Anne Puustinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520632/publications.pdf Version: 2024-02-01

ANNE DILISTINEN

#	Article	IF	CITATIONS
1	<i>In situ</i> analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. Nanoscale, 2020, 12, 1728-1741.	5.6	46
2	Elucidating differential nano-bio interactions of multi-walled andsingle-walled carbon nanotubes using subcellular proteomics. Nanotoxicology, 2018, 12, 554-570.	3.0	7
3	Epithelial proteome profiling suggests the essential role of interferon-inducible proteins in patients with allergic rhinitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1288-1298.	2.9	18
4	Proteomic and Bioinformatic Characterization of Extracellular Vesicles Released from Human Macrophages upon Influenza A Virus Infection. Journal of Proteome Research, 2017, 16, 217-227.	3.7	55
5	Paprika rhinoconjunctivitis case reveals new occupational <i>Capsicum</i> allergens. American Journal of Industrial Medicine, 2015, 58, 791-794.	2.1	4
6	Level of Fatty Acid Binding Protein 5 (FABP5) Is Increased in Sputum of Allergic Asthmatics and Links to Airway Remodeling and Inflammation. PLoS ONE, 2015, 10, e0127003.	2.5	33
7	A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes. Nanotoxicology, 2015, 9, 719-728.	3.0	29
8	Invariant Natural Killer T Cells Play a Role in Chemotaxis, Complement Activation and Mucus Production in a Mouse Model of Airway Hyperreactivity and Inflammation. PLoS ONE, 2015, 10, e0129446.	2.5	3
9	Proteomic Changes of Alveolar Lining Fluid in Illnesses Associated with Exposure to Inhaled Non-Infectious Microbial Particles. PLoS ONE, 2014, 9, e102624.	2.5	3
10	Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. Journal of Proteomics, 2014, 108, 469-483.	2.4	44
11	MicroRNA profiles in nasal mucosa of patients with allergic and nonallergic rhinitis and asthma. International Forum of Allergy and Rhinology, 2013, 3, 612-620.	2.8	60
12	Peroxiredoxins and tropomyosins as plasma biomarkers for lung cancer and asbestos exposure. Lung Cancer, 2012, 77, 450-459.	2.0	35
13	Proteomic Characterization of Engineered Nanomaterial–Protein Interactions in Relation to Surface Reactivity. ACS Nano, 2011, 5, 4300-4309.	14.6	142
14	Modulation of the active site conformation by site-directed mutagenesis in cytochrome c oxidase from Paracoccus denitrificans. Journal of Inorganic Biochemistry, 2010, 104, 318-323.	3.5	9
15	Absence of CCR4 Exacerbates Skin Inflammation in an Oxazolone-Induced Contact Hypersensitivity Model. Journal of Investigative Dermatology, 2010, 130, 2743-2751.	0.7	37
16	Thaumatin-like protein and baker's respiratory allergy. Annals of Allergy, Asthma and Immunology, 2010, 104, 139-146.	1.0	33
17	Sequence Analysis of the cbb3 Oxidases and an Atomic Model for the Rhodobacter sphaeroides Enzyme. Biochemistry, 2006, 45, 5754-5765.	2.5	40
18	Structural and Chemical Changes of the PMIntermediate ofParacoccus denitrificansCytochromecOxidase Revealed by IR Spectroscopy with Labeled Tyrosines and Histidineâ€. Biochemistry, 2006, 45, 10873-10885.	2.5	41

