List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2522716/publications.pdf Version: 2024-02-01

	6613	15732
19,645	79	125
citations	h-index	g-index
328	328	17947
docs citations	times ranked	citing authors
	19,645 citations 328 docs citations	19,64579citationsh-index328328docs citations328times ranked

#	Article	IF	CITATIONS
1	Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.	10.4	52
2	Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Research, 2022, 15, 1547-1553.	10.4	30
3	Printable Smart Materials and Devices: Strategies and Applications. Chemical Reviews, 2022, 122, 5144-5164.	47.7	121
4	Flexible transparent electrodes based on metallic micro–nano architectures for perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2349-2363.	5.5	4
5	Chargeâ€Carrier Transport in Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106822.	21.0	74
6	Suppressing the Step Effect of 3D Printing for Constructing Contact Lenses. Advanced Materials, 2022, 34, e2107249.	21.0	23
7	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	5.8	26
8	Bioinspired Quasiâ€3D Multiplexed Antiâ€Counterfeit Imaging via Selfâ€Assembled and Nanoimprinted Photonic Architectures. Advanced Materials, 2022, 34, e2107243.	21.0	70
9	Pen-writing high-quality perovskite films and degradable optoelectronic devices. RSC Advances, 2022, 12, 3924-3930.	3.6	2
10	Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Materials Horizons, 2022, 9, 1045-1056.	12.2	40
11	Stabilizing all-inorganic CsPbI ₃ perovskite films with polyacrylonitrile for photovoltaic solar cells. Energy Advances, 2022, 1, 62-66.	3.3	4
12	Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection [※] . Acta Chimica Sinica, 2022, 80, 80.	1.4	2
13	Circular Subwavelength Photodetectors for 3D Space Exploration. Advanced Optical Materials, 2022, 10, .	7.3	7
14	A Coloration Biochip for Optical Virus Detection Based on Printed Single Nanoparticle Array. Advanced Materials Interfaces, 2022, 9, .	3.7	1
15	Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today, 2022, 43, 101394.	11.9	58
16	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	17
17	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
18	Recent Progress in Responsive Structural Color. Journal of Physical Chemistry Letters, 2022, 13, 2885-2900.	4.6	38

#	Article	IF	CITATIONS
19	Adjustable object floating states based on three-segment three-phase contact line evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201665119.	7.1	1
20	Negative Refraction Acoustic Lens Based on Elastic Shell Encapsulated Bubbles. Advanced Materials Technologies, 2022, 7, .	5.8	7
21	FAPbl ₃ Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2022, 6, .	5.8	19
22	Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. Nano Letters, 2022, 22, 2923-2933.	9.1	57
23	A Direct Writing Approach for Organic Semiconductor Singleâ€Crystal Patterns with Unique Orientation. Advanced Materials, 2022, 34, e2200928.	21.0	14
24	Flexible substrates enabled highly integrated patterns with submicron precision towardÂintrinsically stretchable circuits. SmartMat, 2022, 3, 503-512.	10.7	6
25	Nonâ€Hookean Droplet Spring for Enhancing Hydropower Harvest. Small, 2022, 18, e2200875.	10.0	7
26	Waterâ€Dispersing Perovskite Probes for the Rapid Imaging of Glioma Cells. Advanced Optical Materials, 2022, 10, .	7.3	8
27	Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS Applied Materials & Interfaces, 2022, 14, 20073-20082.	8.0	5
28	Self-assembled 1D nanostructures for direct nanoscale detection and biosensing. Matter, 2022, 5, 1865-1876.	10.0	12
29	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	16.0	17
30	Surface fluoride management for enhanced stability and efficiency of halide perovskite solar cells <i>via</i> a thermal evaporation method. Journal of Materials Chemistry A, 2022, 10, 12882-12889.	10.3	5
31	All-printed nanophotonic biochip for point-of-care testing of biomarkers. Science Bulletin, 2022, 67, 1191-1191.	9.0	1
32	Vacuumâ€Assisted Thermal Annealing of CsPbI ₃ for Highly Stable and Efficient Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
33	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
34	Cracking enabled unclonability in colloidal crystal patterns authenticated with computer vision. Nanoscale, 2022, 14, 8833-8841.	5.6	18
35	Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration. Advanced Intelligent Systems, 2022, 4, .	6.1	9
36	Advanced unconventional techniques for subâ€100 nm nanopatterning. InformaÄnÃ-Materiály, 2022, 4, .	17.3	6

