
## Victor A Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2520545/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 2022, 54, 73-83.                                                                                 | 21.4 | 88        |
| 2  | Buxus and Tetracentron genomes help resolve eudicot genome history. Nature Communications, 2022, 13, 643.                                                                                                                                                           | 12.8 | 24        |
| 3  | The digestive systems of carnivorous plants. Plant Physiology, 2022, 190, 44-59.                                                                                                                                                                                    | 4.8  | 20        |
| 4  | Insights into bear evolution from a Pleistocene polar bear genome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                                                                    | 7.1  | 11        |
| 5  | Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba.<br>Scientific Reports, 2021, 11, 15725.                                                                                                                            | 3.3  | 5         |
| 6  | TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in<br><i>Gerbera hybrida</i> . Plant Physiology, 2020, 184, 1455-1468.                                                                                                   | 4.8  | 33        |
| 7  | Aquatic angiosperm ambiguities answered. Nature Plants, 2020, 6, 181-183.                                                                                                                                                                                           | 9.3  | 9         |
| 8  | The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and<br>reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences<br>of the United States of America, 2019, 116, 17081-17089. | 7.1  | 134       |
| 9  | Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights<br>into the evolution of caffeine content in its species. Molecular Phylogenetics and Evolution, 2017, 109,<br>351-361.                                        | 2.7  | 59        |
| 10 | Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nature<br>Ecology and Evolution, 2017, 1, 59.                                                                                                                             | 7.8  | 99        |
| 11 | Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.                                                                                                                 | 21.4 | 221       |
| 12 | Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4435-E4441.                                                                       | 7.1  | 95        |
| 13 | Dissecting functions of <i><scp>SEPALLATA</scp></i> â€like <scp>MADS</scp> box genes in patterning of the pseudanthial inflorescence of <i>Gerbera hybrida</i> . New Phytologist, 2017, 216, 939-954.                                                               | 7.3  | 46        |
| 14 | Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with<br>post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. BMC Evolutionary<br>Biology, 2016, 16, 141.                                                  | 3.2  | 9         |
| 15 | Co-opting floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence.<br>Plant Physiology, 2016, 172, pp.00779.2016.                                                                                                                 | 4.8  | 49        |
| 16 | Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events. BMC Genomics, 2015, 16, S8.                                                                                                         | 2.8  | 4         |
| 17 | De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics, 2015, 16, 657.                                                                                           | 2.8  | 17        |
| 18 | Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of<br>fatty acids. BMC Genomics, 2015, 16, 599.                                                                                                                     | 2.8  | 69        |

VICTOR A ALBERT

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba.<br>Genome Biology and Evolution, 2015, 7, 444-456.                                                                                                       | 2.5  | 33        |
| 20 | High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Molecular Biology and Evolution, 2015, 32, 1284-1295.                                                                         | 8.9  | 53        |
| 21 | The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014, 345, 1181-1184.                                                                                                                                 | 12.6 | 520       |
| 22 | Functional diversification of duplicated <scp>CYC</scp> 2 clade genes in regulation of inflorescence<br>development in <i><scp>G</scp>erbera hybrida</i> ( <scp>A</scp> steraceae). Plant Journal, 2014, 79,<br>783-796.                                  | 5.7  | 98        |
| 23 | The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.                                                                                                                                                           | 12.6 | 743       |
| 24 | Architecture and evolution of a minute plant genome. Nature, 2013, 498, 94-98.                                                                                                                                                                            | 27.8 | 293       |
| 25 | Evolution and Diversification of the CYC/TB1 Gene Family in AsteraceaeA Comparative Study in<br>Gerbera (Mutisieae) and Sunflower (Heliantheae). Molecular Biology and Evolution, 2012, 29, 1155-1166.                                                    | 8.9  | 127       |
| 26 | The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs. EvoDevo, 2012, 3, 26.                                                                                | 3.2  | 15        |
| 27 | Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biology, 2011, 11, 101.                                                                                   | 3.6  | 50        |
| 28 | ls GC bias in the nuclear genome of the carnivorous plant UtriculariaÂdriven by ROS-based mutation and biased gene conversion?. Plant Signaling and Behavior, 2011, 6, 1631-1634.                                                                         | 2.4  | 13        |
| 29 | Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biology, 2010, 10, 128.                                                                                                          | 3.6  | 44        |
| 30 | Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biology, 2010, 10, 129.                                                                              | 3.6  | 44        |
| 31 | The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. Journal of<br>Experimental Botany, 2010, 61, 5-9.                                                                                                                         | 4.8  | 51        |
| 32 | Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of<br>Experimental Botany, 2010, 61, 75-85.                                                                                                             | 4.8  | 58        |
| 33 | Polyploidy and angiosperm diversification. American Journal of Botany, 2009, 96, 336-348.                                                                                                                                                                 | 1.7  | 1,031     |
| 34 | <i>Persea americana</i> (avocado): bringing ancient flowers to fruit in the genomics era. BioEssays, 2008, 30, 386-396.                                                                                                                                   | 2.5  | 46        |
| 35 | Molecular phylogenetics of tribe Synandreae, a North American lineage of lamioid mints (Lamiaceae).<br>Cladistics, 2008, 24, 299-314.                                                                                                                     | 3.3  | 18        |
| 36 | A TCP domain transcription factor controls flower type specification along the radial axis of the<br><i>Gerbera</i> (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 9117-9122. | 7.1  | 229       |

