
Bradley J Kerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2521507/publications.pdf Version: 2024-02-01

RDADIEVIKEDD

#	Article	IF	CITATIONS
1	Central amygdala inflammation drives pain hypersensitivity and attenuates morphine analgesia in experimental autoimmune encephalomyelitis. Pain, 2022, 163, e49-e61.	4.2	10
2	Regulation of microglia population dynamics throughout development, health, and disease. Glia, 2021, 69, 2771-2797.	4.9	29
3	Multiple Sclerosis and the Endogenous Opioid System. Frontiers in Neuroscience, 2021, 15, 741503.	2.8	7
4	TNFÎ \pm in MS and Its Animal Models: Implications for Chronic Pain in the Disease. Frontiers in Neurology, 2021, 12, 780876.	2.4	9
5	Endoplasmic reticulum stress in the dorsal root ganglia regulates large onductance potassium channels and contributes to pain in a model of multiple sclerosis. FASEB Journal, 2020, 34, 12577-12598.	0.5	20
6	Microglia Diversity in Health and Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 588021.	4.8	44
7	Endoplasmic reticulum–mitochondria interplay in chronic pain: The calcium connection. Molecular Pain, 2020, 16, 174480692094688.	2.1	21
8	Microbes, microglia, and pain. Neurobiology of Pain (Cambridge, Mass), 2020, 7, 100045.	2.5	33
9	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	10.3	130
10	Profiling the microRNA signature of the peripheral sensory ganglia in experimental autoimmune encephalomyelitis (EAE). Journal of Neuroinflammation, 2019, 16, 223.	7.2	10
11	Voluntary wheel running reveals sex-specific nociceptive factors in murine experimental autoimmune encephalomyelitis. Pain, 2019, 160, 870-881.	4.2	19
12	Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis. Pain, 2019, 160, 1037-1049.	4.2	25
13	Sensory Neurons of the Dorsal Root Ganglia Become Hyperexcitable in a T-Cell-Mediated MOG-EAE Model of Multiple Sclerosis. ENeuro, 2019, 6, ENEURO.0024-19.2019.	1.9	30
14	In focus: Neuro–immune interactions in pathological states. Journal of Neuroscience Research, 2018, 96, 925-926.	2.9	0
15	Characterization of Superficial Dorsal Horn Neurons from "Tamamaki―Mice and Stability of their GAD67-EGFP Phenotype in Defined-Medium Organotypic Culture. Neuroscience, 2018, 372, 126-140.	2.3	8
16	Characterization of the Nile Grass Rat as a Unique Model for Type 2 Diabetic Polyneuropathy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 469-478.	1.7	10
17	Effect of voluntary wheel running on neuroactive steroid levels in murine experimental autoimmune encephalomyelitis. Neuroscience Letters, 2018, 685, 150-154.	2.1	5
18	Antinociceptive Effects of the Antidepressant Phenelzine are Mediated by Context-Dependent Inhibition of Neuronal Responses in the Dorsal Horn. Neuroscience, 2018, 383, 205-215.	2.3	6

BRADLEY J KERR

#	Article	IF	CITATIONS
19	The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE). Neuroscience, 2017, 344, 178-186.	2.3	13
20	Voluntary wheel running differentially affects disease outcomes in male and female mice with experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2017, 305, 135-144.	2.3	28
21	Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. Journal of Neuroinflammation, 2017, 14, 19.	7.2	53
22	Diseaseâ€modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Molecular Medicine, 2017, 9, 1537-1557.	6.9	51
23	Pain in autoimmune disorders. Journal of Neuroscience Research, 2017, 95, 1282-1294.	2.9	35
24	Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis. Pain, 2016, 157, 627-642.	4.2	27
25	Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2016, 13, 142.	7.2	63
26	Manipulation of Neurotransmitter Levels Has Differential EffectsÂon Formalin-Evoked Nociceptive Behavior in Male andÂFemale Mice. Journal of Pain, 2016, 17, 483-498.	1.4	17
27	The Role of Regulatory Transporters in Neuropathic Pain. Advances in Pharmacology, 2016, 75, 245-271.	2.0	9
28	Granzyme B-inhibitor serpina3n induces neuroprotection in vitro and in vivo. Journal of Neuroinflammation, 2015, 12, 157.	7.2	60
29	Treatment of Pain with Antidepressants. Journal of Microbiology and Biotechnology, 2015, 25, 209-212.	2.1	2
30	Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE). Experimental Neurology, 2015, 271, 279-290.	4.1	50
31	Biogenic Amines and the Amino Acids GABA and Glutamate: Relationships with Pain and Depression. Modern Problems of Pharmacopsychiatry, 2015, 30, 67-79.	2.5	39
32	The transition from acute to chronic pain: understanding how different biological systems interact. Canadian Journal of Anaesthesia, 2014, 61, 112-122.	1.6	61
33	Pain and Cognition in Multiple Sclerosis. Current Topics in Behavioral Neurosciences, 2014, 20, 201-215.	1.7	23
34	Protein kinase C gamma (PKCγ) as a novel marker to assess the functional status of the corticospinal tract in experimental autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2013, 256, 43-48.	2.3	21
35	Sex-related differences in acute and chronic pain: a bench to bedside perspective. Canadian Journal of Anaesthesia, 2013, 60, 221-226.	1.6	4
36	Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE). Experimental Neurology, 2013, 241, 113-121.	4.1	48

BRADLEY J KERR

#	Article	IF	CITATIONS
37	Pain Research – Methods and Protocols – Second Edition. Canadian Journal of Anaesthesia, 2013, 60, 93-93.	1.6	0
38	The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behavioural Brain Research, 2013, 252, 302-311.	2.2	49
39	Neonatal microglia come of age for inflammatory pain. European Journal of Pain, 2013, 17, 1105-1106.	2.8	0
40	The MAO inhibitor phenelzine improves functional outcomes in mice with experimental autoimmune encephalomyelitis (EAE). Brain, Behavior, and Immunity, 2011, 25, 1677-1688.	4.1	67
41	Tissue concentration changes of amino acids and biogenic amines in the central nervous system of mice with experimental autoimmune encephalomyelitis (EAE). Neurochemistry International, 2011, 59, 28-38.	3.8	24
42	Learning new tricks from an old dog: using experimental autoimmune encephalomyelitis to study comorbid symptoms in multiple sclerosis. Pain Management, 2011, 1, 571-576.	1.5	1
43	Differential expression of SOCS1 in macrophages in relapsingâ€remitting and chronic EAE and its role in disease severity. Glia, 2010, 58, 1816-1826.	4.9	45
44	Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain, 2009, 141, 156-164.	4.2	145
45	The protective effects of 15â€deoxyâ€î"â€≺sup>12,14â€prostaglandin J ₂ in spinal cord injury Glia, 2008, 56, 436-448.	[.] 4.9	31
46	Pain behaviors after spinal cord contusion injury in two commonly used mouse strains. Experimental Neurology, 2007, 206, 240-247.	4.1	46
47	Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury. Experimental Neurology, 2005, 196, 9-17.	4.1	75
48	Central pain symptoms in multiple sclerosis. , 0, , 156-169.		0