#	Article	IF	CITATIONS
37	Fabricating flexible conductive structures by printing techniques and printable conductive materials. Journal of Materials Chemistry C, 2022, 10, 9441-9464.	5.5	22
38	All-printed point-of-care immunosensing biochip for one drop blood diagnostics. Lab on A Chip, 2022, 22, 3008-3014.	6.0	7
39	One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. Nano Letters, 2022, 22, 5236-5243.	9.1	4
40	Micellar Ratiometric Fluorescent Blood pH Probe Based on Triplet-Sensitized Upconversion and Energy-Transfer Behaviors. Journal of Physical Chemistry Letters, 2022, 13, 5758-5765.	4.6	10
41	Directional Laser from Solutionâ€Grown Gratingâ€Patterned Perovskite Singleâ€Crystal Microdisks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
42	Thermally driven self-healing efficient flexible perovskite solar cells. Nano Energy, 2022, 100, 107523.	16.0	20
43	Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors. Analytical Chemistry, 2022, 94, 9497-9507.	6.5	19
44	Sustainable Pb Management in Perovskite Solar Cells toward Ecoâ€Friendly Development. Advanced Energy Materials, 2022, 12, .	19.5	38
45	Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Science Bulletin, 2021, 66, 527-535.	9.0	54
46	A fluid-guided printing strategy for patterning high refractive index photonic microarrays. Science Bulletin, 2021, 66, 250-256.	9.0	10
47	Controllable excitation-dependent fluorescence triggered by the increasing graphitic nitrogen in carbon dots and its application in multi-analyte detection. Dyes and Pigments, 2021, 184, 108772.	3.7	5
48	Solution-processed electronics for artificial synapses. Materials Horizons, 2021, 8, 447-470.	12.2	74
49	Solution-processed organic semiconductor crystals for field-effect transistors: from crystallization mechanism towards morphology control. Journal of Materials Chemistry C, 2021, 9, 1126-1149.	5.5	37
50	Vapor-Induced Liquid Collection and Microfluidics on Superlyophilic Substrates. ACS Applied Materials & amp; Interfaces, 2021, 13, 3454-3462.	8.0	8
51	Methylamine-assisted secondary grain growth for CH ₃ NH ₃ PbI ₃ perovskite films with large grains and a highly preferred orientation. Journal of Materials Chemistry A, 2021, 9, 7625-7630.	10.3	12
52	Fabrication of Silver Mesh/Grid and Its Applications in Electronics. ACS Applied Materials & Interfaces, 2021, 13, 3493-3511.	8.0	36
53	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. Journal of Materials Chemistry C, 2021, 9, 7829-7851.	5.5	11
54	Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. IScience, 2021, 24, 102121.	4.1	52

#	Article	IF	CITATIONS
55	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 8755-8759.	2.0	7
56	Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8673-8677.	13.8	67
57	Precise Droplet Manipulation Based on Surface Heterogeneity. Accounts of Materials Research, 2021, 2, 230-241.	11.7	22
58	Rücktitelbild: Tautomeric Molecule Acts as a "Sunscreen―for Metal Halide Perovskite Solar Cells (Angew. Chem. 16/2021). Angewandte Chemie, 2021, 133, 9228-9228.	2.0	0
59	A Diverse Micromorphology of Photonic Crystal Chips for Multianalyte Sensing. Small, 2021, 17, e2006723.	10.0	23
60	Colorful Efficient Moiréâ€₽erovskite Solar Cells. Advanced Materials, 2021, 33, e2008091.	21.0	37
61	Low-temperature processed tantalum/niobium co-doped TiO ₂ electron transport layer for high-performance planar perovskite solar cells. Nanotechnology, 2021, 32, 245201.	2.6	21
62	Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. ACS Applied Materials & Interfaces, 2021, 13, 19959-19969.	8.0	39
63	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie - International Edition, 2021, 60, 14307-14312.	13.8	66
64	Self-Driven Multiplex Reaction: Reactant and Product Diffusion via a Transpiration-Inspired Capillary. ACS Applied Materials & Interfaces, 2021, 13, 22031-22039.	8.0	3
65	Defect Passivation by a D–A–D Type Hole-Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2030-2037.	17.4	50
66	Moiré Perovskite Photodetector toward High‣ensitive Digital Polarization Imaging. Advanced Energy Materials, 2021, 11, 2100742.	19.5	39
67	Design of Low Bandgap CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> l>sub>2Br Perovskite Solar Cells with Excellent Phase Stability. Small, 2021, 17, e2101380.	10.0	42
68	A Bubbleâ€Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie - International Edition, 2021, 60, 16547-16553.	13.8	14
69	A Bubbleâ€Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie, 2021, 133, 16683-16689.	2.0	0
70	Releasing Nanocapsules for Highâ€Throughput Printing of Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101291.	19.5	18
71	3D Printing a Biomimetic Bridgeâ€Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Advanced Materials, 2021, 33, e2102443.	21.0	172
72	Magnetic-actuated "capillary container―for versatile three-dimensional fluid interface manipulation. Science Advances, 2021, 7, .	10.3	19

#	Article	IF	CITATIONS
73	Printed Nanochainâ€Based Colorimetric Assay for Quantitative Virus Detection. Angewandte Chemie, 2021, 133, 24436-24442.	2.0	7
74	Selfâ€Driven Droplet Vehicle for Material Patterning. Advanced Materials Interfaces, 2021, 8, 2101309.	3.7	5
75	Printed Nanochainâ€Based Colorimetric Assay for Quantitative Virus Detection. Angewandte Chemie - International Edition, 2021, 60, 24234-24240.	13.8	26
76	Facile full-color printing with a single transparent ink. Science Advances, 2021, 7, eabh1992.	10.3	72
77	Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals. Small Methods, 2021, 5, e2100690.	8.6	15
78	Tunable Fluid-Type Metasurface for Wide-Angle and Multifrequency Water-Air Acoustic Transmission. Research, 2021, 2021, 9757943.	5.7	13
79	Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation. Applied Surface Science, 2021, 562, 150153.	6.1	26
80	Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy, 2021, 89, 106384.	16.0	28
81	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	38.1	232
82	Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Tripletâ€Triplet Annihilation Upconversion Nanomicelles. Angewandte Chemie, 2021, 133, 26929.	2.0	0
83	Inkjet Printed Physicallyâ€Unclonable Structuralâ€Color Anticounterfeiting Labels with Convenient Artificial Intelligence Authentication. Advanced Materials Interfaces, 2021, 8, 2101281.	3.7	27
84	Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet–Triplet Annihilation Upconversion Nanomicelles. Angewandte Chemie - International Edition, 2021, 60, 26725-26733.	13.8	29
85	Lotus Metasurface for Wide-Angle Intermediate-Frequency Water–Air Acoustic Transmission. ACS Applied Materials & Interfaces, 2021, 13, 53242-53251.	8.0	15
86	Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Analytical Chemistry, 2021, 93, 16257-16263.	6.5	19
87	Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization. Nature Communications, 2021, 12, 6899.	12.8	32
88	Patterned macro-/microstructures based on colloidal droplets evaporation. , 2021, , .		0
89	Vapor-induced marangoni coating for organic functional films. Journal of Materials Chemistry C, 2021, 9, 17518-17525.	5.5	9
90	Skin-Driven Ultrasensitive Mechanoluminescence Sensor Inspired by Spider Leg Joint Slits. ACS Applied Materials & amp; Interfaces, 2021, 13, 60689-60696.	8.0	12

