Haiqing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520770/publications.pdf Version: 2024-02-01

ΗλιοιΝΟ ΖΗΟΙΙ

#	Article	IF	CITATIONS
1	Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy and Environmental Science, 2017, 10, 1820-1827.	30.8	1,002
2	High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 2018, 9, 2551.	12.8	812
3	Water splitting by electrolysis at high current densities under 1.6 volts. Energy and Environmental Science, 2018, 11, 2858-2864.	30.8	438
4	Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7, 12765.	12.8	312
5	Hierarchical CoP/Ni ₅ P ₄ /CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy and Environmental Science, 2018, 11, 2246-2252.	30.8	306
6	Highly active catalyst derived from a 3D foam of Fe(PO ₃) ₂ /Ni ₂ P for extremely efficient water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5607-5611.	7.1	302
7	Three-Dimensional Nanoporous Iron Nitride Film as an Efficient Electrocatalyst for Water Oxidation. ACS Catalysis, 2017, 7, 2052-2057.	11.2	207
8	Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy and Environmental Science, 2017, 10, 1487-1492.	30.8	176
9	Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 13619-13623.	10.3	169
10	Highly Efficient Hydrogen Evolution from Edge-Oriented WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Particles on Three-Dimensional Porous NiSe ₂ Foam. Nano Letters, 2016, 16, 7604-7609.	9.1	121
11	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. ACS Catalysis, 2020, 10, 1511-1519.	11.2	88
12	Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays. Small, 2019, 15, e1804272.	10.0	87
13	Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting. Journal of Materials Chemistry A, 2021, 9, 10199-10207.	10.3	87
14	Highly active and durable self-standing WS ₂ /graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9472-9476.	10.3	75
15	Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst. Materials Today Physics, 2018, 4, 1-6.	6.0	72
16	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	10.0	70
17	Bi2Se3/C Nanocomposite as a New Sodium-Ion Battery Anode Material. Nano-Micro Letters, 2018, 10, 50.	27.0	65
18	Engineering Inâ€Plane Nickel Phosphide Heterointerfaces with Interfacial sp HP Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm ^{â^²2} . Small, 2022, 18, e2105642.	10.0	57

HAIQING ZHOU

#	Article	IF	CITATIONS
19	Promoting nitrogen photofixation over a periodic WS ₂ @TiO ₂ nanoporous film. Journal of Materials Chemistry A, 2020, 8, 1059-1065.	10.3	44
20	Boosting Alkaline Hydrogen and Oxygen Evolution Kinetic Process of Tungsten Disulfideâ€Based Heterostructures by Multiâ€Site Engineering. Small, 2022, 18, e2104624.	10.0	44
21	Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis. Materials Today Physics, 2022, 26, 100727.	6.0	41
22	Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. Nanoscale, 2015, 7, 9153-9157.	5.6	35
23	Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Materials Today Physics, 2022, 22, 100589.	6.0	20
24	In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107248.	9.0	19
25	Boosting <scp>pHâ€Universal</scp> Hydrogen Evolution of Molybdenum Disulfide Particles by Interfacial Engineering ^{â€} . Chinese Journal of Chemistry, 2021, 39, 288-294.	4.9	18
26	Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries. Chinese Chemical Letters, 2023, 34, 107130.	9.0	15
27	Gold micromeshes as highly active electrocatalysts for methanol oxidation reaction. RSC Advances, 2017, 7, 22479-22484.	3.6	11
28	Chemical Reduction of Nd1.85Ce0.15CuO4â~ÎPowders in Supercritical Sodium Ammonia Solutions. Advances in Condensed Matter Physics, 2015, 2015, 1-5.	1.1	1