Xiaozhi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2521498/publications.pdf

Version: 2024-02-01

516710 580821 62 814 16 25 h-index citations g-index papers 62 62 62 846 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	(DSF) _{<i>n</i>} -graphene: a carbon semimetal with double stacking faults. Journal of Materials Chemistry C, 2022, 10, 2103-2108.	5.5	1
2	Magnetic field induced valley-polarized quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures. Physical Review B, 2022, 105, .	3.2	11
3	Spin-polarized topological phases in a ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m .<="" 105,="" 2022,="" and="" b,="" bilayer="" by="" electric="" fields.="" magnetic="" physical="" review="" td="" tuned=""><td>nn>22/mm</td><td>l:m2n></td></mml:m></mml:msub></mml:mrow></mml:math>	nn> 22/ mm	l:m2n>
4	Symmetry-enforced nodal cage phonons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Th</mml:mi><mml:nphysical .<="" 105,="" 2022,="" b,="" review="" td=""><td>nn 82x/mm</td><td>ıl:ma></td></mml:nphysical></mml:msub></mml:mrow></mml:math>	nn 82x/mm	ıl:m a>
5	Dirac Fermions in the Boron Nitride Monolayer with a Tetragon. Journal of Physical Chemistry Letters, 2022, 13, 5508-5513.	4.6	14
6	Hourglass phonons jointly protected by symmorphic and nonsymmorphic symmetries. Physical Review B, 2021, 104, .	3.2	35
7	The Dirac cone in two-dimensional tetragonal silicon carbides: a ring coupling mechanism. Nanoscale, 2021, 13, 18267-18272.	5.6	4
8	High Anisotropic Optoelectronics in Two Dimensional Layered PbSnX $<$ sub $>$ 2 $<$ /sub $>$ (X = S/Se). Journal of Physical Chemistry Letters, 2021, 12, 10574-10580.	4.6	5
9	Dirac Fermions in Graphene with Stacking Fault Induced Periodic Line Defects. Journal of Physical Chemistry Letters, 2021, 12, 10874-10879.	4.6	12
10	Intrinsic Ferromagnetic Semiconductors in Two-Dimensional Alkali-Based Chromium Chalcogenides. ACS Applied Electronic Materials, 2020, 2, 3853-3858.	4.3	17
11	Photoinduced Floquet mixed-Weyl semimetallic phase in a carbon allotrope. Physical Review B, 2020, 102, .	3.2	12
12	Symmetry-guaranteed ideal Weyl semimetallic phase in face-centered orthogonal C6. Physical Review B, 2020, 101, .	3.2	7
13	Surface Adsorption and Vacancy in Tuning the Properties of Tellurene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19110-19115.	8.0	20
14	Intrinsic quantum anomalous Hall phase induced by proximity in the van der Waals heterostructure germanene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Cr</mml:mi> <mml:n .<="" 101,="" 2020,="" b,="" physical="" review="" td=""><td>nn>32²<td>l:mn></td></td></mml:n></mml:msub></mml:mrow></mml:math>	nn>32 ² <td>l:mn></td>	l:mn>
15	Electronic and Optical Properties of Zigzag BN/AlN Nanoribbons with Misfit Dislocations: First-Principles Calculations. Journal of Electronic Materials, 2020, 49, 4100-4110.	2.2	2
16	Interplay of Charged States and Oxygen Dissociation Induced by Vacancies in Phosphorene. Journal of Physical Chemistry C, 2019, 123, 27080-27087.	3.1	8
17	Two-Dimensional Li-Based Ternary Chalcogenides for Photocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 6061-6066.	4.6	31
18	New Family of Two-Dimensional Group-(II ₃ â€"V ₂) Photoelectric Materials. Journal of Physical Chemistry C, 2019, 123, 16851-16856.	3.1	3

#	Article	IF	Citations
19	Impact of phosphorous and sulphur substitution on Dirac cone modification and optical behaviors of monolayer graphene for nano-electronic devices. Applied Surface Science, 2019, 489, 358-371.	6.1	5
20	New Family of Two-Dimensional Ternary Photoelectric Materials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14457-14462.	8.0	35
21	Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations. Journal of Electronic Materials, 2019, 48, 3763-3776.	2.2	7
22	Structural and electronic properties of $90\hat{A}^o$ dislocations in silicon nanorods: A first-principles calculation. Computational Materials Science, 2018, 149, 243-249.	3.0	1
23	Segregation and mechanical properties of Si, Fe and Ti on the Al/Al2.5X0.5Zr (X = Cu, Zn, Ag) coherent interfaces: First-principles calculations. Computational Materials Science, 2018, 141, 325-340.	3.0	6
24	Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS \$\$_{2}\$\$ 2 Nanoribbons: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 7114-7128.	2.2	0
25	Dislocation behaviors in nanotwinned diamond. Science Advances, 2018, 4, eaat8195.	10.3	40
26	Electronic Properties of Armchair \$\$hbox {MoS}_{2}\$\$ MoS 2 Nanoribbons with Stacking Faults: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 5498-5508.	2.2	8
27	Effects of temperature and redshift on the refractive index of semiconductors. Journal of Applied Physics, 2018, 124, 035703.	2.5	4
28	The Phase Stability, Ductility and Hardness of MoN and NbN: First-Principles Study. Journal of Electronic Materials, 2017, 46, 1914-1925.	2.2	8
29	First-principles study on the adhesive properties of Al/TiC interfaces: Revisited. Computational Materials Science, 2017, 126, 108-120.	3.0	23
30	Surface Effects on the Properties of Screw Dislocation in Nanofilms. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.8	2
31	Temperature-Dependent Generalized Planar Fault Energy and Twinnability of Mg Microalloyed with Er, Ho, Dy, Tb, and Gd: First-Principles Study. Advances in Materials Science and Engineering, 2016, 2016, 1-9.	1.8	3
32	The Adhesive Properties of Coherent and Semicoherent NiAl/V Interfaces Within the Peierls-Nabarro Model. Crystals, 2016, 6, 32.	2.2	7
33	Modified Peierlsâ \in "Nabarro dislocation equation for \$\$ leftlangle {ext{110}} ightangle {{ 1ar{1}0} } \$\$ \$110 { 1 1Â 0} dissociated superdislocations in perovskite CaSiO3. Physics and Chemistry of Minerals, 2016, 43, 563-570.	0.8	1
34	The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations. Journal of Alloys and Compounds, 2016, 681, 96-108.	5.5	49
35	Phase stability, mechanical properties and electronic structure of TiAl alloying with W, Mo, Sc and Yb: First-principles study. Journal of Alloys and Compounds, 2016, 658, 689-696.	5 . 5	53
36	Local charge states in hexagonal boron nitride with Stone–Wales defects. Nanoscale, 2016, 8, 8210-8219.	5.6	43