#	Article	IF	CITATIONS
91	Implementing Contact Angle Hysteresis in Moving Mesh-Based Two-Phase Flow Numerical Simulations. ACS Omega, 2021, 6, 35711-35717.	3.5	3
92	Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking. ACS Applied Materials & Interfaces, 2020, 12, 1757-1764.	8.0	35
93	Efficient flexible perovskite solar cells based on a polymer additive. Flexible and Printed Electronics, 2020, 5, 014001.	2.7	25
94	Crack-free hematite inverse opal photo-anodes for enhancing photo-electrochemical water splitting. Journal of Materials Chemistry A, 2020, 8, 22929-22937.	10.3	25
95	Recognition and location of motile microorganisms by shape-matching photoluminescence micropatterns. Lab on A Chip, 2020, 20, 2975-2980.	6.0	0
96	Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. Langmuir, 2020, 36, 9952-9959.	3.5	28
97	Heterogeneous Wettability Surfaces: Principle, Construction, and Applications. Small Structures, 2020, 1, 2000028.	12.0	39
98	Interfacial modification towards highly efficient and stable perovskite solar cells. Nanoscale, 2020, 12, 18563-18575.	5.6	34
99	Inhibited-nanophase-separation modulated polymerization for recoverable ultrahigh-strain biobased shape memory polymers. Materials Horizons, 2020, 7, 2760-2767.	12.2	10
100	Efficiently Enhanced Triplet–Triplet Annihilation Upconversion Boosted by Multibandgaps Photonic Crystals. Journal of Physical Chemistry C, 2020, 124, 18482-18489.	3.1	7
101	Ink Engineering of Inkjet Printing Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 39082-39091.	8.0	85
102	Dynamic investigation of gas-releasing chemical reactions through a photonic crystal. Journal of Materials Chemistry C, 2020, 8, 12800-12805.	5.5	6
103	Evaporation Induced Spontaneous Microâ€Vortexes through Engineering of the Marangoni Flow. Angewandte Chemie, 2020, 132, 23892-23897.	2.0	1
104	Frontispiz: Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie, 2020, 132, .	2.0	0
105	Continuous 3D printing from one single droplet. Nature Communications, 2020, 11, 4685.	12.8	47
106	Evaporation Induced Spontaneous Microâ€Vortexes through Engineering of the Marangoni Flow. Angewandte Chemie - International Edition, 2020, 59, 23684-23689.	13.8	16
107	<i>In Situ</i> Deposition of CuBiS ₂ on Mesoporous TiO ₂ Film for Light Absorber in Solar Cells. Journal of Nanoscience and Nanotechnology, 2020, 20, 7748-7752.	0.9	1
108	Frontispiece: Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0

#	Article	IF	CITATIONS
109	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	12.8	71
110	Printed Highâ€Density and Flexible Photodetector Arrays via Sizeâ€matched Heterogeneous Microâ€∕Nanostructure. Advanced Optical Materials, 2020, 8, 2000370.	7.3	9
111	Ring-Patterned Perovskite Single Crystals Fabricated by the Combination of Rigid and Flexible Templates. ACS Applied Materials & Interfaces, 2020, 12, 27786-27793.	8.0	3
112	Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11, 3016.	12.8	173
113	Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie - International Edition, 2020, 59, 14234-14240.	13.8	17
114	Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie, 2020, 132, 14340-14346.	2.0	0
115	Rücktitelbild: Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection (Angew. Chem. 26/2020). Angewandte Chemie, 2020, 132, 10754-10754.	2.0	0
116	Inkjet Printing of a Micro/Nanopatterned Surface to Serve as Microreactor Arrays. ACS Applied Materials & Interfaces, 2020, 12, 30962-30971.	8.0	16
117	Controllable Growth of Highâ€Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. Advanced Materials, 2020, 32, e1908006.	21.0	66
118	Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. International Journal of Heat and Mass Transfer, 2020, 158, 120000.	4.8	23
119	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie - International Edition, 2020, 59, 6909-6914.	13.8	123
120	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	10.3	23
121	Omnidirectional Photodetectors Based on Spatial Resonance Asymmetric Facade via a 3D Self‣tanding Strategy. Advanced Materials, 2020, 32, e1907280.	21.0	14
122	Programmable droplet manipulation by a magnetic-actuated robot. Science Advances, 2020, 6, eaay5808.	10.3	160
123	Low-temperature interfacial engineering for flexible CsPbl ₂ Br perovskite solar cells with high performance beyond 15%. Journal of Materials Chemistry A, 2020, 8, 5308-5314.	10.3	40
124	Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie, 2020, 132, 10622-10626.	2.0	5
125	Droplet Precise Selfâ€Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie - International Edition, 2020, 59, 10535-10539.	13.8	65
126	From 1D to 3D: Fabrication of CH 3 NH 3 PbI 3 Perovskite Solar Cell Thin Films from (Pyrrolidinium)PbI 3 via Organic Cation Exchange Approach. Energy Technology, 2020, 8, 2000148.	3.8	4