Anne Puustinen

#	Article	IF	CITATIONS
19	1P176 ATR-FTIR Characterisation of the Ferryl Intermediates of Cytochrome c Oxidase(5. Heme) Tj ETQq1 1 0.784	314 rgBT 0.1	/Qverlock]
20	Identification of a histidine-tyrosine cross-link in the active site of the cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16135-16140.	7.1	52
21	Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. Proceedings of the United States of America, 2005, 102, 10478-10481.	7.1	86
22	An Elementary Reaction Step of the Proton Pump Is Revealed by Mutation of Tryptophan-164 to Phenylalanine in CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2005, 44, 16502-16512.	2.5	43
23	The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 529-533.	7.1	200
24	Characterization of Recombinant Amino-terminal NC4 Domain of Human Collagen IX. Journal of Biological Chemistry, 2004, 279, 24265-24273.	3.4	56
25	ATR-FTIR Spectroscopy and Isotope Labeling of the PM Intermediate of Paracoccus denitrificans Cytochrome c Oxidase. Biochemistry, 2004, 43, 14370-14378.	2.5	33
26	ATR-FTIR Spectroscopy of the PMand F Intermediates of Bovine andParacoccus denitrificansCytochromecOxidaseâ€. Biochemistry, 2003, 42, 8809-8817.	2.5	55
27	Time-Resolved Step-Scan Fourier Transform Infrared Spectroscopy of the CO Adducts of Bovine CytochromecOxidase and of Cytochromebo3fromEscherichia coliâ€. Biochemistry, 2002, 41, 2675-2683.	2.5	52
28	Heme-copper oxidases with modified D- and K-pathways are yet efficient proton pumps. FEBS Letters, 2001, 497, 159-164.	2.8	36
29	Charge Translocation Coupled to Electron Injection into Oxidized CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2001, 40, 7077-7083.	2.5	60
30	Electron and Proton Transfer in the Arginine-54-Methionine Mutant of CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2001, 40, 5269-5274.	2.5	28
31	Purification, crystallization and preliminary crystallographic studies of an integral membrane protein, cytochromebo3ubiquinol oxidase fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1076-1078.	2.5	10
32	The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Structural Biology, 2000, 7, 910-917.	9.7	354
33	The role of the D- and K-pathways of proton transfer in the function of the haem–copper oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 514-520.	1.0	117
34	Interaction between the formyl group of heme a and arginine 54 in cytochrome aa3 from Paracoccus denitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1456, 1-4.	1.0	15
35	Binding of O2and Its Reduction Are Both Retarded by Replacement of Valine 279 by Isoleucine in CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2000, 39, 6365-6372.	2.5	44
36	Proton Translocation by CytochromecOxidase Can Take Place without the Conserved Glutamic Acid in Subunit lâ€. Biochemistry, 2000, 39, 7863-7867.	2.5	69

Anne Puustinen

#	Article	IF	CITATIONS
37	Glutamate-89 in Subunit II of Cytochromebo3fromEscherichia coliIs Required for the Function of the Hemeâ^'Copper Oxidaseâ€. Biochemistry, 1999, 38, 15150-15156.	2.5	41
38	The Calcium Binding Site in Cytochromeaa3fromParacoccus denitrificansâ€. Biochemistry, 1999, 38, 10670-10677.	2.5	44
39	Tryptophan-136 in Subunit II of Cytochromebo3fromEscherichiacoliMay Participate in the Binding of Ubiquinolâ€. Biochemistry, 1998, 37, 11806-11811.	2.5	29
40	Fourier Transform Infrared Evidence for Connectivity between CuB and Glutamic Acid 286 in Cytochrome bo3 from Escherichia coli. Biochemistry, 1997, 36, 13195-13200.	2.5	121
41	The "Ferrous-Oxy―Intermediate in the Reaction of Dioxygen with Fully Reduced Cytochromesaa3andbo3â€. Biochemistry, 1996, 35, 16241-16246.	2.5	27
42	Channelling of dioxygen into the respiratory enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 1-4.	1.0	103
43	Kinetic trapping of oxygen in cell respiration. Nature, 1996, 380, 268-270.	27.8	108
44	Identification of a "peroxy" intermediate in cytochrome bo3 of Escherichia coli Biochemistry, 1995, 34, 15633-15637.	2.5	62
45	Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: Second-site mutations in subunit I that restore proton pumping in the mutant Asp135.fwdarw.Asn. Biochemistry, 1995, 34, 4428-4433.	2.5	110
46	Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 106-111.	1.0	111
47	Site-Directed Mutagenesis of Residues within Helix VI in Subunit I of the Cytochrome bo3 Ubiquinol Oxidase from Escherichia coli Suggests That Tyrosine 288 May Be a CuB Ligand. Biochemistry, 1994, 33, 13013-13021.	2.5	39
48	Intramolecular electron transfer in cytochrome o of Escherichia coli: events following the photolysis of fully and partially reduced carbon monoxide-bound forms of the bo3 and oo3 enzymes. Biochemistry, 1993, 32, 11413-11418.	2.5	39
49	Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry, 1993, 32, 10923-10928.	2.5	203
50	The low-spin heme site of cytochrome o from Escherichia coli is promiscuous with respect to heme type. Biochemistry, 1992, 31, 10363-10369.	2.5	93
51	Properties of the two terminal oxidases of Escherichia coli. Biochemistry, 1991, 30, 3936-3942.	2.5	326
52	Cytochromeo(bo) is a proton pump inParacoccus denitrificansandEscherichia coli. FEBS Letters, 1989, 249, 163-167.	2.8	212
53	The Paracoccus denitrificans cytochrome aa3 has a third subunit. FEBS Journal, 1988, 172, 543-546.	0.2	74