#	Article	IF	CITATIONS
37	The transformation pathways for vitual long period stacking-ordered Mg: First-principles study. Computational Materials Science, 2016, 114, 1-12.	3.0	2
38	Third Order Elastic Constants and Debye Temperature of MgB2 Under Different Pressure: First-Principles Methods. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1483-1489.	1.8	7
39	The Core Structure and Peierls Stress of \hat{a} C© 11 2 \hat{A} 0 \hat{a} Ce \$langle 11 overline {2}0 angle \$ Dislocations in MgB2 with Mg and B Vacancies. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1743-1748.	1.8	1
40	High temperature and pressure effects on the elastic properties of B2 intermetallics AgRE. Open Physics, $2015, 13, \ldots$	1.7	1
41	First principles study on the phase stability and mechanical properties of MoSi2 alloyed with Al, Mg and Ge. Intermetallics, 2015, 67, 26-34.	3.9	24
42	First principle study on the temperature dependent elastic constants, anisotropy, generalized stacking fault energy and dislocation core of NiAl and FeAl. Computational Materials Science, 2015, 103, 116-125.	3.0	40
43	High Pressure Effects on the Properties of $\mathbb{C}^2\{001\}$ Dislocation in Superconducting ZnCNi3 and MgCNi3 Determined from First Principles Calculations Combined with an Improved Peierls-Nabarro Equation. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2281-2291.	1.8	0
44	Effect of temperature on elastic constants, generalized stacking fault energy and dislocation cores in MgO and CaO. Computational Condensed Matter, 2014, 1, 38-44.	2.1	13
45	Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations. Computational Materials Science, 2014, 88, 124-130.	3.0	31
46	The Elastic Constants and Anisotropy of Superconducting MgCNi3 and CdCNi3 Under Different Pressure. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1187-1194.	1.8	6
47	Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2607-2615.	1.8	1
48	Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl. Intermetallics, 2014, 55, 108-117.	3.9	23
49	Nonlinear Elastic Properties of Superconducting Antiperovskites MNNi3 (M =Zn, Cd, Mg, Al, Ga, and In) from First Principles. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1851-1859.	1.8	7
50	Energy investigations on the adhesive properties of Al/TiC interfaces: First-principles study. Physica B: Condensed Matter, 2014, 449, 269-273.	2.7	30
51	The Elastic Properties, Generalized Stacking Fault Energy and Dissociated Dislocations in MgB2 Under Different Pressure. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3401-3409.	1.8	4
52	First principle study on generalized stacking fault energy and surface energy of B2-AgRE intermetallics. Physica B: Condensed Matter, 2012, 407, 4117-4122.	2.7	1
53	The temperature-dependent elastic properties of B2-MgRE intermetallic compounds from first principles. Physica B: Condensed Matter, 2012, 407, 96-102.	2.7	13
54	Thermodynamic Properties of MgSc and AlSc from First-Principles Phonon Calculations. International Journal of Thermophysics, 2012, 33, 300-310.	2.1	16

#	ARTICLE	IF	CITATION
55	On the core width and Peierls stress of bubble rafts dislocations within the framework of modified Peierls-Nabarro model. Open Physics, $2011, 9, .$	1.7	3
56	First-principles calculations on temperature-dependent elastic constants of rare-earth intermetallic compounds: YAg and YCu. Physica B: Condensed Matter, 2011, 406, 3951-3955.	2.7	13
57	Peierls stress for âŒ@110〉{001} mixed dislocation in SrTiO3 within framework of constrained path approximation. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 425-432.	3.4	4
58	On Core Structure Properties and Peierls Stress of Dissociated Superdislocations in Aluminides: NiAl and FeAl. Acta Mechanica Solida Sinica, 2010, 23, 213-219.	1.9	3
59	On third-order elastic constants for ductile rare-earth intermetallic compounds: AÂfirst-principles study. Intermetallics, 2010, 18, 1653-1658.	3.9	11
60	Ab initio calculations on the third-order elastic constants for selected B2–MgRE (REÂ=ÂY, Tb, Dy, Nd) intermetallics. Intermetallics, 2010, 18, 2472-2476.	3.9	20
61	The discrete correction of the core structure for the langle 100angle {010} edge dislocation in bcc Fe. Journal of Physics Condensed Matter, 2008, 20, 485207.	1.8	10
62	Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice theory. Acta Mechanica Solida Sinica, 2007, 20, 363-368.	1.9	12