#	Article	IF	CITATIONS
127	Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer. ACS Applied Materials & Interfaces, 2020, 12, 22108-22114.	8.0	37
128	In Situ Inkjet Printing of the Perovskite Single-Crystal Array-Embedded Polydimethylsiloxane Film for Wearable Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 22157-22162.	8.0	53
129	Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 2020, 11, 521.	12.8	348
130	Controlled diffusion of nanoparticles by viscosity gradient for photonic crystal with dual photonic band gaps. Nanotechnology, 2020, 31, 435604.	2.6	6
131	Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. Advanced Materials Technologies, 2019, 4, 1800574.	5.8	67
132	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetector. Angewandte Chemie - International Edition, 2019, 58, 16456-16462.	13.8	67
133	All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy, 2019, 63, 103885.	16.0	176
134	A facile fabrication strategy for anisotropic photonic crystals using deformable spherical nanoparticles. Nanoscale, 2019, 11, 14147-14154.	5.6	17
135	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	21.0	96
136	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	14.9	89
137	A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule, 2019, 3, 2205-2218.	24.0	175
138	Steerable Droplet Bouncing for Precise Materials Transportation. Advanced Materials Interfaces, 2019, 6, 1901033.	3.7	35
139	Bubble Architectures for Locally Resonant Acoustic Metamaterials. Advanced Functional Materials, 2019, 29, 1906984.	14.9	56
140	A Butterflyâ€Inspired Hierarchical Lightâ€Trapping Structure towards a Highâ€Performance Polarizationâ€Sensitive Perovskite Photodetector. Angewandte Chemie, 2019, 131, 16608-16614.	2.0	26
141	Nacre-inspired crystallization and elastic "brick-and-mortar―structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987.	30.8	114
142	Patterned Wettability Surface for Competitionâ€Driving Largeâ€Grained Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900838.	19.5	44
143	A General Layerâ€byâ€Layer Printing Method for Scalable Highâ€Resolution Fullâ€Color Flexible Luminescent Patterns. Advanced Optical Materials, 2019, 7, 1900127.	7.3	13
144	Patterned flexible graphene sensor <i>via</i> printing and interface assembly. Journal of Materials Chemistry C, 2019, 7, 6317-6322.	5.5	11

#	Article	IF	CITATIONS
145	Improved film morphology of (CH3NH3)3Bi2I9 via cation displacement approach for lead-free perovskite solar cells. Journal of Materials Science, 2019, 54, 10371-10378.	3.7	10
146	A green solvent for operating highly efficient low-power photon upconversion in air. Physical Chemistry Chemical Physics, 2019, 21, 14516-14520.	2.8	18
147	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10, 950.	12.8	135
148	Domino Patterning of Water and Oil Induced by Emulsion Breaking. ACS Applied Materials & Interfaces, 2019, 11, 17960-17967.	8.0	1
149	Fully Printed Flexible Crossbar Memory Devices with Tipâ€Enhanced Micro/Nanostructures. Advanced Electronic Materials, 2019, 5, 1900131.	5.1	8
150	Wearable Power Source: A Newfangled Feasibility for Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1065-1072.	17.4	45
151	Fully Printed Geranium-Inspired Encapsulated Arrays for Quantitative Odor Releasing. ACS Omega, 2019, 4, 19977-19982.	3.5	4
152	Multi-mode structural-color anti-counterfeiting labels based on physically unclonable amorphous photonic structures with convenient artificial intelligence authentication. Journal of Materials Chemistry C, 2019, 7, 14069-14074.	5.5	88
153	A stimuli responsive triplet–triplet annihilation upconversion system and its application as a ratiometric sensor for Fe ³⁺ ions. RSC Advances, 2019, 9, 36410-36415.	3.6	19
154	Progress of electrically responsive photonic crystals. Composites Communications, 2019, 12, 47-53.	6.3	24
155	Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 2019, 56, 733-740.	16.0	201
156	Heterogeneous Integration of Three-Primary-Color Photoluminescent Nanoparticle Arrays with Defined Interfaces. ACS Applied Materials & amp; Interfaces, 2019, 11, 1616-1623.	8.0	12
157	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	3.3	11
158	Bioinspired Micropatterned Superhydrophilic Auâ€Areoles for Surfaceâ€Enhanced Raman Scattering (SERS) Trace Detection. Advanced Functional Materials, 2018, 28, 1800448.	14.9	87
159	Printing 1D Assembly Array of Single Particle Resolution for Magnetosensing. Small, 2018, 14, e1800117.	10.0	26
160	Spider-web inspired multi-resolution graphene tactile sensor. Chemical Communications, 2018, 54, 4810-4813.	4.1	29
161	Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 2018, 46, 203-211.	16.0	155
162	A Selfâ€Growing Strategy for Largeâ€Scale Crystal Assembly Tubes. Chemistry - an Asian Journal, 2018, 13, 761-764.	3.3	2

