing Fear Extinction. Reviews in the Neurosciences, 2010, 21, 1-18.	2.9	77

#	Article	IF	CITATIONS
55	Metabotropic Glutamate Receptor 5/Homer Interactions Underlie Stress Effects on Fear. Biological Psychiatry, 2010, 68, 1007-1015.	1.3	65
56	BMP Signaling Mediates Effects of Exercise on Hippocampal Neurogenesis and Cognition in Mice. PLoS ONE, 2009, 4, e7506.	2.5	97
57	Hippocampal Erk mechanisms linking prediction error to fear extinction: Roles of shock expectancy and contextual aversive valence. Learning and Memory, 2009, 16, 273-278.	1.3	35
58	Segregated Populations of Hippocampal Principal CA1 Neurons Mediating Conditioning and Extinction of Contextual Fear. Journal of Neuroscience, 2009, 29, 3387-3394.	3.6	119
59	Social modeling of conditioned fear in mice by non-fearful conspecifics. Behavioural Brain Research, 2009, 201, 173-178.	2.2	82
60	Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13058-13063.	7.1	150
61	Protein synthesis inhibitors, gene superinduction and memory: Too little or too much protein?. Neurobiology of Learning and Memory, 2008, 89, 212-218.	1.9	43
62	Regulatory Mechanisms of Fear Extinction and Depression-Like Behavior. Neuropsychopharmacology, 2008, 33, 1570-1583.	5.4	75
63	N-Cadherin Regulates Cytoskeletally Associated IQCAP1/ERK Signaling and Memory Formation. Neuron, 2007, 55, 786-798.	8.1	86
64	Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior. Neurobiology of Learning and Memory, 2007, 87, 149-158.	1.9	98
65	Egr3, a synaptic activity regulated transcription factor that is essential for learning and memory. Molecular and Cellular Neurosciences, 2007, 35, 76-88.	2.2	100
66	A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nature Neuroscience, 2007, 10, 1012-1019.	14.8	135
67	Differential activation of CRF receptor subtypes removes stress-induced memory deficit and anxiety. European Journal of Neuroscience, 2007, 25, 3385-3397.	2.6	49
68	9YExtinction: Does It or Doesn't It? The Requirement of Altered Gene Activity and New Protein Synthesis. Biological Psychiatry, 2006, 60, 344-351.	1.3	72
69	Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magnetic Resonance Imaging, 2006, 24, 209-215.	1.8	23
70	Corticotropin-Releasing Factor Binding Protein - A Ligand Trap?. Mini-Reviews in Medicinal Chemistry, 2005, 5, 953-960.	2.4	21
71	Distinct Roles of Hippocampal De Novo Protein Synthesis and Actin Rearrangement in Extinction of Contextual Fear. Journal of Neuroscience, 2004, 24, 1962-1966.	3.6	213
72	In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. NeuroImage, 2004, 22, 860-867.	4.2	73

#	Article	IF	CITATIONS
73	The role of hippocampal signaling cascades in consolidation of fear memory. Behavioural Brain Research, 2004, 149, 17-31.	2.2	84
74	Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nature Neuroscience, 2003, 6, 911-912.	14.8	113
75	Cdk5: A Novel Role in Learning and Memory. NeuroSignals, 2003, 12, 200-208.	0.9	40
76	Regulation of contextual fear conditioning by baseline and inducible septo-hippocampal cyclin-dependent kinase 5. Neuropharmacology, 2003, 44, 1089-1099.	4.1	33
77	CORRELATION BETWEEN AGE-RELATED CHANGES IN OPEN FIELD BEHAVIOR AND PLAQUE FORMING CELL RESPONSE IN DA FEMALE RATS. International Journal of Neuroscience, 2003, 113, 1259-1273.	1.6	6
78	Stress Applied During Primary Immunization Affects the Secondary Humoral Immune Response in the Rat: Involvement of Opioid Peptides. Stress, 2003, 6, 247-258.	1.8	8
79	Mitogen-Activated Protein Kinase Signaling in the Hippocampus and Its Modulation by Corticotropin-Releasing Factor Receptor 2: A Possible Link between Stress and Fear Memory. Journal of Neuroscience, 2003, 23, 11436-11443.	3.6	94
80	Cdk5 in the Adult Non-Demented Brain. CNS and Neurological Disorders, 2003, 2, 375-381.	4.3	14
81	Phosphorylation of Hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during Contextual Fear Conditioning: Interactions between Erk-1/2 and Elk-1. Molecular and Cellular Neurosciences, 2002, 21, 463-476.	2.2	95
82	Different effects of methionine-enkephalin on paw edema in two inbred rat strains. Peptides, 2002, 23, 1597-1605.	2.4	9
83	Cyclin-Dependent Kinase 5 Is Required for Associative Learning. Journal of Neuroscience, 2002, 22, 3700-3707.	3.6	127
84	High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. Journal of Neuroscience Methods, 2002, 120, 203-209.	2.5	115
85	Behavior and Severity of Adjuvant Arthritis in Four Rat Strains. Brain, Behavior, and Immunity, 2001, 15, 255-265.	4.1	23
86	Phosphorylated cAMP response element binding protein in the mouse brain after fear conditioning: relationship to Fos production. Molecular Brain Research, 2001, 94, 15-24.	2.3	156
87	Pharmacological and chemical properties of astressin, antisauvagine-30 and α-helCRF: significance for behavioral experiments. Neuropharmacology, 2001, 41, 507-516.	4.1	36
88	A single amino acid serves as an affinity switch between the receptor and the binding protein of corticotropin-releasing factor: Implications for the design of agonists and antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11142-11147.	7.1	58
89	Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nature Genetics, 2000, 24, 415-419.	21.4	477
90	Modulation of humoral immune responses in the rat by centrally applied Met–Enk and opioid receptor antagonists: functional interactions of brain OP1, OP2 and OP3 receptors. Immunopharmacology, 2000, 49, 255-262.	2.0	17

