Stefano Cavallaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2522537/publications.pdf

Version: 2024-02-01

27 papers

2,192 citations

394421 19 h-index 27 g-index

27 all docs

27 docs citations

times ranked

27

1603 citing authors

#	Article	IF	CITATIONS
1	Transiting from Adipic Acid to Bioadipic Acid. 1, Petroleum-Based Processes. Industrial & Engineering Chemistry Research, 2015, 54, 1-46.	3.7	86
2	Transiting from Adipic Acid to Bioadipic Acid. Part II. Biosynthetic Pathways. Industrial & Engineering Chemistry Research, 2015, 54, 567-576.	3.7	45
3	Ethanol Steam Reforming in a Two-Step Process. Short-Time Feasibility Tests. Energy & Energy	5.1	4
4	Ethanol and dimethyl ether steam reforming on Rh/Al2O3 catalysts for high-temperature fuel-cell feeds. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 75-87.	1.7	13
5	Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 2008, 33, 6627-6634.	7.1	46
6	Solid-state luminescence switching of platinum(ii) dithiooxamide complexes in the presence of hydrogen halide and amine gases. Chemical Communications, 2007, , 4740.	4.1	35
7	Hydrogen production from ethanol on Rh/MgO based catalystsThe influence of rhodium precursor on catalytic performance. International Journal of Hydrogen Energy, 2007, 32, 3335-3342.	7.1	37
8	Initial steps in the production of H2 from ethanol: A FT-IR study of adsorbed species on Ni/MgO catalyst surface. Reaction Kinetics and Catalysis Letters, 2007, 90, 117-126.	0.6	26
9	Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2CeO2 Ni supported catalysts. International Journal of Hydrogen Energy, 2006, 31, 2193-2199.	7.1	168
10	Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions. Applied Catalysis A: General, 2005, 281, 139-147.	4.3	54
11	Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. Journal of Power Sources, 2004, 132, 139-144.	7.8	72
12	H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 2004, 5, 611-615.	3.3	284
13	Experimental evaluation on the CO2 separation process supported by polymeric membranes. Materials Letters, 2004, 58, 1865-1872.	2.6	10
14	Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003, 123, 10-16.	7.8	165
15	Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis A: General, 2003, 249, 119-128.	4.3	236
16	Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts. Catalysis Communications, 2003, 4, 259-268.	3.3	182
17	Structural characterization of monomeric and oligomeric arylamides by solution and solid-state NMR spectroscopy. Magnetic Resonance in Chemistry, 2002, 40, 219-224.	1.9	1
18	Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources, 2002, 108, 53-57.	7.8	116

#	Article	IF	CITATIONS
19	Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. Journal of Power Sources, 2001, 102, 198-204.	7.8	127
20	Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources, 2000, 87, 28-38.	7.8	190
21	Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation. International Journal of Hydrogen Energy, 1996, 21, 465-469.	7.1	132
22	Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach. Journal of Power Sources, 1996, 62, 67-73.	7.8	89
23	Lifetime-limiting factors for a molten carbonate fuel cell. International Journal of Hydrogen Energy, 1994, 19, 337-341.	7.1	19
24	Mass and energy balances in a molten-carbonate fuel cell with internal reforming. Journal of Power Sources, 1992, 39, 203-214.	7.8	19
25	Alkali effect on the MCFC-internal reforming catalyst life. International Journal of Hydrogen Energy, 1992, 17, 181-186.	7.1	26
26	Structural modifications of a spent molten carbonate fuel cell. Journal of Applied Electrochemistry, 1990, 20, 804-810.	2.9	6
27	Performance and endurance of a molten carbonate fuel cell at 923 K. International Journal of Hydrogen Energy, 1989, 14, 339-343.	7.1	4