#	Article	IF	CITATIONS
163	One‧tep Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217.	5.8	90
164	Diffractionâ€Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping. Advanced Energy Materials, 2018, 8, 1702960.	19.5	119
165	Designing Laplace Pressure Pattern for Microdroplet Manipulation. Langmuir, 2018, 34, 639-645.	3.5	13
166	Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21.	13.7	34
167	Printable Skinâ€Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Advanced Materials, 2018, 30, e1800291.	21.0	178
168	Patterned Arrays of Functional Lateral Heterostructures via Sequential Templateâ€Directed Printing. Small, 2018, 14, e1800792.	10.0	8
169	Inkjet printing bendable circuits based on an oil-water interface reaction. Applied Surface Science, 2018, 445, 391-397.	6.1	43
170	Strong Photonicâ€Bandâ€Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals. ChemPhysChem, 2018, 19, 2101-2106.	2.1	12
171	Strukturierte kolloidale photonische Kristalle. Angewandte Chemie, 2018, 130, 2571-2581.	2.0	12
172	Patterned Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2018, 57, 2544-2553.	13.8	413
173	A 3D Selfâ€6haping Strategy for Nanoresolution Multicomponent Architectures. Advanced Materials, 2018, 30, 1703963.	21.0	39
174	A general strategy for printing colloidal nanomaterials into one-dimensional micro/nanolines. Nanoscale, 2018, 10, 22374-22380.	5.6	20
175	Formation of Multicomponent Size orted Assembly Patterns by Tunable Templated Dewetting. Angewandte Chemie - International Edition, 2018, 57, 16126-16130.	13.8	21
176	Formation of Multicomponent Size‧orted Assembly Patterns by Tunable Templated Dewetting. Angewandte Chemie, 2018, 130, 16358-16362.	2.0	6
177	Patterning Bubbles by the Stick–Slip Motion of the Advancing Triple Phase Line on Nanostructures. Langmuir, 2018, 34, 15804-15811.	3.5	5
178	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	21.0	244
179	Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. Journal of the American Chemical Society, 2018, 140, 16048-16052.	13.7	76
180	A Novel Strategy for Scalable Highâ€Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. Advanced Materials, 2018, 30, e1804454.	21.0	25

#	Article	IF	CITATIONS
181	Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today, 2018, 22, 132-144.	11.9	170
182	From 2D to 3D: a facile and effective procedure for fabrication of planar CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 17867-17873.	10.3	20
183	Bioinspired Synergy Sensor Chip of Photonic Crystals-Graphene Oxide for Multiamines Recognition. Analytical Chemistry, 2018, 90, 6371-6375.	6.5	19
184	Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing Graphene Quantum Dots. Advanced Functional Materials, 2018, 28, 1802585.	14.9	137
185	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Letters, 2018, 3, 1578-1583.	17.4	29
186	High efficient perovskite whispering-gallery solar cells. Nano Energy, 2018, 51, 556-562.	16.0	51
187	A general printing approach for scalable growth of perovskite single-crystal films. Science Advances, 2018, 4, eaat2390.	10.3	150
188	Janus Structural Color from a 2D Photonic Crystal Hybrid with a Fabry–Perot Cavity. Advanced Optical Materials, 2018, 6, 1800651.	7.3	53
189	Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials, 2018, 8, 528.	4.1	46
190	Microfiberâ€Knitted Crossweave Patterns for Multiresolution Physical Kineses Analysis Electronics. Advanced Materials Technologies, 2018, 3, 1800107.	5.8	9
191	AgSbS2 thin film fabricated by in-situ gas-solid reaction and employed in solar cells as a light absorber. Materials Letters, 2018, 232, 82-85.	2.6	11
192	31â€1: <i>Invited Paper:</i> Green Printing Technology for Manufacturing Functional Devices. Digest of Technical Papers SID International Symposium, 2018, 49, 395-396.	0.3	0
193	A General Approach for Fluid Patterning and Application in Fabricating Microdevices. Advanced Materials, 2018, 30, e1802172.	21.0	36
194	Research Progress of High-performance Multi-analyte Recognitions and Multivariate Analysis. Acta Chimica Sinica, 2018, 76, 237.	1.4	2
195	Printable Functional Chips Based on Nanoparticle Assembly. Small, 2017, 13, 1503339.	10.0	47
196	A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nature Communications, 2017, 8, 14110.	12.8	99
197	Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing. Journal of Materials Chemistry C, 2017, 5, 2800-2806.	5.5	42
198	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971-2993.	5.5	415

#	Article	IF	CITATIONS
199	Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction. Journal of Materials Chemistry A, 2017, 5, 4791-4796.	10.3	48
200	Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16281-16288.	10.3	116
201	Healable green hydrogen bonded networks for circuit repair, wearable sensor and flexible electronic devices. Journal of Materials Chemistry A, 2017, 5, 13138-13144.	10.3	83
202	A novel method for fabrication of CdS quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 14103-14109.	2.2	7
203	Inhibited/enhanced fluorescence of embedded fluorescent defects by manipulation of spontaneous emission based on photonic stopband. RSC Advances, 2017, 7, 19737-19741.	3.6	6
204	Patterned photonic crystals for hiding information. Journal of Materials Chemistry C, 2017, 5, 4621-4628.	5.5	89
205	Voltage-Responsive Controlled Release Film with Cargo Release Self-Monitoring Property Based on Hydrophobicity Switching. ACS Applied Materials & Interfaces, 2017, 9, 10992-10999.	8.0	10
206	Swarm Intelligenceâ€Inspired Spontaneous Fabrication of Optimal Interconnect at the Micro/Nanoscale. Advanced Materials, 2017, 29, 1605223.	21.0	35
207	Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603217.	10.0	117
208	Wetting of Inkjet Polymer Droplets on Porous Alumina Substrates. Langmuir, 2017, 33, 130-137.	3.5	18
209	Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals. Angewandte Chemie - International Edition, 2017, 56, 997-1001.	13.8	186
210	Bioinspired Antiâ€Moiré Random Grids via Patterning Foams. Advanced Optical Materials, 2017, 5, 1700751.	7.3	17
211	Precise Assembly of Particles for Zigzag or Linear Patterns. Angewandte Chemie, 2017, 129, 15550-15554.	2.0	7
212	Precise Assembly of Particles for Zigzag or Linear Patterns. Angewandte Chemie - International Edition, 2017, 56, 15348-15352.	13.8	27
213	Enhanced Efficiency of Perovskite Solar Cells by using Core–Ultrathin Shell Structure Ag@SiO ₂ Nanowires as Plasmonic Antennas. Advanced Electronic Materials, 2017, 3, 1700169.	5.1	24
214	Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing. Journal of the American Chemical Society, 2017, 139, 12517-12523.	13.7	52
215	Gas–solid reaction for in situ deposition of Cu ₃ SbS ₄ on a mesoporous TiO ₂ film. RSC Advances, 2017, 7, 41540-41545.	3.6	14
216	Wearable Largeâ€Scale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	21.0	152