#	Article	IF	CITATIONS
91	In vivo NMDA/dopamine interaction resulting in Fos production in the limbic system and basal ganglia of the mouse brain. Molecular Brain Research, 2000, 75, 271-280.	2.3	14
92	Role of regional neurotransmitter receptors in corticotropin-releasing factor (CRF)-mediated modulation of fear conditioning. Neuropharmacology, 2000, 39, 707-710.	4.1	35
93	Peripheral Effects of Methionine-Enkephalin on Inflammatory Reactions and Behavior in the Rat. NeuroImmunoModulation, 2000, 8, 70-77.	1.8	12
94	Modulation of Learning and Anxiety by Corticotropin-Releasing Factor (CRF) and Stress: Differential Roles of CRF Receptors 1 and 2. Journal of Neuroscience, 1999, 19, 5016-5025.	3.6	381
95	Differential impairment of auditory and contextual fear conditioning by protein synthesis inhibition in C57BL/6N mice Behavioral Neuroscience, 1999, 113, 496-506.	1.2	51
96	Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behavioural Brain Research, 1999, 104, 1-12.	2.2	152
97	CRF and CRF Receptors. Results and Problems in Cell Differentiation, 1999, 26, 67-90.	0.7	10
98	Actions of CRF and its Analogs. Current Medicinal Chemistry, 1999, 6, 1035-1053.	2.4	65
99	Production of the Fos protein after contextual fear conditioning of C57BL/6N mice. Brain Research, 1998, 784, 37-47.	2.2	133
100	Characterization of native corticotropin-releasing factor receptor type 1 (cRFR1) in the rat and mouse central nervous system. Journal of Neuroscience Research, 1998, 54, 507-521.	2.9	77
101	Generalization of fear responses in C57BL/6N mice subjected to one-trial foreground contextual fear conditioning. Behavioural Brain Research, 1998, 95, 179-189.	2.2	108
102	Molecular Properties of the CRF Receptor. Trends in Endocrinology and Metabolism, 1998, 9, 140-145.	7.1	42
103	Relationship between Fos Production and Classical Fear Conditioning: Effects of Novelty, Latent Inhibition, and Unconditioned Stimulus Preexposure. Journal of Neuroscience, 1998, 18, 7452-7461.	3.6	224
104	Centrally applied NPY mimics immunoactivation induced by non-analgesic doses of met-enkephalin. NeuroReport, 1998, 9, 3881-3885.	1.2	25
105	Characterization of native corticotropinâ€releasing factor receptor type 1 (cRFR1) in the rat and mouse central nervous system. Journal of Neuroscience Research, 1998, 54, 507-521.	2.9	3
106	Stress-Induced Rise in Serum Anti-Brain Autoantibody Levels in the Rat. International Journal of Neuroscience, 1997, 89, 153-164.	1.6	7
107	Changes in Immunological and Neuronal Conditions Markedly Altered Antibody Response to Intracerebroventricularly Injected Ovalbumin in the Rat. NeuroImmunoModulation, 1997, 4, 181-187.	1.8	4
108	Structure–function relationship of different domains of the rat corticotropin-releasing factor receptor. Molecular Brain Research, 1997, 52, 182-193.	2.3	36

#	Article	IF	CITATIONS
109	Naturally Occurring Anti-peptide Antibodies in the Rat. , 1997, , 197-203.		0
110	Suppression of adjuvant arthritis by k-opioid receptor agonist: Effect of route of administration and strain differences. Immunopharmacology, 1996, 34, 105-112.	2.0	15
111	Effect of Met-enkephalin and opioid antagonists on rat macrophages. Peptides, 1995, 16, 1209-1213.	2.4	17
112	Opioid receptor-mediated suppression of humoral immune response in vivo and in vitro: involvement of κ opioid receptors. Journal of Neuroimmunology, 1995, 57, 55-62.	2.3	47
113	Tumor Necrosis Factor Alpha Differentially Regulates Beta-Endorphin Concentrations and Proopiomelanocortin RNA in the Anterior and Neurointermediate Pituitary in vivo. NeuroImmunoModulation, 1994, 1, 357-360.	1.8	8
114	Quaternary naltrexone: its immunomodulatory activity and interaction with brain delta and kappa opioid receptors. Immunopharmacology, 1994, 28, 105-112.	2.0	11
115	Opposing activities of brain opioid receptors in the regulation of humoral and cell-mediated immune responses in the rat. Brain Research, 1994, 661, 189-195.	2.2	31
116	β-Endorphin concentrations in brain areas and peritoneal macrophages in rats susceptible and resistant to experimental allergic encephalomyelitis: A possible relationship between tumor necrosis factor α and opioids in the disease. Journal of Neuroimmunology, 1994, 51, 169-176.	2.3	24
117	Kappa-Opioid Receptor Functions: Possible Relevance to Experimental Allergic Encephalomyelitis. NeuroImmunoModulation, 1994, 1, 236-241.	1.8	9
118	Enkephalins, Brain and Immunity: Modulation of Immune Responses by Methionine-Enkephalin Injected Into the Cerebral Cavity. International Journal of Neuroscience, 1992, 67, 241-270.	1.6	49