VICTOR A ALBERT

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics, 2006, 22, 568-588.                                                                                                                                           | 3.3 | 61        |
| 38 | Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae).<br>BMC Plant Biology, 2006, 6, 11.                                                                                                           | 3.6 | 51        |
| 39 | Phylogenetic diversification of glycogen synthase kinase 3/SHAGCY-like kinase genes in plants. BMC<br>Plant Biology, 2006, 6, 3.                                                                                                                | 3.6 | 55        |
| 40 | Widespread genome duplications throughout the history of flowering plants. Genome Research, 2006, 16, 738-749.                                                                                                                                  | 5.5 | 664       |
| 41 | Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant<br>Biology, 2005, 5, 5.                                                                                                                               | 3.6 | 100       |
| 42 | Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101,<br>18064-18068.                                    | 7.1 | 54        |
| 43 | Phylogeny and diversification of Bâ€function MADSâ€box genes in angiosperms: evolutionary and<br>functional implications of a 260â€millionâ€yearâ€old duplication. American Journal of Botany, 2004, 91,<br>2102-2118.                          | 1.7 | 185       |
| 44 | Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15817-15822.                                                          | 7.1 | 113       |
| 45 | Cladogenesis and reticulation in the Hawaiian endemic mints (Lamiaceae). Cladistics, 2003, 19, 480-495.                                                                                                                                         | 3.3 | 50        |
| 46 | Activation of Anthocyanin Biosynthesis in Gerbera hybrida (Asteraceae) Suggests Conserved<br>Protein-Protein and Protein-Promoter Interactions between the Anciently Diverged Monocots and<br>Eudicots. Plant Physiology, 2003, 133, 1831-1842. | 4.8 | 137       |
| 47 | Pleiotropy, redundancy and the evolution of flowers. Trends in Plant Science, 2002, 7, 297-301.                                                                                                                                                 | 8.8 | 44        |
| 48 | Molecular Rates Parallel Diversification Contrasts between Carnivorous Plant Sister Lineages1.<br>Cladistics, 2002, 18, 127-136.                                                                                                                | 3.3 | 74        |
| 49 | GRCD1, an AGL2-like MADS Box Gene, Participates in the C Function during Stamen Development in<br>Gerbera hybrida. Plant Cell, 2000, 12, 1893-1902.                                                                                             | 6.6 | 82        |
| 50 | Organ identity genes and modified patterns of flower development inGerbera hybrida(Asteraceae).<br>Plant Journal, 1999, 17, 51-62.                                                                                                              | 5.7 | 220       |
| 51 | Ontogenetic Systematics, Molecular Developmental Genetics, and the Angiosperm Petal. , 1998, , 349-374.                                                                                                                                         |     | 82        |
| 52 | Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL. Annals of the Missouri Botanical Garden, 1993, 80, 528.                                                                                           | 1.3 | 1,708     |