#	Article	IF	CITATIONS
217	Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed Bil ₃ /CH ₃ NH ₃ I stacking layers. RSC Advances, 2017, 7, 43826-43830.	3.6	40
218	Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. Advanced Electronic Materials, 2017, 3, 1700253.	5.1	69
219	Selfâ€Healable Organogel Nanocomposite with Angleâ€Independent Structural Colors. Angewandte Chemie, 2017, 129, 10598-10602.	2.0	26
220	In situ gas-solid reaction for fabrication of copper antimony sulfide thin film as photovoltaic absorber. Materials Letters, 2017, 209, 23-26.	2.6	13
221	Selfâ€Healable Organogel Nanocomposite with Angleâ€Independent Structural Colors. Angewandte Chemie - International Edition, 2017, 56, 10462-10466.	13.8	131
222	Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing. ACS Applied Materials & Interfaces, 2017, 9, 41521-41528.	8.0	25
223	Fabrication of Bendable Circuits on a Polydimethylsiloxane (PDMS) Surface by Inkjet Printing Semi-Wrapped Structures. Materials, 2016, 9, 253.	2.9	32
224	Nanoparticle Based Curve Arrays for Multirecognition Flexible Electronics. Advanced Materials, 2016, 28, 1369-1374.	21.0	153
225	Guided Selfâ€Propelled Leaping of Droplets on a Microâ€Anisotropic Superhydrophobic Surface. Angewandte Chemie - International Edition, 2016, 55, 4265-4269.	13.8	135
226	Fabrication of Transparent Multilayer Circuits by Inkjet Printing. Advanced Materials, 2016, 28, 1420-1426.	21.0	172
227	Guided Selfâ€Propelled Leaping of Droplets on a Microâ€Anisotropic Superhydrophobic Surface. Angewandte Chemie, 2016, 128, 4337-4341.	2.0	26
228	A Rainbow Structural olor Chip for Multisaccharide Recognition. Angewandte Chemie, 2016, 128, 7025-7028.	2.0	31
229	Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016, 6, 24628.	3.3	161
230	Sliding three-phase contact line of printed droplets for single-crystal arrays. Nanotechnology, 2016, 27, 184002.	2.6	16
231	pH-Responsive nano sensing valve with self-monitoring state property based on hydrophobicity switching. RSC Advances, 2016, 6, 52292-52299.	3.6	9
232	Flexible Circuits and Soft Actuators by Printing Assembly of Graphene. ACS Applied Materials & Interfaces, 2016, 8, 12369-12376.	8.0	104
233	Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chemical Communications, 2016, 52, 10948-10951.	4.1	81
234	Emerging Progress of Inkjet Technology in Printing Optical Materials. Advanced Optical Materials, 2016, 4, 1915-1932.	7.3	84

#	Article	IF	CITATIONS
235	Direct Writing of Patterned, Leadâ€Free Nanowire Aligned Flexible Piezoelectric Device. Advanced Science, 2016, 3, 1600120.	11.2	44
236	Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32574-32580.	8.0	52
237	Gas/liquid interfacial manipulation by electrostatic inducing for nano-resolution printed circuits. Journal of Materials Chemistry C, 2016, 4, 10847-10851.	5.5	5
238	A Rainbow Structuralâ€Color Chip for Multisaccharide Recognition. Angewandte Chemie - International Edition, 2016, 55, 6911-6914.	13.8	138
239	Fourâ€Dimensional Screening Antiâ€Counterfeiting Pattern by Inkjet Printed Photonic Crystals. Chemistry - an Asian Journal, 2016, 11, 2680-2685.	3.3	72
240	The Ag shell thickness effect of Au@Ag@SiO ₂ core–shell nanoparticles on the optoelectronic performance of dye sensitized solar cells. Chemical Communications, 2016, 52, 2390-2393.	4.1	19
241	Facile fabrication of a superhydrophilic–superhydrophobic patterned surface by inkjet printing a sacrificial layer on a superhydrophilic surface. RSC Advances, 2016, 6, 31470-31475.	3.6	41
242	Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 15889.	3.3	83
243	Fabrication of Nanoscale Circuits on Inkjetâ€Printing Patterned Substrates. Advanced Materials, 2015, 27, 3928-3933.	21.0	112
244	Interfacial Effect of Novel Core–Triple Shell Structured Au@SiO ₂ @Ag@SiO ₂ with Ultrathin SiO ₂ Passivation Layer between the Metal Interfaces on Efficient Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2015, 2, 1500383.	3.7	15
245	Manipulating Oil Droplets by Superamphiphobic Nozzle. Small, 2015, 11, 4837-4843.	10.0	43
246	Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets. ACS Applied Materials & Interfaces, 2015, 7, 28086-28099.	8.0	210
247	Inkjet print microchannels based on a liquid template. Lab on A Chip, 2015, 15, 1759-1764.	6.0	34
248	Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Advanced Functional Materials, 2015, 25, 2237-2242.	14.9	157
249	Feather-like Ag@TiO ₂ nanostructures as plasmonic antenna to enhance optoelectronic performance. Physical Chemistry Chemical Physics, 2015, 17, 5051-5056.	2.8	13
250	Interface Manipulation for Printing Threeâ€Đimensional Microstructures Under Magnetic Guiding. Small, 2015, 11, 1900-1904.	10.0	32
251	Hydrophilic–Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High‣ensitive Colorimetric Detection of Tetracycline. Small, 2015, 11, 2738-2742.	10.0	176
252	Patterning Fluorescent Quantum Dot Nanocomposites by Reactive Inkjet Printing. Small, 2015, 11, 1649-1654.	10.0	117

#	Article	IF	CITATIONS
253	Photochromic sensors: a versatile approach for recognition and discrimination. Journal of Materials Chemistry C, 2015, 3, 9265-9275.	5.5	122
254	A Photochromic Sensor Microchip for High-performance Multiplex Metal Ions Detection. Scientific Reports, 2015, 5, 9724.	3.3	49
255	A push–pull thienoquinoidal chromophore for highly efficient p-type dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 7695-7698.	10.3	36
256	Fabrication of Patterned Concave Microstructures by Inkjet Imprinting. Advanced Functional Materials, 2015, 25, 3286-3294.	14.9	73
257	Splitting a Droplet for Femtoliter Liquid Patterns and Single Cell Isolation. ACS Applied Materials & Interfaces, 2015, 7, 9060-9065.	8.0	95
258	Twenty Natural Amino Acids Identification by a Photochromic Sensor Chip. Analytical Chemistry, 2015, 87, 837-842.	6.5	38
259	A Freeâ€Blockage Controlled Release System Based on the Hydrophobic/Hydrophilic Conversion of Mesoporous Silica Nanopores. Chemistry - A European Journal, 2015, 21, 2680-2685.	3.3	15
260	Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365.	3.7	17
261	Inkjet printing of CH ₃ NH ₃ Pbl ₃ on a mesoscopic TiO ₂ film for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9092-9097.	10.3	210
262	Highly reproducible SERS arrays directly written by inkjet printing. Nanoscale, 2015, 7, 421-425.	5.6	81
263	Stretching Velocityâ€Dependent Dynamic Adhesion of the Water/Oil Interfaces for High Quality Lithographic Printing. Advanced Materials Interfaces, 2014, 1, 1400080.	3.7	3
264	Bioâ€Inspired Photonicâ€Crystal Microchip for Fluorescent Ultratrace Detection. Angewandte Chemie - International Edition, 2014, 53, 5791-5795.	13.8	253
265	Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewingâ€Angle Displays by Controlling the Sliding Three Phase Contact Line. Advanced Optical Materials, 2014, 2, 34-38.	7.3	221
266	Controllable Printing Droplets for Highâ€Resolution Patterns. Advanced Materials, 2014, 26, 6950-6958.	21.0	371
267	A General Strategy for Assembling Nanoparticles in One Dimension. Advanced Materials, 2014, 26, 2501-2507.	21.0	93
268	A tetrahydropyrene-based organic dye for solar cell application. RSC Advances, 2014, 4, 22181.	3.6	4
269	A Light-Responsive Release Platform by Controlling the Wetting Behavior of Hydrophobic Surface. ACS Nano, 2014, 8, 744-751.	14.6	102
270	Inkjet Printing Controllable Footprint Lines by Regulating the Dynamic Wettability of Coalescing Ink Droplets. ACS Applied Materials & Interfaces, 2014, 6, 13344-13348.	8.0	73

#	Article	IF	CITATIONS
271	Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. Journal of Materials Chemistry A, 2014, 2, 19095-19101.	10.3	62
272	Efficient Luminescence of Long Persistent Phosphor Combined with Photonic Crystal. ACS Applied Materials & amp; Interfaces, 2014, 6, 6317-6321.	8.0	33
273	Preparation of Patterned Ultrathin Polymer Films. Langmuir, 2014, 30, 9436-9441.	3.5	19
274	A 2,7-pyrene-based dye for solar cell application. New Journal of Chemistry, 2014, 38, 4404.	2.8	36
275	Progress of nanoscience in China. Frontiers of Physics, 2014, 9, 257-288.	5.0	20
276	Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffeeâ€Ring Effect. Advanced Materials, 2013, 25, 6714-6718.	21.0	200
277	Patterned photonic crystals fabricated by inkjet printing. Journal of Materials Chemistry C, 2013, 1, 6048.	5.5	97
278	Hierarchical TiO ₂ photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 541-547.	10.3	66
279	Hierarchical Porous Surface for Efficiently Controlling Microdroplets' Selfâ€Removal. Advanced Materials, 2013, 25, 2291-2295.	21.0	126
280	A Multiâ€stopband Photonicâ€Crystal Microchip for Highâ€Performance Metalâ€Ion Recognition Based on Fluorescent Detection. Angewandte Chemie - International Edition, 2013, 52, 7296-7299.	13.8	146
281	Continuous Microwire Patterns Dominated by Controllable Rupture of Liquid Films. Small, 2013, 9, 722-726.	10.0	11
282	Patterning of controllable surface wettability for printing techniques. Chemical Society Reviews, 2013, 42, 5184.	38.1	299
283	A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs. Journal of Materials Chemistry A, 2013, 1, 4858.	10.3	47
284	Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate. NPG Asia Materials, 2012, 4, e21-e21.	7.9	74
285	Large-area, crack-free polysilazane-based photonic crystals. Journal of Materials Chemistry, 2012, 22, 5300.	6.7	25
286	Inkjet printed colloidal photonic crystal microdot with fast response induced by hydrophobic transition of poly(N-isopropyl acrylamide). Journal of Materials Chemistry, 2012, 22, 21405.	6.7	89
287	Colloidal Photonic Crystals with Narrow Stopbands Assembled from Low-Adhesive Superhydrophobic Substrates. Journal of the American Chemical Society, 2012, 134, 17053-17058.	13.7	215
288	Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab on A Chip, 2012, 12, 3089.	6.0	95

#	Article	IF	CITATIONS
289	Elaborately Aligning Bead‧haped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy. Advanced Functional Materials, 2012, 22, 4569-4576.	14.9	33
290	Small Molecular Nanowire Arrays Assisted by Superhydrophobic Pillarâ€Structured Surfaces with High Adhesion. Advanced Materials, 2012, 24, 2780-2785.	21.0	76
291	Elaborate Positioning of Nanowire Arrays Contributed by Highly Adhesive Superhydrophobic Pillarâ€Structured Substrates. Advanced Materials, 2012, 24, 559-564.	21.0	87
292	Research Progress of High-precision Patterns by Directly Inkjet Printing. Acta Chimica Sinica, 2012, 70, 1889.	1.4	9
293	Fabrication of functional colloidal photonic crystals based on well-designed latex particles. Journal of Materials Chemistry, 2011, 21, 14113.	6.7	67
294	Bioinspired Colloidal Photonic Crystals with Controllable Wettability. Accounts of Chemical Research, 2011, 44, 405-415.	15.6	219
295	Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 2011, 22, 425601.	2.6	163
296	Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water. Soft Matter, 2011, 7, 5144.	2.7	61
297	"Clingingâ€Microdroplet―Patterning Upon Highâ€Adhesion, Pillarâ€Structured Silicon Substrates. Advanced Functional Materials, 2011, 21, 3297-3307.	14.9	61
298	Controllable Underwater Oilâ€Adhesionâ€Interface Films Assembled from Nonspherical Particles. Advanced Functional Materials, 2011, 21, 4436-4441.	14.9	96
299	Applications of Bioâ€Inspired Special Wettable Surfaces. Advanced Materials, 2011, 23, 719-734.	21.0	961
300	Highly effective protein detection for avidin–biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay. Biosensors and Bioelectronics, 2011, 26, 2165-2170.	10.1	60
301	Amplification of Fluorescent Contrast by Photonic Crystals in Optical Storage. Advanced Materials, 2010, 22, 1237-1241.	21.0	91
302	Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina. Applied Physics Letters, 2010, 97, .	3.3	37
303	Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal. Energy and Environmental Science, 2010, 3, 1503.	30.8	139
304	Photovoltaics Based on Hybridization of Effective Dye‧ensitized Titanium Oxide and Hole onductive Polymer P3HT. Advanced Functional Materials, 2009, 19, 2481-2485.	14.9	120
305	Ultraâ€Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications, 2009, 30, 598-603.	3.9	112
306	Tough Photonic Crystals Fabricated by Photoâ€Crosslinkage of Latex Spheres. Macromolecular Rapid Communications, 2009, 30, 509-514.	3.9	44

#	Article	IF	CITATIONS
307	A novel ruthenium-free TiO2 sensitizer consisting of di-p-tolylaminophenyl ethylenedioxythiophene and cyanoacrylate groups. New Journal of Chemistry, 2009, 33, 1973.	2.8	16
308	Ultrasensitive DNA Detection Using Photonic Crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-7262.	13.8	160
309	Superoleophilic and Superhydrophobic Inverse Opals for Oil Sensors. Advanced Functional Materials, 2008, 18, 3258-3264.	14.9	113
310	Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. Journal of Materials Chemistry, 2008, 18, 2262.	6.7	42
311	Electrically Tunable Polypyrrole Inverse Opals with Switchable Stopband, Conductivity, and Wettability. Chemistry of Materials, 2008, 20, 3554-3556.	6.7	97
312	Colorful humidity sensitive photonic crystal hydrogel. Journal of Materials Chemistry, 2008, 18, 1116.	6.7	321
313	Solid-state fluorescence enhancement of organic dyes by photonic crystals. Journal of Materials Chemistry, 2007, 17, 90-94.	6.7	85
314	Hydrogen-Bonding-Driven Wettability Change of Colloidal Crystal Films:  From Superhydrophobicity to Superhydrophilicity. Chemistry of Materials, 2006, 18, 4984-4986.	6.7	73
315	Simple Fabrication of Full Color Colloidal Crystal Films with Tough Mechanical Strength. Macromolecular Chemistry and Physics, 2006, 207, 596-604.	2.2	232
316	Control over the Wettability of Colloidal Crystal Films by Assembly Temperature. Macromolecular Rapid Communications, 2006, 27, 188-192.	3.9	87
317	Fabrication of the Silver Grids by Interfacial Interaction. Advanced Engineering Materials, 0, , 2100901.	3.5	1
318	Printed Chalcogenide/Metal Heterostructured Photodetectors for Flexible Nearâ€Infrared Sensing. Advanced Optical Materials, 0, , 2200173.	7.3	6
319	Vacuumâ€Assisted Thermal Annealing of CsPbl ₃ for Highly Stable and Efficient Inorganic Perovskite Solar Cells. Angewandte Chemie, 0, ,	2.0	0
320	Directional Laser From Solutionâ€grown Gratingâ€patterned Perovskite Singleâ€crystal Microdisks. Angewandte Chemie, 0, , .	2.0	0